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Predgovor

Ova knjiga predstavlja udzbenik iz predmeta Linearna algebra koji se stu-
dentima Elektronskog fakulteta u Nisu predaje u I semestru pocev od skolske
2004/2005. godine. Knjiga je nastala na osnovu vise puta objavljivanih udz-
benika istih autora, pod naslovom : Matematika za studente tehnickih fakul-
teta, I i II deo.

Udzbenik Linearna algebra sastoji se iz Sest glava.

U glavi Osnovi algebre izlozeni su algebra skupova, matematicka indukcija
i elementi teorije o apstraktnim strukturama. Posebna paznja je posvecena
kompleksnim brojevima.

Glava Linearni prostori, linearni operatori i matrice, sastoji se iz dela u
kojem su uvedeni osnovni pojmovi teorije linearnih prostora, sa posebnim
osvrtom na prostor prosto-periodi¢nih oscilacija, kao i teorije linearnih ope-
ratora i dela u kojem je detaljno izlozena teorija matrica i determinanata.

Sistemi linearnih jednacina je glava u kojoj su izlozeni osnovni metodi
reSavanja sistema linearnih jednac¢ina i u vezi sa tim i osnovni pojmovi o
ekvivalentnim sistemima vektora i matrica.

U glavi Algebarski polinomi i racionalne funkcije, ukratko ali u dovoljnoj
meri, izlozena je teorija o algebarskim polinomima, teorija o reSavanju al-
gebarskih jednacina, kao i izvesni pojmovi o polinomskim funkcijama vise
promenljivih i racionalnim funkcijama.

Glava Spektralna teorija matrica i operatora tretira problem sopstvenih
vrednosti, invarijantne potprostore i strukturu linearnih operatora.

I na kraju, u glavi Elementi analiticke geometrije ukratko je izlozena ana-
liticka geometrija u trodimenzionalnom prostoru.

Svaka glava je podeljena na poglavlja, a poglavlja na odeljke.

Numeracija objekata (formula, teorema, definicija i sl.) u okviru jednog
odeljka izvrSena je pomocu tri broja od kojih prvi ukazuje na poglavlje, drugi
na odeljak i tre¢i na redni broj tog objekta u posmatranom odeljku. Tako, na
primer, Teorema 3.2.4 predstavlja cetvrtu teoremu u drugom odeljku treceg
poglavlja odgovarajuée glave. Na ovaj nacin je uspostavljena jednoznac¢na
numeracija objekata u okviru jedne glave.
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Sva teorijska izlaganja propracena su odgovarajuéim primerima.

Kao novina u nasoj udzbenickoj literaturi, na kraju svake glave je poglav-

uvezbavanje prethodno izlozene teorije.

Kako je knjiga pisana u skladu sa najnovijim planom i programom studija
na Elektronskom fakultetu u NiSu, ona je, pre svega, namenjena studentima
elektronike i elektrotehnike, ali i studentima drugih tehnickih fakulteta, kao
i studentima matematike i fizike na prirodno-matematickim fakultetima.

Nis, 30. septembra 2004.
G. V. Milovanovié¢ / R. Z. Dordevi¢
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I GLAVA
Osnovi algebre

1. SKUPOVI, RELACIJE I PRESLIKAVANJA

1.1. Elementi matematicke logike

Kao i u svakodnevnom zivotu, i u matematici se operiSe i opsti reCenicama.
Naravno, u matematici, one moraju biti takve da imaju smisla, a pri tom mogu
biti samo istinite ili neistinite. Za takve recenice kazemo da su iskazi ili sudowvi.
Dakle, jedan iskaz moze imati samo jednu vrednost istinitosti, tj. iskaz je ili istinit
ili neistinit.

Vrednost istinitog iskaza oznacavamo sa T ili sa 1, a neistinitog sa L ili sa 0.
Simbol T ¢itamo kao istinito ili tacno, a simbol 1 kao neistinito ili netacno.

Dakle, ako sa p oznac¢imo neki iskaz, onda njegova vrednost istinitosti 7(p) moze
biti
T, ako je p istinit iskaz,
m(p) = : o
1, ako je p neistinit iskaz.
Koriséenjem izvesnih operacija nad iskazima moguca je konstrukcija i slozenijih
iskaza. Ovim se bavi poseban deo matematicke logike koji se naziva iskazni racun
ili iskazna algebra.

Nad iskazima mogude je uvesti sledeée operacije:

(1) Negacija iskaza p, u oznaci —p, je istinit iskaz ako i samo ako je iskaz p
neistinit.

(2) Konjunkcija iskaza p i ¢, u oznaci p A q, je slozen iskaz koji je istinit ako
i samo ako su oba iskaza p i ¢ istinita. Alternativno, za konjunkciju se koristi i
termin operacija i, tako da se p A ¢ Cita kao p i q.

(3) Disjunkcija iskaza p i ¢, u oznaci p V q, je slozen iskaz koji je istinit ako je
bar jedan od iskaza p i ¢ istinit. Drugim re¢ima, pV ¢ je neistinit iskaz ako i samo
ako su oba iskaza p i g neistinita. Za disjunkciju se koristi i termin operacija ili,
tako da se p V q ¢ita i kao p i q.

(4) Implikacija p = q je slozen iskaz koji je neistinit ako i samo ako je p istinit
a ¢ neistinit iskaz. Implikacija p = ¢ se ¢ita i na jedan od sledeéih nacina:

iz p sleduje gq,

— q je posledica iskaza p,
— ako p tada q,

p je dovoljan uslov za g,
— q je potreban uslov za p.
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(5) Ekvivalencija p < q je slozen iskaz koji je istinit ako i samo ako oba iskaza
imaju istu istinitosnu vrednost. Ekvivalencija p < ¢ se ¢ita i kao:

— p je ekvivalentno sa q,
— p je ako i samo ako je g,
— p je potreban i dovoljan uslov za q.

(6) Ekskluzivna disjunkcija pVq je slozen iskaz koji je istinit ako i samo ako
iskazi p i ¢ imaju razlicite istinitosne vrednosti. Dakle, ekskluzivna disjunkcija
predstavlja negaciju ekvivalencije, tj. =(p < q).

U sledecoj tabeli, tzv. tablici istinitosti, dat je pregled vrednosti istinitosti za
prethodno uvedene operacije:

T(p) | 7(q)| 7(=p) | T(pA Q)| T(PV )| T(p = q)| T(p & q)| T(PVa)
| L T L T T T L
L] 7T T 1 T T 1 T
T L 1 1L T 1 1L T
T T L T T T T 1

Cesto se mogu sresti i re¢enice poput sledeée: Broj x je manji od broja y. Uko-
liko nisu specificirane vrednosti za = i y, nije moguée utvrditi istinitost navedene
recenice. Medutim, ako uzmemo x = 2 i y = 3, recenica daje istinit iskaz. Dakle,
reCenice ovog tipa sadrze izvesne promenljive. Dajuéi konkretne vrednosti ovim
promenljivama, recenice postaju iskazi (istiniti ili neistiniti). Za takve recenice
kazemo da su iskazne funkcije. Za odnos izmedu promenljivih koristi se termin
predikat. Tako u prethodnom primeru predikat ... je mangi od ... povezuje
promenljive x i y. Prema tome, ako ovaj predikat oznac¢imo sa P, re¢enica definiSe
iskaznu funkciju od dve promenljive P(z,y). U opStem sluc¢aju, iskazna funkcija
moze zavisiti od jedne ili vise promenljivih.

Na kraju ovog kratkog pregleda osnovnih elemenata matematicke logike pomenimo
jos i tzv. kvantifikatore koji se primenjuju na promenljive u iskaznim funkcijama.

Postoje dva kvantifikatora:
(1) univerzalni kvantifikator svaki (ili za svaki) sa oznakom V;
(2) egzistencijalni kvantifikator neki (ili postoji) sa oznakom 3.

Primena kvantifikatora na sve promenljive u iskaznoj funkciji prevodi iskaznu
funkciju u iskaz.

Primer 1.1.1. Iz prethodno pomenute iskazne funkcije P(z,y) mozemo formi-
rati iskaz

(Vy) 3z) P(z,y),
koji znaci: Za svaki broj y, postoji broj x takav da je x mangi od y. A

Napomena 1.1.1. Cesto kvantifikatore upotrebljavamo u jednom ogranice-
nom smislu, tj. promenljive ogranicavamo na elemente izvesnih skupova X, Y, itd.
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Na primer, uzimamo (Vz € X) ili (3y € Y), itd. U takvim slu¢ajevima kazemo da
radimo sa kvantifikatorima ograni¢enog opsega.

Primer 1.1.2. Neka je P(x) data iskazna funkcija na skupu X. Iskaz
(Vx € X) P(x),
sa kvantifikatorom ograni¢enog opsega, moze se protumaciti na sledeéi nacin

(Vz) (zx € X = P(z)). &

Kona¢nom upotrebom kvantifikatora i iskaznih funkcija, uz uvedene ope-
racije nad iskazima, dobijamo slozene iskaze.

U cilju konciznijeg pisanja, ¢esto ¢emo, kada ne moze doé¢i do zabune, u
daljem izlaganju koristiti

P(z,y,...) (reX, yey,...),

umesto
VMreX)(VyeY) ... P(z,y,...).

1.2. Skupovi i osnovne osobine skupova

U svim naukama ima pojmova koji se ne definisu. To su za svaku nauku
osnovni i, u skladu sa prirodom nauke, potpuno ili dovoljno jasni poj-
movi. U matematici skup je jedan od pojmova koji je osnovni. Neki drugi

su, na primer, broj, tacka, prava, ... Prema tome, skup se ne definiSe.
Oznacava¢emo ga sa A, B,C, ... ili na neki drugi nac¢in, Sto ¢éemo posebno
naglasiti.

Skup se sastoji od elemenata, koje ¢emo oznacavati uglavnom sa a, b, c, . ..
Cinjenicu da je a element skupa A oznacavacemo sa a € A. Oznaku a € A
Citamo: a je element skupa A, a pripada skupu A, a je iz skupa A ili a je u
skupu A. Ako a nije element skupa A, pisa¢emo a ¢ A. Naravno, oznaku
a ¢ A Gitamo: a nije element skupa A, a ne pripada skupu A, a nije iz skupa
A ili a nije u skupu A.

Razumljivo, ne moze vaziti istovremeno a € Aia & A.
Ako se skup A sastoji iz elemenata a, b, c, ..., pisatemo A = {a,b,c,... }.

Ukoliko se skup A sastoji iz elemenata z koji imaju odredenu osobinu
P(z), oznacavacemo A = {z | P(z)}. To, zapravo, znac¢i da ako y nema
osobinu P(y), tada y nije element skupa A, tj. y & A.

Posmatrajmo sada dva skupa A i B.
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Mogucdi su sledeéi slucajevi:
SLUCAJ 1. Svi elementi skupa A su i elementi skupa B. Tada kazemo

da je skup A podskup skupa B ili da je skup B nadskup skupa A. Ovo
respektivno oznacavamo sa A C B ili B D A. Dakle,

ACB <= (Vz) (xr€ A=z € B).

Primetimo da vazi A € A1 A D A, tj. da je svaki skup, u trivijalnom
slucaju, svoj podskup, ali i svoj nadskup. To ozna¢avamo i na na¢in A C A
ili A D A.

Primer 1.2.1. Skup A = {a,b} je podskup skupa B = {a,b,c,d}. Naravno,
skup B je nadskup skupa A. A

Napomena 1.2.1. Ponekad se za nadskup skupa A kaze da je opsezniji skup
od skupa A.

Napomena 1.2.2. Cinjenicu da skup A nije opsezniji od skupa B oznacavamo
sa A C B. Naravno da i oznaka B D A predstavlja istu ¢injenicu.

Napomena 1.2.3. Bez dodatnih ogranicenja ne postoji najopsezniji skup, tj.
ne postoji skup koji je nadskup svih moguéih skupova.

SLUCAJ 2. Svi elementi skupa A su elementi skupa B i svi elementi skupa
B su elementi skupa A, §to obelezavamo sa A C Bi B C A,aliisa ACBi
B C A. Ovaj slucaj nastupa kada se skupovi A i B sastoje iz istih elemenata.

Tada kazemo da su skupovi A i B jednaki oznacavajuéi to sa A = B ili
B = A. Dakle,

A=B < (Vz)(x€ A<z € B).

Primer 1.2.2. Skupovi A = {a,b,c} i B = {c,a,b} su jednaki, tj. vazi jed-
nakost A=B. A

SLUCAJ 3. Neki elementi skupa A su elementi i skupa B. Ovo je slucaj
kada skupovi A i B imaju elemente koji pripadaju i jednom i drugom skupu.
Ti elementi su njihovi zajednicki elementi i oni ¢ine skup C za koji je C C A
iC CB.

Primer 1.2.3. Za skupove A = {1,2,a,b} i B ={2,3,a,c} skup C je odreden
sa C={2,a}. A

SLUCAJ 4. Ni jedan element skupa A nije element skupa B, §to je isto
kao i da ni jedan element skupa B nije element skupa A. To je slucaj kada
skupovi A i B nemaju zajednickih elemenata. Za takve skupove kazemo da
su disjunktni.
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Primer 1.2.4. Skupovi A = {a,b,c} i B=1{1,2,3,4} su disjunktni. A

Ova Cetiri slucaja ukazuju da medu skupovima postoje izvesni odnosi koje
valja izuciti. Smatracemo, pre svega, da su svi skupovi koje ¢emo nadalje
razmatrati podskupovi jednog datog skupa E, ¢ija nam priroda nije bitna,
ali tako da bilo kakvo tretiranje jednog, dva ili vise skupova uvek dovodi do
skupa koji je podskup skupa E.

Kao sto smo videli, oznake A C B i A C B se formalno razlikuju. U
prvoj je eksplicitno naglasena i moguénost jednakosti skupova A i B. Ako
insistiranje na jednakosti nije bitno, pisa¢emo jednostavno A C B.

Definicija 1.2.1. Skup ¢iji elementi pripadaju bar jednom od skupova A
ili B zovemo unija skupova A i B, u oznaci AU B.

Dakle,
AUB={z|z€ AVz € B}.

Ocigledno, vazi AUB = BUA, tj. unija skupova ima osobinu komutativnosti.
Primetimo da je: AUA=A, AC AUB, BC AUB.
Primer 1.2.5. Neka je A ={1,2,a,b} i B ={2,3,a,c}. Tada je njihova unija
skup C =AU B =1{1,2,3,a,b,c}.

Definicija 1.2.2. Skup ¢iji elementi pripadaju i skupu A i skupu B zovemo
presek skupova A i B, u oznaci AN B.

Prema tome, presek skupova A i B je skup
ANB={z|z€ ANz € B}.

Ocigledno vazi jednakost AN B = BN A, tj. i presek skupova ima osobinu
komutativnosti.

Napomenimo da je: ANA=A, ADANB,BDANB.

Primer 1.2.6. Presek skupova A = {1,2,a,b} i B = {2,3,a,c} je skup C =
{2,a}. A

Ranije navedeni opsti zahtev da tretiranje skupova treba uvek da dovede
do skupa upucuje nas na sledeée razmatranje:

Unija dva skupa uvek postoji kao skup, tj. uvek ima elemenata koji pri-
padaju bar jednom od skupova koji ¢ine uniju. Medutim, moze se desiti da
skupovi A i B nemaju zajednickih elemenata. To je sluc¢aj kada su skupovi
A i B disjunktni. Ali, zahtev da i u tom slu¢aju A N B predstavlja skup
navodi nas na zakljucak da postoji, ili da bi bilo dobro da postoji, skup



6 OSNOVI ALGEBRE

koji nema elemenata. To je skup bez elemenata. Zva¢emo ga prazan skup i
oznacavaéemo ga sa (.

Uveli smo, dakle, prazan skup kao skup koji nema elemenata. Ponekada
¢emo, da bismo istakli da nije prazan, svaki drugi skup zvati neprazan skup.

Ocigledno, prazan skup je podskup svakog skupa, tj. za svaki skup A vazi
0 c A.

Isto tako, vaze i jednakosti AUD = A1 AN =0.

Sledeéa dva tvrdenja navodimo bez dokaza:

Teorema 1.2.1. VaZe jednakosti

AUBUC)=(AUB)UC i AN(BNC)=(AnB)NC.

Ove jednakosti predstavljaju redom tzv. osobinu asocijativnosti za uniju
i presek skupova. Teorema 1.2.1 pokazuje da redosled uniranja i presecanja
skupova nije od znacaja, pa se obi¢no izostavljaju zagrade i pise se AUBUC
umesto (AUB)UC, tj. AN BN C umesto (AN B)NC.

Teorema 1.2.2. Vaze jednakosti

AU(BNC)=(AUB)N(AUC),

(1.2.1) AN(BUC)=(ANB)U(ANCQ).

Ovo tvrdenje predstavlja osobinu distributivnosti unije u odnosu na presek
i preseka u odnosu na uniju.

Napomenimo da osobina obostrane distributivnosti nije uobicajena. Na
primer, mnozenje brojeva je distributivno u odnosu na sabiranje brojeva, ali
sabiranje nije distributivno u odnosu na mnozenje.

Definicija 1.2.3. Skup ¢iji elementi nisu elementi skupa A zovemo komple-
ment skupa A u odnosu na skup E i oznacavamo ga sa A’, tj.

A'={x |z e Enx ¢ A}

Komplement skupa E je prazan skup. Komplement praznog skupa je
skup E.

1z ove definicije neposredno sleduju jednakosti

(1.2.2)  ANA =0, AUA =E, (A=A, ¢ =E, E =0.
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Naravno, moguce je govoriti i o komplementu skupa A u odnosu na neki
drugi skup, na primer skup F, ali samo ako je A C F. Sa A, oznatavamo
komplement skupa A u odnosu na skup F'.

Napomenimo da i u ovom sluéaju vaze jednakosti koje odgovaraju jed-
nakostima (1.2.2).

Naravno, kada se radi o viSe skupova i njihovim komplementima u odnosu
na isti skup, nije potrebno naglasavati za komplemente u odnosu na koji se
skup oni odnose.

Bez dokaza navodimo i sledece tvrdenje:

Teorema 1.2.3. VaZe jednakosti

(1.2.3) (AuB) =A'nPB’ i (AnB) =A"UB".

Jednakosti (1.2.3) su u literaturi poznate pod imenom De Morganovi®)
obrasci.

Bez dokaza navodimo sledeca uopstenja prethodnih teorema:

Teorema 1.2.4. Vaze jednakosti

%u(@AQ:(}%, f%mqﬁ&)zﬁA,
i=1 i=0 i=1 i=0
Teorema 1.2.5. Vaze jednakosti
Au(ﬁBQ:fﬂAua% Am(OBQ:(]Am&y
i=1 i=1 i=1 i=1

Teorema 1.2.6. Vaze jednakosti
n ’ n n ’ n
(Q&)ZQM, (ﬂ&):QM.

i=1

D Augustus De Morgan (1806-1871), skotski matematicar i logicar.
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Definicija 1.2.4. Skup {z|xz € AAz & B}, uoznaci A\ B, zovemo razlika
skupova A i B.

Primer 1.2.7. Ako je A ={a,b,c,d} i B ={b,d}, sleduje A\ B={a,c}. A

Naravno, ako je A C B, tada vazi A\ B =10, alii B\ A= A,. Isto tako
jei A\ A=0.
Definicija 1.2.5. Skup (A\B)U(B\A) nazivamo simetricna razlika skupova
A1 B i oznacavamo ga sa A + B.

Ocigledno je da vazi A+~ B = B + A.

Primer 1.2.8. Kako je za skupove A = {1,2,a,b} i B={2,3,b,¢}

A\B={l,a} i B\A={3,c},

sleduje
A+ B={1,3,a,c}. A

Kao §to smo videli, za dva skupa, ili za viSe njih, uvek je moguée odrediti
skup koji je njihova unija. I naravno, odredivanje unije skupova uvek je
jednozna¢éno. Obrnuti problem, u opStem slu¢aju, nije jednoznacno resiv.

Primer 1.2.9. Skup X = {1,2,a,b,a, 3} predstavlja uniju skupova X; =
{1,2,a} i Xo = {b,, 8}, ali i skupova X3 = {1,2,a,b} i X4 = {a,b,a,B}. Na-
ravno, ima i drugih moguénosti. A

Definicija 1.2.6. Za disjunktne podskupove skupa X, ¢ija je unija citav
skup X, kazemo da ¢ine particiju skupa X.

Primer 1.2.10. Jednu particiju skupa {1,2,3,4,5,6, 7} ¢ine skupovi {1, 3,4},
{2,7},{5,6}. A

Napomena 1.2.4. U opstem slucaju, jedan skup ima viSe particija.

U vezi sa prethodnim, postavlja se pitanje odredivanja svih podskupova
datog skupa, tj. skupa svih podskupova jednog skupa.
Definicija 1.2.7. Skup svih podskupova skupa A zovemo partitivni skup
skupa A i oznacavamo ga sa P(A).

Napomenimo da su prazan skup @ i sam skup A uvek elementi skupa
P(A).
Dakle,
P(A) ={B | B C A}.

Primer 1.2.11. Ako je A = {a,b, c}, njegov partitivni skup je

P(A) = {0,{a}, {0}, {c} {a,0},{a,c}, {b,c}, {a,b,c}}. &
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Na kraju ovog odeljka naves¢emo uobic¢ajene oznake za neke standardne
skupove brojeva:

N - skup svih prirodnih brojeva,

Ny — skup svih prirodnih brojeva uz ukljuc¢ivanje nule, tj. Ng = N U {0},

7Z  — skup svih celih brojeva,

Q — skup svih racionalnih brojeva,

I — skup svih iracionalnih brojeva,

R — skup svih realnih brojeva,

R* — skup svih pozitivnih realnih brojeva,

Ry — skup svih nenegativnih realnih brojeva, tj. Ry = R* U {0}.

O oznakama nekih drugih skupova bice re¢i docnije.

1.3. Relacije

Posmatrajmo neprazne skupove X i Y. Elementu x iz prvog skupa X
pridruziéemo neki element y € Y. Na taj nacin dobijamo jedan par eleme-
nata z i y koji nazivamo uredeni par i oznacavamo sa (z,y). Dakle, uredeni
par (x,y) je okarakterisan svojstvom da je prvi element x iz prvog skupa, a
drugi y iz drugog skupa. Zato element x nazivamo prva komponenta ili prva
koordinata, a y druga komponenta ili druga koordinata uredenog para (z,vy).

Po definiciji, dva uredena para (z,y) i (2’,y’) su jednaka, tj. (x,y) =
(2',y’), ako i samo ako jex =2’ 1 y =1y’

Napomena 1.3.1. S obzirom da je (z,y) dvoélani skup (sa uredenim elemen-
tima), mogude je definisati uredeni par i na formalan nacin kao skup

(z,y) = {{}, {z,y}}.

Ako je definicija uredenog para uvedena na ovakav formalni nacin, tada se moze
dokazati da je (z,y) = (2/,y) s z=2"Ay=1y.

Pojam uredene trojke (x,y,z) elemenata z € X, y € Y, z € Z moze se
uvesti na sledeé¢i nacin

(,9,2) = ((z,9),2).

Naravno, moguce je definisati i uredenu n-torku elemenata x, € Xy, x5 € Xo,
.o, Ty € Xy, pomocu jednakosti

(T1, T2, ., Tpy_1,Tp) = ((33‘1,332,... ,:En_l),:En),
pri ¢emu vazi sledeca ekvivalencija

(1,2, Zn) = (Y1,Y2,--- yYn) < z=vy; 1=1,2,... ,n).
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Definicija 1.3.1. Skup
XxY={(z,y) |lzreXANyeY}

zovemo Dekartov? ili Cartesiusov proizvod skupova X i Y.

Prema tome, Dekartov proizvod skupova X i Y predstavlja skup svih
uredenih parova (z,y) elemenata z i y, pri ¢emu je prvi element u paru iz
skupa X, a drugi iz skupa Y. Naravno, u opStem slucaju ne vazi jednakost
X xY =Y x X, osim ako je X =Y.

U smislu definicije 1.3.1, Dekartov proizvod skupova Xy, Xs,..., X, je
skup

X3 ><X2><~~~><Xn:{(x1,x2,... ,xn) ‘ z; € X; (121,2, ,n)}

Dakle, elementi Dekartovog proizvoda skupova Xq, Xo,..., X, su uredene
n-torke (x1,x9,... ,2,) elemenata z; € X; (i=1,2,... ,n).

Ako je Y = X, tada pisemo X x Y = X x X = X?2. Isto tako, i oznaka
X3 znadi proizvod X x X x X. Naravno, akoje X1 =Xo =---=X,, = X,
pisemo

XixXogx---xX,=X".

Neka su i sada X i Y neprazni skupovi.
Definicija 1.3.2. Skup p C X xY zovemo binarna relacija u skupu X x Y.

Ako (z,y) € p, kazemo da su z i y u relaciji p oznacavajuéi to i sa p(z,y)
ili zpy. Ako (z,y) & p, kazemo da = i y nisu u relaciji p i to oznacavamo sa
x nonp y.

Ako je Y = X, tada za binarnu relaciju u skupu X xY = X x X = X?
kazemo jednostavno da je binarna relacija u skupu X.

Definicija 1.3.3. Ako je p binarna relacija u skupu X, uredeni par (X, p),
u oznaci I' = (X, p), nazivamo graf. Za elemente skupa X kazemo da su
¢vorovi, a za elemente skupa p da su grane grafa.

Graf se obi¢no predstavlja crtezom na kome su ¢vorovi grafa predstav-
ljeni tackama. Cinjenica da (a,b) € p oznacava se orijentisanom linijom
koja spaja tacke a i b, tj. koja spaja ¢vorove a i b, i usmerena je od a ka b.
Ta linija je jedna grana grafa. Naravno, ako je (a,a) € p to simbolizujemo

2) René Descartes (Cartesius) (1596-1650), veliki francuski filozof i matematicar.
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b

Sl 1.3.1 Sl 1.3.2

malim, takode orijentisanim, lukom povuéenim od tacke a do iste tacke a.
Za taj luk kazemo da predstavlja petlju grafa.

Na primer, ako je X = {a,b,c,d} i ako je

p={(a,a),(b,b),(a,b), (b, a),(a,c),(c,b), (¢, d), (d, ) },

tada graf I' = (X, p) izgleda kao na slici 1.3.1.
U daljim razmatranjima izuc¢i¢emo neke osobine relacija u skupu X.

Definicija 1.3.4. Relacija p je refleksivna ako je xpx za svako x € X.
Primer 1.3.1. Neka je X = {a,b,c} i p = {(a,a),(b,b),(c,c)}. Relacija p je
refleksivna relacija u skupu X. A
Napomena 1.3.2. Ako je relacija refleksivna, tada je na grafu oko svakog

¢vora opisana petlja. Lako se moze utvrditi da relacija predstavljena grafom na
slici 1.3.1 nije refleksivna.

Definicija 1.3.5. Relacija p je simetri¢na u skupu X ako za svako xz,y € X
za koje je (z,y) € p sleduje da je i (y,z) € p.

Primer 1.3.2. 1° Skup p = {(a,a), (b,c), (¢, b)} je simetri¢na relacija u skupu
X ={a,b,c}.

2° Relacija normalnost pravih je simetri¢na relacija u skupu svih pravih u
jednoj ravni. A

Napomena 1.3.3. Graf koji odgovara simetri¢noj relaciji je takav da, ako
postoji grana grafa od ¢vora a ka ¢voru b, tada mora postojati i grana grafa
od ¢vora b ka ¢voru a. Za graf koji odgovara simetri¢noj relaciji kazemo da je
simetriéni graf.

Definicija 1.3.6. Relacija p je antisimetricna u skupu X ako za svako
x,y € X, za koje je (z,y) € pi (y,x) € p, sleduje x = y.
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Definicija 1.3.7. Relacija p je tranzitivna u skupu X ako za svako z,y, z €
X, za koje je (xz,y) € pi (y,2) € p, sleduje da je i (x,z) € p.

Primer 1.3.3. Skup p = {(a,a),(b,a),(b,c),(c,a)} je tranzitivna relacija u
skupu X = {a,b,c}. Graf I = (X, p) predstavljen je na slici 1.3.2. A

Napomena 1.3.4. Tranzitivnost relacije p moze se uociti i na grafu I' =
(X, p). Naime, ako postoje grane grafa I' od ¢vora b ka ¢voru ¢ i od ¢évora ¢

ka ¢voru a, tada mora postojati i grana od ¢vora b ka ¢voru a, Sto se moze lepo
videti na slici 1.3.2.

Definicija 1.3.8. Relaciju p u skupu X koja je refleksivna, simetri¢na i
tranzitivna zovemo relacija ekvivalencije u skupu X.

Sl 1.3.3 Sl 1.3.4

Primer 1.3.4. 1° Relacija

p = {(a,a), (b,b),(c,¢), (a,b), (a,¢), (b;a), (b, ¢), (¢, a), (¢, b) }

je relacija ekvivalencije u skupu X = {a,b,c}. Njen graf je prikazan na slici 1.3.3.
2° U skupu {1,2,3,4,5} relacija

p={(1,1),(1,3),(1,5), 2,2),(2,4),(3,1),(3,3),(3,5), (4,2), 4 4), (5,1, (5,3), (5,5)}

je relacija ekvivalencije, a njen graf je predstavljen na slici 1.3.4. A

Primer 1.3.5. 1° Relacija sli¢nost trouglova je, takode, relacija ekvivalencije
u skupu svih trouglova.

2° Relacija paralelnost pravih je relacija ekvivalencije u skupu svih pravih u
jednoj ravni. A

Neka je p relacija ekvivalencije u skupu X i neka je x € X. Ozna¢imo sa
C,. skup svih elemenata z € X koji su u relaciji p sa elementom x, tj. neka je

Cp={z€ X | zpx}.
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Definicija 1.3.9. Za skup C, C X kazemo da je klasa ekvivalencije skupa
X koja, u odnosu na relaciju p, odgovara elementu .

Napomenimo da C), nije prazan skup jer mu pripada bar element z. Isto
tako, ako C', sadrzi viSe elemenata, moze se smatrati da je C, klasa ekviva-
lencije koja odgovara svakom od tih elemenata.

Neka su C, i C, dve klase ekvivalencije skupa X koje, u odnosu na istu
relaciju ekvivalencije p, odgovaraju elementima x i y, respektivno.

Teorema 1.3.1. Klase ekvivalencije Cy, i Cy, skupa X se ili poklapaju ili su
disjunktne.

Dokaz. Za svako z,y € X, klase C, i Cy nisu prazni skupovi jer im,
svakako, pripadaju elementi x i y, respektivno. Ako skupovi C, i Cy nisu
disjunktni dokaza¢emo da se poklapaju.

Pretpostavimo, dakle, da C, N Cy nije prazan skup, Sto znaci da postoji
z € X, takoda z € C, iz € Cy, tj. da je zpx i zpy. Kako je relacija p
simetri¢na i tranzitivna imamo

zZpxr N zpy = xpz N\ zpy = Tpy,

odakle zakljuc¢ujemo da x € C,. S obzirom da x moze biti bilo koji element
iz C, sleduje C, C C,. Isto tako moze se pokazati da je C, C C,. Dakle,
vazi jednakost Cp, = Cy. O

Neposredna posledica teoreme 1.3.1 je tvrdenje koje sleduje:
Teorema 1.3.2. Unija svih klasa ekvivalencije skupa X, u odnosu na rela-
ciju p, je sam skup X.

Prema tome, svaka relacija ekvivalencije p u skupu X je jedna particija

skupa X na disjunktne podskupove.

Definicija 1.3.10. Ako su a i b celi brojevi, kazemo da je a kongruentno
sa b u odnosu na modul m (€ N), oznacavajuéi to sa a = b(modm), ako je
razlika a — b deljiva sa m.

To, zapravo, znaci da je a kongruentno sa b ako i samo ako postoji k € Z
tako da je a = b+ km. Naravno, u smislu definicije 1.3.10, oznaka a =
0 (mod m) znaci da je a deljivo sa m.

Teorema 1.3.3. Kongruencija celih brojeva po modulu m je relacija ekvi-
valencije.

Dokaz. Prvo, a = a(modm) za svako a € Z jer jea—a=0-mi0 € Z.
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Drugo, ako je a = b(modm), tj. ako je a — b = km (k € Z), tada je
b—a=Fkm,gdejek' =—keZ,tj. b=a(modm).

I najzad, neka je a = b(modm) A b = c¢(modm), tj. neka postoje celi
brojevi k1 i ko tako da jea —b = kym i b—c = kom. Tada je a —c =
(k1 + ko)m = km, gde je k = k1 + ko € Z. Prema tome, zaklju¢ujemo da je
a = c¢(modm).

Dakle, relacija kongruencije po modulu m je refleksivna, simetri¢na i
tranzitivna. [

Skup Z je relacijom ekvivalencije kongruencija po modulu m izdeljen na
disjunktne podskupove.

Posmatrajmo kongruenciju po modulu m (m € N). Klase ekvivalencije,
njih m na broju, su oni podskupovi skupa celih brojeva koji, respektivno,
sadrze brojeve 0,1,... ,m—1. AkosaZ; (i =0,1,... ,m—1) oznac¢imo klasu
ekvivalencije skupa Z kojoj pripada broj ¢, tada da se u klasi ekvivalencije
Z; nalaze oni celi brojevi a koji pri deljenju sa m daju ostatak . Svakako je
ZoUZy U+ Ul 1 = 7.

Definicija 1.3.11. Za skup svih klasa ekvivalencije skupa X, u odnosu na
neku relaciju ekvivalencije p, kazemo da je skup—koli¢nik skupa X u odnosu
na relaciju ekvivalencije p, u oznaci X/p.

Napomena 1.3.5. Cesto se relacija ekvivalencije oznacava simbolom ~ .
Posmatrajmo sada novu relaciju u skupu X, odredenu slede¢om definici-
jom:
Definicija 1.3.12. Ako je p refleksivna, antisimetri¢na i tranzitivna relacija
u skupu X, kazemo da je p relacija delimicnog poretka.

Za relaciju delimi¢nog poretka kazemo, isto tako, da je relacija parcijalnog
poretka ili da je relacija delimicnig uredenja, ili da je relacija parcijalnog
uredenja.

Primer 1.3.6. Neka je u skupu prirodnih brojeva N definisana relacija p, kao
deljivost brojeva iz N, tj. neka je (m,n) € p ako i samo ako je m deljivo sa n,
tj. ako i samo ako postoji k € N tako da je m = kn. Ocigledno, p je refleksivna
i tranzitivna relacija. Ova relacija nije simetri¢na jer iz Cinjenice (m,n) € p ne
sleduje i (n,m) € p u opstem sluéaju. Na primer, (4,2) € p, ali (2,4) &€ p.
Medutim, iz ¢injenice da je broj m deljiv sa n i broj n deljiv sa m, ocigledno
sleduje da je m = n, §to znaci da je relacija p antisimetricna. Relacija p je, dakle,
jedna relacija delimi¢nog uredenja u skupu N. A

Definicija 1.3.13. Za skup u kome je definisana relacija delimi¢nog poretka
kazemo da je delimicno ureden skup.
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Definicija 1.3.14. Za relaciju delimi¢nog poretka p, koja ima osobinu da
je (z,y) € pili (y,z) € p, za svako x,y € X, kazemo da je relacija totalnog
poretka ili relacija totalnog uredenja.

Skoro uvek, relaciju totalnog poretka zvacemo jednostavnije: relacija po-
retka ili relacija uredenja ili uredajna relacija ili relacija ispred, a oznacava-
éemo je sa <.

Primer 1.3.7. U skupu realnih brojeva R relacija < je relacija poretka. A

Definicija 1.3.15. Za skup X u kome je definisana relacija poretka <
kazemo da je ureden skup.

Primer 1.3.8. Relacijom poretka < ureden je skup realnih brojeva. A

Definicija 1.3.16. Za skup X, koji je ureden relacijom poretka <, kazemo
da je gust ako za svako a i b iz skupa X, za koje je a < b, postoji ¢ € X
takvo dajea <cic<b.

Primer 1.3.9. Skup racionalnih brojeva je gust jer za svako a,b € Q, za
koje je a < b, sleduje da postoji racionalan broj ¢ koji je, na primer, odreden sa
c=(a+10b)/2, takavdajea<cic<b A

Neka je skup X ureden relacijom poretka < i neka je A jedan njegov
neprazan podskup. Ako je @ € X u relaciji < sa svim elementima iz A,
simbolizova¢emo to oznakom (a, A) € <. Ako su svi elementi iz A u relaciji
< sa (€ X, oznacavacemo to sa (A,3) € <.

Definicija 1.3.17. Za svaki element o € X za koji je (o, A) € <, kazemo
da je minoranta skupa A C X.

Definicija 1.3.18. Za svaki element § € X za koji je (A4, ) € <, kazemo
da je majoranta skupa A C X.

Definicija 1.3.19. Ako je A skup svih minoranata skupa A i ako je ap € A
minoranta skupa A za koju je (A,aqp) € <, kazemo da je oy donja meda
skupa A ili da je ag infimum od A, u oznaci ag = inf A.

Definicija 1.3.20. Ako je B skup svih majoranata skupa A i ako je Gy € B
majoranta skupa A za koju je (8p,B) € <, kazemo da je [y gornja meda
skupa A ili da je By supremum od A, u oznaci By = sup A.

Ocigledno, vazi sledeée tvrdenje:

Teorema 1.3.4. Ako je skup X wureden relacijom <, A C X i ako postoje
inf A i sup A, tada je inf A < sup A.
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Definicija 1.3.21. Ako donja meda «qg skupa A, tj. inf A, pripada skupu
A, kazemo da je ag minimum skupa A, u oznaci cg = min A.

Ako gornja meda [y skupa A, tj. sup A, pripada skupu A, kazemo da je
Bo maksimum skupa A, u oznaci Sy = max A.

Naravno, vazi i sledeé¢e tvrdenje:

Teorema 1.3.5. Ako je A C X i ako je skup X wureden relacijom <, tada,
ako postoje min A i max A, vaZi min A < max A.

Posmatrajmo sada skup realnih brojeva R, koji je relacijom poretka <
ureden. Na osnovu ovog uredenja, slede¢im dvema definicijama uveséemo
neke pojmove vezane za skup realnih brojeva.

Definicija 1.3.22. Skup {x € R | a < & < b}, u oznaci (a,b), zovemo
interval, a skup {x € R | a <z < b}, u oznaci [a, b], zovemo segment.

Definicija 1.3.23. Skup {z € R | a < z < b}, u oznaci [a,b), kao i skup
{r e R|a <z <b}, uoznaci (a,b], zovemo polusegment ili poluinterval.

Brojevi a i b su njihovi krajevi. Nije tesko proveriti da je

a = inf(a, b) = inf(a, b], b = sup(a,b) = sup|a, b),

a = min|a, b) = minla, b], b = max(a,b] = max]a, b].

Ako za skup A C R ne postoji nijedna minoranta, piSemo inf A = —oo.
Sliéno, ako za skup A C R ne postoji nijedna majoranta, tada piSemo
sup A = +o0o. Naravno, uvek ¢emo pisati: inf R = —oc i sup R = +o0.

Primer 1.3.10. 1° inf(0,1) =0, sup(0,1) =1;

2° min(0, 1) ne postoji, min[0,1) =0, max(0,1] =1, max(0,1) ne postoji;

3°infN=1, supN=+00. A

1.4. Preslikavanja

Posmatrajmo neprazne skupove X i Y i relaciju p C X x Y takvu da za
svaki element x € X postoji samo jedan element y € YV takav da (z,y) € p.
Za takvu relaciju p kazemo da je preslikavanje ili funkcija sa skupa X u skup
Y i umesto (z,y) € p obiéno pisemo y = p(z). Stavise, umesto p najcesée se
koristi oznaka® f.

3) Oznaka f dolazi od reéi funkcija (ili function na engleskom jeziku). U upotrebi su,
takode, i oznake g, h, ..., p, 9, ..., itd.
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Dakle, funkcija ili preslikavanje je pravilo ili zakon pridruzivanja (kore-
spondencije) kojim se svakom elementu x € X pridruzuje jedan element
y € Y, §to se oznacava sa f: X — Y ili sa X L. Y. Pri ovome kazemo
da se element z preslikava u element y = f(z) € Y i to simbolizujemo sa
x — y = f(z) ili kraée x — f(x). Element x zovemo original, dok za
element y = f(z) koristimo termin slika elementa x pri preslikavanju f ili
vrednost funkcije u tacki z. U slucaju kada x predstavlja proizvoljan ele-
ment iz X kazemo da je z argument ili nezavisno promenljiva, a y (= f(x))
zavisno promenljiva. Skup slika svih elemenata x € X obelezavamo sa f(X).
Ocigledno je da je f(X) CY.

Skup X koji preslikavamo zovemo oblast definisanosti ili domen funkcije
f, a skup slika f(X) nazivamo skup vrednosti ili kodomen funkcije f.

Napomena 1.4.1. Za preslikavanje z — f(z) (z € X, f(z) € R), tj. za

funkciju f: X — R, kazemo da je funkcionela. Medutim, ako su X i Y proizvoljni
apstraktni skupovi, za funkciju f cesto kazemo da je operator.

Na osnovu prethodnog mozemo dati formalnu definiciju funkcije:
Definicija 1.4.1. Za relaciju f C X x Y kazemo da je funkcija f: X — Y
ako

(1) VzeX)EFyeY) (z.y) € f,
@) (wy)efr(zef = y=z
Osobina (1) poznata je pod imenom definisanost, a osobina (2) jednozna-

¢nost.

Primer 1.4.1. 1° Relacija {(1,2),(2,2)} je funkcija definisana na skupu X =
{1, 2}, pomoc¢u f(z) = 2. Skup slika, tj. skup vrednosti funkcije f, sastoji se samo
od jednog elementa f(X) = {2}.

2° Relacija {(1,2),(1,3),(2,2)} nije funkcija na X = {1,2} jer se kao njeni
elementi pojavljuju parovi (1,2) i (1,3).

3° Relacija {(:1:,:1:2 +z+1)|zeR} C R? je funkcija jer iz & = u sleduje

tr+l=v’+u+1
i za svako z € R postoji ?+z+1eR. Dakle, ovde se radi o funkciji z — f(z) =
22 4+ z + 1 koja preslikava R u R. Skup slika je f(R) =[3/4, +00).

4° Neka je X = {1,2,3}. Relacija {(1,2),(2,2)} C X? nije funkcija na X jer
za element 3 € X nije definisana slika.

5° Neka je A ={0,1,2} i X = A% = {(z,y) | z,y € A}. Relacija

{((0’0)’0)a ((Ov 1)7 1)7 ((072)a4)a ((1,0), 1)5 ((17 1)5 2)7 ((L 2)5 5)5
((2a0)a4)a ((27 1)75)7 ((2a 2)a8)} CXxR
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je funkcija koja preslikava elemente skupa X = A? u skup R. Ovo preslikavanje
f: A% — R se moze izraziti simbolicki, na primer, pomoéu

(x7y) = f((x7y)) = .’132 + y2'

Skup vrednosti funkcije je skup f(A2) =4{0,1,2,4,5,8} C R.

6° Neka je dat segment S = [0,1], X = S3 = {(z,y,2) | z,y,2 € S}, Y = R2.
Relacija f € S% x R2, definisana pomoéu

F(z,y,2) = (@® +4° +2°,32y2) (9,2 €9),

je funkcija sa 3 u R?. Dakle, svakoj uredenoj trojki (z,y, z) (€ S%) pridruzuje se
uredeni par (z2 + 3% + 22, 3zyz) (e R?). A

Navedimo sada dva jednostavna preslikavanja:

1° Neka je ¢ € Y. Preslikavanje f: X — Y, definisano pomo¢u f(x) = ¢
za svako x € X, naziva se konstantno preslikavanje. Takode, kaze se i da je
funkcija f konstanta.

2° Neka je Y = X. Preslikavanje f: X — X, definisano pomocu f(z) = z
za svako x € X, naziva se identicko preslikavanje u X.

Definicija 1.4.2. Za dve funkcije f: X — Y i g:U — V kazemo da su
jednake akoje X =U,Y =V i
(1.4.1) Vz e X) f(x)=g(z).

Ako je, medutim, X C U i ako vazi (1.4.1), reéi éemo da je f suZenje
ili restrikcija funkcije g (sa skupa U na skup X), tj. da je g prosirenje ili
ekstenzija funkcije f (sa skupa X na skup U).

Primer 1.4.2. 1° Neka su funkcije f:Ra' - R, ¢RT" - R, R — R,
o:N =R, ¢:{-1,0,1} — R, definisane redom pomocéu

fl@)y=2% g(z)=12° h(z)=2> o) =2 ) ="

Medu ovim funcijama nema jednakih jer su im domeni medu sobom razli¢iti
skupovi. S obzirom na inkluzije

{-1,0,1} ¢ N ¢ Rt ¢ Rf c R,

vidimo da je funkcija h ekstenzija ostalih funkcija (¥, ¢, g i f), kao i da je 9
restrikacija funkcija ¢, g, f i h.
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Primetimo da je f ekstenzija funkcije g, sa skupa pozitivnih realnih brojeva
R* na jos jednu tacku (z = 0), tj. na skup svih nenegativnih realnih brojeva
Ry = [0, +00).

2° Neka je dat segment S = [0,2] i funkcija g:S2 — R, definisana pomoc¢u
z=g((z,y)) = 22 + y2. Ova funkcija predstavlja ekstenziju funkcije f: A2 — R iz
primera 1.4.1 (videti 5°). Za funkciju g kazemo da je funkcija od dve promenljive
2 1y iumesto g((z,y)) pisSemo jednostavno g(z,y). A

Skup I'(f) = {(z, f(x)) | * € X} C X XY naziva se grafik funkcije f.
Ako su X C Ri f(X) C R, grafik funkcije se moze predstaviti kao skup
tacaka u Dekartovoj ravni?) Ozy.

Primer 1.4.3. 1° Deo grafika funkcije h: R — R, definisane pomoéu y =
hiz) = z? (videti prethodni primer), predstavljen je na slici 1.4.1. Takode, na
istoj slici, prikazan je i deo grafika funkcije p:N — R iz primera 1.4.2, koji se
sastoji iz niza tacaka. Naime, na slici su prikazane samo prve Cetiri tacke, tj. deo

grafika {(1,1),(2,4),(3,9),(4,16)} C I'(y).

y

15
V4

10

5

X
_4 2 1 2 3 4

Sl. 1.4.1 Sl. 1.4.2

2° Funkcija od dve promenljive iz primera 1.4.2, definisana na [0,2] x [0, 2]
pomocu z = g(x,y) = 2+ y2, moze se, takode, graficki prikazati. Njen grafik je
dat na slici 1.4.2, zajedno sa grafikom njene restrikcije f iz primera 1.4.1 (slucaj
5°). Primetimo da se grafik funkcije f sastoji iz devet tacaka. A

Napomena 1.4.1. Funkcije f: X — Y sa kojima se najcesée sreemo su real-
ne, tj. takve da je Y = R, a X C¢ R", gde je n > 1. Kada je n = 1 imamo
sluc¢aj realnih funkcija jedne realne promenljive, ¢ije ¢e osnovne osobine biti raz-
matrane u slede¢em poglavlju. Slucaj n > 1 dovodi nas do tzv. realnih funkcija

1) Za ovaj na&in predstavljanja dovoljno je znanje iz srednje skole. Inace, Dekartov
pravougli koordinatni sistem, kao i neki drugi koordinatni sistemi, precizno ¢e biti tretirani
u odeljku 1.1, glava VI.
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viSe promenljivih, ta¢nije realnih funkcija n promenljivih. Dakle, uredenoj n-torci
(z1,...,2n) € X pridruzuje se vrednost y = f((z1,... ,2n)) € R, pri ¢emu pisemo
jednostavno y = f(x1,...,xn). Takve funkcije bi¢e predmet razmatranja u VIII
glavi (IIT deo ove knjige).

Kod preslikavanja f: X — Y razlikova¢emo slede¢a dva moguca slucaja:
f(X)=Y1if(X)CY. U prvom slucaju kazemo da je skup X preslikan na
skup Y, a u drugom da je skup X preslikan u skup Y. Postoje, dakle, sa
tog stanovista dve vrste preslikavanja: preslikavanje na skup i preslikavanje
u skup. Za preslikavanje na skup kaze se da je surjekcija ili surjektivno
preslikavanje.

Ako je preslikavanje f: X — Y takvo da iz jednakosti f(x1) = f(x2)
sleduje 1 = xo, kaze se da je f injekcija ili injektivno preslikavanje. Prema
tome, kod ovog preslikavanja, ukoliko su slike jednake moraju biti jednaki i
originali. Za ovo preslikavanje koristimo i termin preslikavanje 1-1.

Za svako preslikavanje koje je istovremeno surjekcija i injekcija kaze se
da je bijekcija ili bijektivno preslikavanje. Takode, za takvo preslikavanje
kazemo da je biunivoko ili obostrano jednoznacno preslikavanje.

Primer 1.4.4. Neka je RZ=R xR = {(z,y) | z,y € R} i neka je M skup
svih tacaka M u ravni koordinatnog sistema Ozy ¢iji je polozaj odreden koordi-
natama z i y. Preslikavanje R? — M, odredeno sa (z,y) — M(z,y) je obostrano

jednoznacno preslikavanje. A

Definicija 1.4.3. Neka su X, Y i Z neprazni skupovi i neka su data pres-
likavanja f: X - Y i ¢g:Y — Z. Funkciju h: X — Z definisanu pomocu

(Vz € X) h(z) = (go f)(x) =g(f(x))
zovemo sloZena funkcija od funkcija f 1 g ili kompozicija preslikavanja f i g.

Kao $to vidimo, slozena funkcija h preslikava elemente x skupa X u ele-
mente y = f(z) skupa Y koje, zatim, funkcija g preslikava u elemente z =
g(y) skupa Z. Dakle, na jedan posredan nacin, vrsi se preslikavanje skupa
X u skup Z. Preslikavanja f i g su, u stvari, medupreslikavanja.

Naravno, jedno slozeno preslikavanje moze biti realizovano i sa vise medu-
preslikavanja. Ponekad se kaze da sva ta medupreslikavanja ¢ine lanac pre-
slikavanja, a ona sama su karike lanca.

Teorema 1.4.1. Neka su X, Y, Z, W neprazni skupovi i neka f: X — Y,
GY S Z, hZ W, . XLy 52" 7 Tudaje

(1.4.2) (hog)of=ho(gof).
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Dokaz. Pre svega, uotimo da funkcije

z((hog)o f)(x) 1 x—(ho(gof))(z)

imaju isti domen X i da im slike pripadaju skupu W. Kako je, za svako
T e X,

((hog)o f)(z) = (hog)(f(z)) = h(g(f(x)))

(ho(go f))(@)=nh((go f)(z)) =h(g(f(z))),

zaklju¢ujemo da vazi jednakost (1.4.2). O

Napomenimo da, ako su sva medupreslikavanja jednog slozenog preslika-
vanja biunivoka preslikavanja, tada je i slozeno preslikavanje biunivoko.

Primer 1.4.5. 1° Funkcija  — log 3z je slozena funkcija. Cine je preslika-
vanja

r—y=3x i y+— logy.

2° Preslikavanje = — 2 sin(3952 + 1) je slozeno preslikavanje. Cine ga, na primer,
slede¢a preslikavanja:

(a) y— 2siny i x+—y=2322+1,ili

(b)z»—>2sinz,y|—>z:y—|—1ix»—>y:3x2. A

Iz ovih primera se vidi da lanac jednog slozenog preslikavanja nije jed-
nozna¢no odreden. Ali, iz jednog lanca slozenog preslikavanja jednoznacéno
se dobija slozeno preslikavanje.

Primer 1.4.6. Za funkcije g:R — R i f:R — R, date pomoc¢u

1
g(z) =22° + 2 — 1, f(x)zl—i——xz’
imamo 24
(99 Hla) = o(f @) = 2f@)? + fa) =1 = 25
i 1 1

(fog)(z) = flg(x)) = 14+g@)?2 1+ @Q2+x—1)2

Ocigledno, (go f)(z) # (fog)(z). A
Primer 1.4.7. Neka su funkcije f:Ra' — R i g:R — R definisane pomoc¢u
fl@)=vE i glz)=a>.

Kompozicija funkcija f i g, tj. (go f):]Rg — R, odredena je sa

(Vz €Rg) (g0 f)(@) = g(f(2)) = (Va)* ==
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Kako je skup slika g(R) = RS‘ (C R), funkciju g mozemo tretirati kao preslika-
vanje R na skup R, pa je onda moguée definisati i kompoziciju funkcija g i f,
tj.

(Vz €R) (fog)(z) = f(g9(z)) = Va2 = |a].
Dakle, funkciju « — |z| dobili smo kao kompoziciju funkcija x — iz V.

Primetimo da se oblasti definisanosti kompozicija gof i fog razlikuju. Funkcija
f o g je ekstenzija funkcije go f. A
Teorema 1.4.2. Neka je f: X — Y biunivoko preslikavanje. Tada postoji
jedno i samo jedno biunivoko preslikavanje f:Y — X, za koje vaZi

(1.4.3) VreX) (fof)(z)==x

i
(1.4.4) (Vy eY) (f ) f)(y) = .

Dokaz. Na osnovu uCinjene pretpostavke, preslikavanje f: X — Y je bi-

univoko, tj. takvo da je
(a) preslikavanje na skup Y,

(b) 1-1 preslikavanje.

Na osnovu (a), za svako y € Y postoji € X takvo da je f(z) =y, a, na
osnovu (b), z je jedinstven element iz X za koji je f(z) = y.

Dakle, svakom elementu y € Y pridruzuje se na ovaj nacin jedinstven
element x € X, pa je moguce uspostaviti preslikavanje f:Y — X, tako da
je f(y) = x. Uocimo da je preslikavanje f takode biunivoko. Tada, za svako
z € X, imamo

(fof)@) = f(f(@) = fly) ==,
azasvakoyeyY

(fof)y) =F(fW) = fx) =y,
¢ime smo pokazali da za preslikavanje f vazi (1.4.3) i (1.4.4).

Da bismo dokazali da je preslikavanje f jedinstveno pretpostavimo suprot-
no, tj. pretpostavimo da postoji jos jedno biunivoko preslikavanje f: Y — X
koje zadovoljava uslove (1.4.3) i (1.4.4).

_ Ako je f #£ f, to mora postojati bar jedan element y € Y za koji je

F(9) # F(y), odakle, zbog osobine (b), sleduje £ ((y)) # £ (F(y)), ti.
(Fof)w) # (fo Fw),

pa, na osnovu (1.4.4), zakljuéujemo da je y # y, $to je nemogucée. O
Primetimo da uslovi (1.4.3) i (1.4.4) pokazuju da su kompozicije fo f i
f o f identicka preslikavanja u X i Y, respektivno.
Na osnovu prethodnog moguce je dati definiciju inverzne funkcije:
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Definicija 1.4.4. Neka je f: X — Y biunivoko preslikavanje. Za preslika-
vanje f~1:Y — X, za koje je f~! o f identi¢ko preslikavanje u X i f o f~!
identicko preslikavanje u Y, kazemo da je inverzno preslikavanje za f.

Napomena 1.4.3. Prema teoremi 1.4.2, inverzno preslikavanje f_1 biuni-
vokog preslikavanja f postoji, jedinstveno je i, takode, biunivoko.

Dakle, preslikavanja f: X — Y i f~1:Y — X su biunivoka i za njih vazi

U@y =2, ff'Ww)=y (reX yeY).

Napomenimo, na kraju, da je inverzno preslikavanje za f~! samo pres-
likavanje f.

1.5. Mo¢ i ekvivalencija skupova

Neka su X i Y dva neprazna skupa i neka je f obostrano jednoznacno
preslikavanje skupa X na skup Y. Poznato je da u tom slucaju postoji
inverzno preslikavanje f~! i da se skupovi X i Y preslikavanjem f, tj. f~!,
mogu biunivoko preslikati jedan na drugi.

Definicija 1.5.1. Za dva skupa koji se mogu biunivoko preslikavati jedan
na drugi, kazemo da imaju istu mo¢.

Primer 1.5.1. 1° Skupovi A = {a,b,c} i B = {1,2,3} imaju istu moé, jer
postoji preslikavanje f: A — B, definisano, na primer, sa f(a) = 1, f(b) = 2, f(c) =
3, i njemu inverzno preslikavanje f -1 kojima je moguée uspostaviti biunivoku
korespondenciju izmedu skupova A i B.

2° Skupovi N ={1,2,... ,n,...} i M ={2,4,... ,2n,...} imaju istu moé jer
postoji bijekcija f, zadata sa f(m) = 2m (m € N), i njoj inverzna bijekcija 4
f7Y(k) = k/2 (k € M), koje obostrano jednoznaino preslikavaju skupove N i M
jedan na drugi, respektivno. A

Za skupove X i Y koji, u smislu definicije 1.5.1, imaju istu mo¢, kazemo
da imaju isti kardinalni broj. Mo¢ jednog skupa X, tj. kardinalni broj skupa
X, oznacavamo sa card X, a Cinjenicu da skupovi X i Y imaju istu moé
oznacavatemo sa card X = card Y.

Primer 1.5.2. Skupovi A i B, kao i skupovi N i M iz primera 1.5.1, imaju isti
kardinalni broj. A

Za skupove X 1 Y koji imaju istu mod¢, tj. za skupove koji imaju isti
kardinalni broj, kazemo da su ekvivalentni i to oznac¢avamo sa X ~ Y.

Definicija 1.5.2. Za skup koji je ekvivalentan nekom svom pravom delu
kazemo da je beskonacan. U suprotnom kazemo da je skup konacan.



24 OSNOVI ALGEBRE

Definicija 1.5.3. Mo¢ konacnog skupa jednaka je broju njegovih eleme-
nata.

Prirodno je uzeti da je mo¢ praznog skupa jednaka nuli.

Primer 1.5.3. Skup N je beskonacan jer je, prema primeru 1.5.1, ekvivalentan
svom pravom delu M = {2n | n € N}. A

Iz izloZzenog se moze zakljuciti da je svaki skup ekvivalentan sebi samom.
Takode, nije tesko proveriti da vazi sledeée tvrdenje:

Teorema 1.5.1. Ekvivalencija skupova je relacija ekvivalencije.

Definicija 1.5.4. Za skupove koji su ekvivalentni skupu N kazemo da su
prebrojivi ili da imaju moé¢ prebrojivog skupa.

Naravno, i sam skup N je prebrojiv.

U stvari, jedna vazna i veoma jednostavna karakteristika prebrojivog
skupa je da je njegove elemente moguce poredati u niz, jedan element za
drugim. Na primer, ako je f jedno biunivoko preslikavanje skupa N na pre-
brojiv skup A, tada je skup A moguce identifikovati kao skup

A={f(1), f@),... . f(n),...}.

Mo¢ prebrojivog skupa, tj. njegov kardinalni broj, oznacavamo sa Ng i
¢itamo alef® nula.

Primer 1.5.4. Skup M ={2,4,... ,2n,...}(n € N) je prebrojiv skup. A

Primer 1.5.5. Skup celih brojeva Z je prebrojiv jer se njegovi elementi mogu
poredati u niz 1, —1, 2, =2, 3, =3, ... . A

Primer 1.5.6. Skup svih racionalnih brojeva iz polusegmenta (0, 1] je prebro-
jiv skup.

Da bismo ovo pokazali, primetimo, najpre, da su ovi brojevi oblika = p/q,
gde su p i g celi brojevi takvi da je 0 < p < gq.

Sve racionalne brojeve iz polusegmenta (0,1] mozemo poredati u niz ako, za
svako ¢ = 1,2, ..., uzimamo redom vrednosti za p iz skupa {1, ... ,q}, izostavlja-
juéi pritom one vrednosti za p pri kojima se ponavljaju racionalni brojevi u ovom
nizu. Na taj nacin dobijamo niz

AN

=
| =
(S0 )
ol w
O >

W=
wl
-

2 )
Naveséemo sada nekoliko tvrdenja koja se odnose na mo¢ skupova:

5)  Alef, tj. N, je prvo slovo hebrejskog pisma.
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Teorema 1.5.2. Ako su A i B neprazni skupovi, tada je
1° card(AU B) < card A 4 card B,
2° card(AN B) < card A + card B,
3° card A < card P(A),
4° cardP(A) = 2card A4,

Napomena 1.5.1. Nejednakost 3°, tj. nejednakost card A < card P(A), kazu-
je, u stvari, da ne postoji najveéi kardinalni broj, jer svaki skup ima svoj partitivni
skup: A ima P(A), P(A) ima P(P(A)), itd. Ovo, zapravo, zna¢i da nema skupa
koji je najopsezniji.

Za prebrojive skupove vazi sledeée tvrdenje:

Teorema 1.5.3. Unija dva prebrojiva skupa je prebrojiv skup.

Dokaz. Neka su A i B prebrojivi skupovi. Tada je moguée zapisati ih na

nacin
A=Aay,a9,... ,apn,...} 1 B={by,ba,... by,...}.

Uniju ova dva skupa ¢ini skup koji se moze predstaviti, na primer, sa
AUB = {al,bl,ag,bg,... ,an,bn,...},

odakle zaklju¢ujemo da je skup A U B prebrojiv skup. 0O

Vazi i opstije tvrdenje. Navodimo ga bez dokaza.

Teorema 1.5.4. Unija prebrojivo mmnogo prebrojivih skupova je prebrojiv
skup.

Primer 1.5.7. Kako je skup racionalnih brojeva iz polusegmenta (0, 1] pre-
brojiv, na osnovu teoreme 1.5.4 zakljucujemo da je skup svih racionalnih brojeva
prebrojiv skup. A

Kao sto smo videli, ima skupova, naravno beskonacnih, ¢ija je moé¢ Nq.
Od znacaja je utvrditi da li postoje beskonac¢ni skupovi ¢ija je moé efektivno
veca od moci prebrojivog skupa. U tom smislu vazi sledeée tvrdenje:

Teorema 1.5.5. Skup svih realnih brojeva iz intervala (0,1) ima moé koja
je veéa od moci prebrojivog skupa.

Dokaz. Svaki broj x € (0,1) moze se napisati u obliku beskonac¢nog deci-
malnog razlomka
r=0.2129...Zp ...,

gdejex; (i =1,2,...) jednaod cifara 0,1,... ,9. Naravno, za neko z € (0,1)
mogucde je da su, pocev od nekog i, sve cifre x; jednake nuli.
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Pretpostavimo da je skup (0,1) prebrojiv, §to, zapravo, znaci da se svi
realni brojevi iz (0,1) mogu poredati u jedan niz. Neka je to niz

ay :0.(111@12...&1”...,

a2:0.a21a22...a2n...,

an =0.ap10p2.--Qnp - --

gde su cifre a;; elementi skupa {0,1,...,9}.
Neka je a realan broj odreden sa a = 0.x125...2, ... 1 takav da je, za
n € N, na primer,
{ 2, ako je any =1,
Ty = .
1, ako je an, # 1.

Broj a, ocigledno, pripada skupu (0,1). Medutim, broj a se razlikuje od
svakog a,, (n € N) iz navedenog niza jer se od a; razlikuje u prvoj decimali,
od as u drugoj decimali, od a3 u treéoj, itd.

Nije, dakle, ta¢no da posmatrani niz sadrzi sve realne brojeve iz (0, 1), §to
predstavlja kontradikciju sa pretpostavkom da je skup (0, 1) prebrojiv. O

Definicija 1.5.5. Za skup svih realnih brojeva iz intervala (0, 1) kazemo da
ima mo¢ kontinuuma.

Moé kontinuuma obelezavamo sa ¢ ili sa Ry. Ocigledno, na osnovu teo-
reme 1.5.5, vazi nejednakost Ng < ¢, tj. Ng < Nj.

Naravno, svaki skup koji je ekvivalentan skupu realnih brojeva iz intervala
(0,1) je, takode, skup moéi kontinuuma.

Primer 1.5.8. Skup svih realnih brojeva iz intervala (a,b) ima mo¢ kontinu-
uma jer je skupove (0,1) i (a,b) moguce preslikati jedan na drugi, na primer, biu-
nivokim preslikavanjem x — f(z) = a+ (b— a)z i njemu inverznim preslikavanjem
oA

Primer 1.5.9. Skup R ima mo¢ kontinuuma jer postoji biunivoko preslikavanje
f:R — (0,1). Jedno takvo preslikavanje je, na primer, dato sa

20+ 1
wrs (220
f(x) = 1
(x<0). A

2(1 —x)
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Za beskonacne skupove koji nisu prebrojivi kazemo da su neprebrojivi.
Skupovi mo¢i kontinuuma su neprebrojivi skupovi. Takvi su, na primer, R
i(a,b).

Navodimo bez dokaza sledeéa tvrdenja:

Teorema 1.5.6. Za kardinalne brojeve Rg ¢ ¢ vaZe jednakosti

No + Ng = N, oMo — ¢ c+c=c, c’ =c.

Mnogi pokusaji da se dokaze postojanje makar jednog skupa ¢ija bi moé
bila ve¢a od moéi prebrojivog skupa i manja od moéi kontinuuma nisu doveli
do rezultata. Pretpostavka da ne postoji takav skup poznata je kao hipoteza
o kontinuumu.

Napomena 1.5.2. Nedavno je Cohen® dokazao da hipoteza o kontinuumu ne
moze biti ni dokazana ni opovrgnuta u okviru postojec¢e aksiomatike teorije skupova
(videti: P. J. COHEN, Set Theory and the Continuum Hypothesis, Benjamin, New
York, 1966).

Na kraju ovog odeljka treba ista¢i ¢injenicu da postoje skupovi ¢ija je
mo¢ veca od moéi kontinuuma.

2. MATEMATICKA INDUKCIJA I KOMBINATORIKA

2.1. Matematicka indukcija
Metod matematicke indukcije je jedan od osnovnih i najceSée prime-
njivanih metoda za dokazivanje tvrdenja koja zavise od prirodnog broja n.

Neka je T(n) tvrdenje koje zavisi od prirodnog broja n. Metod matema-
ticke indukcije sastoji se u slede¢em:

Neka su ispunjeni uslovi:
1° Twrdenje T(1) je tacno;
2° Iz pretpostavke da je tvrdenje T(k) taéno za svako k > 1 sleduje
tacnost turdenja T(k + 1).

Tada tvrdenje T(n) vazi za svaki prirodan broj n.

Jezikom matematicke logike, ovo se moze iskazati na slede¢i nacin:
(T(1) A ((Vk>1) T(k) = T(k+1))) = (Vn>1)T(n).

6) Paul Joseph Cohen (1934- ), americki matematicar.
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Ponekad je potrebno dokazati da tvrdenje T(n) vazi za n > m > 1. Tada
se metod matematicke indukcije moze slicno iskazati:

(T(m) A ((vk>m) T(k) = T(k+1))) = (¥n>m) T(n).

Tvrdenje T'(k) zove se induktivna pretpostavka.

Takode, jedna varijanta metoda matematicke indukcije moze se iskazati
na sledeéi nacin:

(T() A (VE>1) TA)A---AT(R) = T(k+1)) = (Yn>1) T(n).

U daljem tekstu, primenom metoda matematicke indukcije, dokazac¢emo
neka osnovna tvrdenja.

Teorema 2.1.1. Ako je x > —1 i ako je n prirodan broj, tada je
(2.1.1) (14+2)" > 1+ nx.
Dokaz. U ovom slucaju, tvrdenje T(n) je nejednakost (2.1.1).

Za n = 1 nejednakost (2.1.1) se svodi na jednakost (1 +z)' =1+1-x.

Pretpostavimo sada da nejednakost (2.1.1) vazi za n = k > 1, tj. da je za
z>—1

(2.1.2) (1+2)" > 1+ k.
Mnozenjem nejednakosti (2.1.2) sa 1 + 2 > 0 dobijamo
A+ =0 +2)Q4+2)F >0 +2)1 + k) =14 (k+ 1)z + k.
Kako je kxz? > 0, imamo
(1+2)** > 14 (k+ 1)z

Dakle, (2.1.1) vazi za svako n. [

Nejednakost (2.1.1) poznata je kao Bernoullieva™ nejednakost.

™) Jakob Bernoulli (1654-1705), vajcarski matematicar.
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Teorema 2.1.2. Ako su ay,as,... ,a, pozitivni brojevi ¢iji je proizvod jed-
nak jedinici, tada je

(2.1.3) a1 +as+---+an >n,

pri cemu jednakost vazi ako i samo ako je ay = ag =+ =a, = 1.

Dokaz. Primenimo metod matematicke indukcije.

Za n = 1 nejednakost (2.1.3) vazi. Zapravo, ona se, u ovom slucaju, svodi
na jednakost a; = 1.

Za n = 2 mozemo direktno dokazati datu nejednakost. Naime, ako je
a1a9 = 11ia; = as = 1, sleduje jednakost a; + a; = 2. Vazi i obrnuto, tj.
iz ajas = 11 a1 + as = 2 sleduje a1 = as = 1. Medutim, ako bar jedan od
brojeva aq i ag nije jednak jedinici, na primer aq > 1, zbog ajas = 1, sleduje
da je as < 1 i, takode, iz identi¢nosti
(2.1.4) a; +az = ajaz + 1+ (a1 — 1)(1 — ag),
nejednakost ay + as > 2.

Pretpostavimo, sada, da za k proizvoljnih pozitivnih brojeva, ¢iji je pro-
izvod jednak jedinici, vazi nejednakost

ay +ax+---+ap >k
u kojoj se jednakost postize ako i samo ako je ag = ay = --- =ar =1, a
jedinici.

Ako nisu svi a; jednaki jedinici, medu njima mora biti onih koji su veéi, ali
i onih koji su manji od jedinice. Ne umanjujudi opStost razmatranja, moze se
pretpostaviti da je, na primer, a; > 1ias < 1. Tada, na osnovu pretpostavke

za k pozitivnih brojeva ajasq, as,... ,ar+1, Ciji je proizvod jednak jedinici,
vazi

(2.1.5) ajag +az + -+ ap41 > k,

sa jednakoséu ako i samo ako je ajas =as =--- =agy1 = 1.

Sabiranjem (2.1.4) i (2.1.5), dobijamo da je
aq +CL2+"’+CL[€+1 Zk+1+(a1—1)(1—a2) >k+1.

Akosusvia; (i =1,2,...,k+ 1) jednaki jedinici, nejednakost (2.1.3) se
k+1 k+1
svodi na jednakost. Vazi i obrnuto, tj. iz [[ a; =11 > a; = k+ 1 sleduje
i=1 i=1
ay = -+ = QK41 =1.

Ovim je dokaz zavrSen. [
Neka su x1,xa,... ,x, pozitivni brojevi i neka je x = (z1, T2, ... ,T,).
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Definicija 2.1.1. Za broj

T1+Tag+-+Tp
n

An(m) = An(ﬂi‘l,lﬁg,. .. ,;L‘n) =

kazemo da je aritmeticka sredina pozitivnih brojeva x1,xa, ... ,xy.

Definicija 2.1.2. Za broj

Gn(m):Gn(gjh:ﬁQ,--- ,ZL‘n): T1T2 - T
kazemo da je geometrijska sredina pozitivnih brojeva x1,xo, ..., x,.

Definicija 2.1.3. Za broj

n
Hn($):Hn(ﬂj‘1,ﬂj‘2,... ,ZL‘n) = 1 1 1
I T2 n

kazemo da je harmonijska sredina pozitivnih brojeva x1,x2,... ,Zp.

Sledeca teorema daje vezu izmedu aritmeticke, geometrijske i harmonijske
sredine pozitivnih brojeva:

Teorema 2.1.3. Za pozitivne brojeve x1,xs, ... , T, vaze nejednakosti
min{zy,xo,... ,z,} < Hy(x) < Gp(x) < Ap(x) < max{z1,22,... ,2,}.
Jednakosti vaZe ako i samo ako je x1 = x9 = -+ = x,.
Dokaz. Kako je
1 To T,  [(Gup(z) " _1
Gn(z) Gu(z) Gn(x) B Gn(x) 7

na osnovu teoreme 2.1.2, zakljuéujemo da je

L
Gn(z)  Gp(z) Gn(x) —
t].
x1+x2+~'+wn
Gn(x) =7
ili
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Vazi, dakle, nejednakost
(GA) Gn(x) < Ap(x).

Naravno, u (GA) vazi jednakost ako i samo ako je

. T2 _ Tn 1
Gn(T) B Gn(z) B B Gn(z) o
tj. ako i samo ako je x1 =19 = -+ = Ty,.
Posmatrajmo, sada, pozitivne brojeve 1/x1,1/x3,... ,1/x,. Za njih vazi
dokazana nejednakost (GA), tj. vazi nejednakost
Lyl
2101 1 2 xe oz,
(2.1.6) = < L T2 In
T T2 Ty n
Kako je
Lol
I S i L1 X2 T _ 1
T1 Ty  Tn G () n Hy(x)’

nejednakost (2.1.6) je, u stvari, nejednakost
(HG) H,(x) < G,(x).

Naravno, u nejednakosti (HG) vazi jednakost ako i samo ako je 1/x; =
1/zg =+ =1/x,, tj. ako i samo ako je 11 = x9 = -+ = xy,.

Sada ¢emo dokazati da je min{zy,zo,... ,2,} < Hy,(x). Ne umanjujudi
opstost, mozemo pretpostaviti da je x1 < zo < -+ < z,. Tada se nejed-
nakost koju dokazujemo svodi na nejednakost z; < H,(x), tj. na nejednakost

i) i) I
— 4+ =4 +—=<n,
i) T2 In

koja je ocigledno ta¢na jer je, prema pretpostavci, x1/xy < 1 za svako k =
1,2,...,n.
Slicno se dokazuje i nejednakost A, (x) < max{xy,x9,... ,z,}. O
Napomena 2.1.2. Kao Sto smo i ucinili, uobicajeno je da se nejednakost

izmedu geometrijske i aritmeticke sredine oznacava sa (GA), a izmedu harmonijske
i geometrijske sredine sa (HG).
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2.2. Faktorijelne funkcije i binomna formula

U ovom odeljku izu¢i¢emo izvesne funkcije celobrojnih argumenata i jednu
veoma vaznu formulu.

Definicija 2.2.1. Funkciju n — n! (n € Ny), odredenu sa
1, n =0,
n! =
nin—1), neN,
zovemo faktorijel broja n ili kra¢e n-faktorijel.
Nije tesko proveriti da vazi sledece tvrdenje:

Teorema 2.2.1. Za funkciju n — n! vaZi jednakost

n!:n-(n—l)---Q-lzﬁi (n>1).
i=1

Definicija 2.2.2. Za funkciju n — n!! (n € Ny), odredenu pomocéu
1, n=01ii n=1,
nll =
n(n—2)11, neN\{1},
kazemo da je dvostruki faktorijel broja n ili da je dvostruki n-faktorijel.
Takode bez dokaza, navodimo sledece tvrdenje:
Teorema 2.2.2. Za funkciju n — n!! (n € N) vaZe jednakosti:

1° (2n)!l=n!. 27,
20 (2n) = (2n)- (2n—2)---2 = ] (20),

1=

—_

3

3° 2n+ 1) =0Cn+1)2n—1)---1= [[(20+1).
1=0

Neka su n i k nenegativni celi brojevi i neka je k < n.

Definicija 2.2.3. Funkcija (n,k) — (:) (k < n) odredena je sa

n 1, k=0,
(k’): n(n—l)-.l.f'(n—k—i-l)’ ke N

Za funkciju (n,k) — (Z) kazemo da je binomni koeficijent i ¢itamo n nad

k. Opravdanje za naziv binomni koeficijent naéi ¢emo nesto kasnije, kada
budemo izucili binomnu formulu.

Nije tesko proveriti da je (Z) prirodan broj.
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Teorema 2.2.3. Ako sun i k nenegativni celi brojevi, vaZe identiteti:

n n!
1 (k:):m (k <n),
G- oo
o n n n+1
3 <k>+<k+1>:<k+1> (b <m).

Dokaz. 1° Kako je

<n> ~n(n—1)---(n—k+1)
k) k!
nn—1)---(n—k+1) (n—Ek)!

k! (n—k)!

n!
El(n —k)V’

tvrdenje 1° je dokazano.

2° Ako se na ( " k:) primeni osobina 1°, tvrdenje sleduje neposredno.
n—

3° Kako je

<Z> :k;'(nniik)' : (kil) = (k:+1)!(:zl!—l<;—1)!’

imamo

(Z) + (k:i 1) - k!(nni PIRECE 1)!(3!_ K1)

n!
= G D (kD (= k)
B (n+1)! _(n+1
C(k+D(n—k)! <k+1>'

Teorema 2.2.4. Neka sun i k nenegativni celi brojevi. Ako je k < n, vazi
identitet

ez () () ()= G0)
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Dokaz. Dokaz ¢emo izvesti matematickom indukcijom u odnosu na n.

Neka je n = k. Tada se (2.2.1) svodi na jednakost (Z) = (Zii), koja je
ta¢na jer su obe strane jednake 1, pa tvrdenje teoreme vazi za n = k.

Pretpostavimo da je tvrdenje ta¢no i za n = m > k, tj. pretpostavimo da

(o) (" )= ()= (i)
() () () ()= () = ()

[((m+1)+1
n k+1 ’

gde smo primenili rezultat 3° iz teoreme 2.2.3.

Prema tome, za fiksirano k tvrdenje teoreme je tacno i za n = m+ 1, Sto,
zapravo, znaci da je tvrdenje teoreme ta¢no za svako n. [

Pod pretpostavkom da su m, n i k nenegativni brojevi, bez dokaza navo-
dimo i sledece tvrdenje:

Teorema 2.2.5. VaZe identiteti:

)+ (1) () -
(0) (1) v (z) o o
()G () () e () )= ()

gde je k+m < n.

Za k = 0 tredi identitet se svodi na

B)E)- O () (0) e

Napomena 2.2.1. Funkciju (n, k) — (:) mogucde je definisati i za necelobrojne

vrednosti za n. Tako, za a € R, imamo

a\ ala—1)---(a—k+1)
k] k! '
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Na primer,

3! 16"

(1/2)_%(%—1)(%—2)_ |
)

Kao sto je poznato, za a,b € R vaze identiteti:

(a+b)' =a+b,

(a+b)? = a® + 2ab + b,

(a+b)3 = a® + 3a®b + 3ab® + b,
(a+0b)* = a* + 4a®b + 6a®b* + 4ab® + b*.

Medutim, sada ih je moguce pisati i na sledeéi naéin:

o= (s (O
(a+0b)* = (3) a® + (i)

(a+0b)* = (g) a’® + (?) a’b + (;) ab?® + (g) b,
o= (e (v

Vazi sledece tvrdenje:

Teorema 2.2.6. Za svako n € N vazi jednakost

(2.2.2) (a+b)" = En: (?) a" i

1=0

Dokaz. Kao sto smo videli, jednakost (2.2.2) je tacna za n =1,2,3,4.

Pretpostavimo da je ona tactna za n = k > 1, tj. pretpostavimo da vazi

k

(a+b)f =) (’:) % (ke N).

1=0



36 OSNOVI ALGEBRE

Tada je

k k k
E+1 kY k—ii EY ky1—ii EY k—ijit1
(a+b)""" = (a+0b) EO(Z.)a b= <Z>a b +i§:O <z>“ b

7 =0

E (L i EHL i
_ +1—iyi +1—iyi

(2

N R

= (k + 1) i (]:) + (Z f 1) = (kjl), zakljuéujemo

o

I<:+1)7 (k)

k
k+1_ [(k+1Y) gr1 k+1\ kt1—ipi k4+1), k+1
(a+b) _( 0 )a —I—E ( ;e b+ P b

=1
k+1
=0 t

tj. da je jednakost (2.2.2) tacna izan =k + 1.
Prema tome, tvrdenje teoreme je tacno za svakon € N. [

Jednakost (2.2.2) je poznata kao Newtonova® binomna formula.

Binomni koeficijenti (g), (711), o (Z) mogu se generisati pomocu tzv.

Pascalovog? trougla

Cija se konstrukcija zasniva na primeni jednakosti 3° iz teoreme 2.2.3.

8) TIsac Newton (1643-1727), veliki engleski matematicar i fizicar.
9 Blaise Pascal (1623-1662), francuski matematicar.
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Napomena 2.2.2. Iz binomne formule (2.2.2) neposredno sleduju prva i druga
jednakost u teoremi 2.2.5 ako se stavia=b=1 i a = —b =1, respektivno.

Napomena 2.2.3. Moze se dokazati da vazi i opstija, tzv. trinomna formula

(a+b+c)" :i nif(?)( ;i>aibjcnij_

i=0 j=0

2.3. Osnovi kombinatorike

U ovom odeljku razmotri¢emo samo izvesne elemente kombinatorike i to:
permutacije, kombinacije i varijacije.

1. Permutacije. Neka je S, = {aj,as2,...,a,} konacan skup i p
obostrano jednoznaéno preslikavanje skupa S, na skup S,.

Simbolicki to preslikavanje p: S,, — S, moze se predstaviti u obliku

(2.3.1) p=<a,1 2 a’”‘),

Qi Ay o e as,,
koji omogudéava da se uoci slika a;, svakog elementa a; (k = 1,2,...,n).
Zapravo vidi se da je a;, = p(ax), gde su a;,, a4y, ..., a;, razliciti elementi
skupa S,,.

Definicija 2.3.1. Svako obostrano jednoznacno preslikavanje skupa S, na
skup 5, zovemo permutacija elemenata aq,as,... ,a, skupa S,.

Pokaza¢emo da broj takvih preslikavanja, tj. broj permutacija, zavisi od
broja elemenata skupa S,,. Oznac¢imo, zbog toga, taj broj sa P(n).

Ocigledno, ako je S; = {a1}, tada je preslikavanje ay — pi(a1) = aq, tj.
identi¢no preslikavanje, jedino obostrano jednozna¢no preslikavanje skupa
S7 na skup Sy. Dakle, P(1) =

Za skup So = {a1,as}, pored identickog preslikavanja
x—pi(r)= = (r=a,a2)

i preslikavanje po, odredeno sa

a; — pa(ar) =az 1 ag+— pa(az) = a,
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je biunivoko preslikavanje skupa Ss na skup S;. U skladu sa prethodno
uvedenom notacijom (2.3.1) imamo

ay ag . ay ap
D1 = 1 b2 = .
ay a9 g Q7

Prema tome, P(2) = 2.

Nije tesko utvrditi da za skup S3 = {a1,as,a3} postoji Sest obostrano
jednoznaénih preslikavanja skupa S3 na skup S3:

p1: al'—>p1(a1 =ay, az— pi(as
b2t a1 p2la; 1, a2 = pa(az
b3 ap > ps3lag 2, Gz p3(
(
(
(

(
(
pa: a1 pa(ar 2, G2+ pala2
(
(

a2

ps: aip — pslai 3, Q2 — Ppslaz

Pe - a1 — pelal 3, G2 pgla2

)
)
)
)
)
)

@@@@@@

tj. preslikavanja:

alp a2 as al az a3z ay a2 as
p1 = y P2 = y P3 = )
3 ay az a2 az a1 ag

ay; a2 a )

alp a2 as al az a3z aly a2 as
N N () R )

az a3z aj a3z a1 ag a3z a2 aj

To znaci da je P(3) = 6.

Kako je P(1) =1=1!, P(2) =2=2! i P(3) = 6 = 3!, intuitivno se
moze pretpostaviti da je P(n) = n!. Matematickom indukcijom dokaza¢emo
da je ova pretpostavka tacna.

Pre formulisanja odgovarajuce teoreme, ukaza¢emo na sledeée: Ocigledno,
permutacija
o a a2 ... QA
p1= <a1 as ... Ay, >
je identicko preslikavanje skupa S, na skup S,,. Tu permutaciju zvac¢emo

osnovna permutacija ili polazna permutacija. Naravno, svaka druga permu-
tacija se moze identifikovati sa zapisom

Ay Ay« v Ay,

§to, u stvari, predstavlja drugi red u notaciji (2.3.1).

U daljem tekstu cesto ¢emo koristiti ovakav nac¢in pisanja permutacija.
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Teorema 2.3.1. Broj permutacija skupa od n elemenata je P(n) = n!.

Dokaz. Kao sto smo videli, tvrdenje je tacno zan = 1,2, 3. Pretpostavimo
da je tvrdenje ta¢no za neko n = k > 1, tj. pretpostavimo da je P(k) = k!

Da bismo odredili P(k + 1), posmatrajmo skup Ski1, tj. skup eleme-
nata ai,aqg, ... ,ak, ap+1. Kako je broj permutacija elemenata aq,as,... ,ag
prema induktivnoj hipotezi jednak P(k) = k!, broj permutacija elemenata
skupa Si41 dobitemo na sledeéi nac¢in:

Za svaku permutaciju elemenata skupa Si odredi¢emo one permutacije
elemenata skupa Sii1 za koje je element apy; na poslednjem mestu u re-
dosledu. Na primer, za permutaciju ajaqas ... ax imamo aias . ..arak4+1; za
permutaciju ajasasay . ..a, permutaciju ajasasay . ..agapy1. Takvih per-
mutacija elemenata skupa Si41 ima onoliko koliko ima permutacija eleme-
nata skupa Sy, Sto znadi k!.

Zatim ¢emo, za svaku permutaciju elemenata skupa Sj, odrediti one per-
mutacije elemenata skupa Siy1 za koje je element a1 na pretposlednjem,
k-tom mestu. Naravno, i takvih permutacija skupa Si11 ima k! i sve su one
nove, tj. razli¢ite od prethodnih k! permutacija.

Produzujuéi ovaj postupak odredivanja novih k! permutacija elemenata
skupa Si41 za svako novo mesto elementa a1 u redosledu, dobijamo da je
broj permutacija elemenata skupa Si41 odreden sa

Plk+1)=Pk)(k+1) =kl(k+1) = (k + 1)!.

Dakle, za svako n € N vazi P(n) =n!. O

Napomena 2.3.1. Ovaj dokaz teoreme 2.3.1 je konstruktivan jer ukazuje na
postupak za dobijanje permutacija. Postupak se sastoji u sledeé¢em:

Zadrzi se element a; i njemu se sa desne strane dopiSu sve permutacije od
preostalih n — 1 elemenata. Dopisuju se, dakle, (n — 1)! permutacija od elemenata
a2,as, ... ,an. Na taj nacin dobijaju se prvih (n — 1)! permutacija elemenata
a1,a2, ... ,0n.

Zatim se zadrzi element ag, pa se njemu dopiSu zdesna svih (n—1)! permutacija

od elemenata aj,as,...,an. Ovako dobijene permutacije predstavljaju narednih
(n — 1)! permutacija od n elemenata a1, az,... ,an.

Na kraju, elementu ay dopisu se sve prethodno dobijene permutacije od eleme-
nata ai, a9, ... ,a,—1. Ovih (n—1)! permutacija ¢ine poslednju grupu permutacija
od elemenata ay,az,... ,an.

Napomena 2.3.2. Ovaj postupak ukazuje na moguénost utvrdivanja redosle-
da dobijanja permutacija. To, zapravo, znaci da se skup svih permutacija uocenih
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elemenata moze urediti tako da svaka permutacija ima svoj indeks koji ukazuje na
njeno mesto u tako uredenom skupu permutacija. Dakle, ako sa P, oznac¢imo skup
svih permutacija od n elemenata, tada imamo

Py = {p17p25' .- 7pn!}a

gde smo sa p, oznacili permutaciju ¢iji je indeks v.

U prethodnom razmatranju permutaciju ajaz . ..an smo uzimali za polaznu ili
osnovnu permutaciju. Uobicajeno je da se za osnovnu permutaciju uzima ona per-
mutacija kod koje su elementi poredani na leksikografski nacin, tj. slicno nacinu
kako su poredane reéi u reéniku. Ako su elementi slova, tada se za osnovnu per-
mutaciju uzima njihov azbuéni ili abecedni redosled, u zavisnosti od toga da li se
radi o ¢iriliénim ili latiniénim slovima. Ako su, pak, elementi prirodni brojevi, tada
se u osnovnoj permutaciji oni redaju po veli¢ini.

U opstem slucaju, kada imamo skup od n proizvoljnih elemenata, tada uvode-
njem jedne relacije uredenja < taj skup postaje ureden. Njegovi elementi se tada
mogu preimenovati u ay, ag, ..., an, tako da je

(2.3.2) a1 <ag < -+ < an.

Saglasno prethodnom, permutacija p; = ajaz ... an je polazna ili osnovna permu-
tacija. Ponekad piSemo p; = (aja2...an).

Na primer, neka je S5 = {«, 1, *,r,0}. Ako uvedemo relaciju poretka < tako da
jel <r < a <o < *1iizvrSimo preimenovanje: 1 — a1, r — a2, ® — a3, 0 — aq i
* — ag, polazna permutacija u skupu S5 je p1 = (1ra o *).

Za dve permutacije p, = a;j, a;, -.-a;, 1 py = aj aj,-..a; , u skladu sa uve-
denim uredenjem elemenata, moguce je utvrditi njihov uzajamni poredak. Ako je

i1 < j1 ili 01 =J1, -y Ig—1 = Jr—1, ik < Jk (k <n),

tada kazemo da je permutacija p, ispred permutacije py.

Za redosled elemenata u osnovnoj permutaciji kazemo da je normalan.
Naravno, u svakoj drugoj permutaciji taj normalni redosled je narusen. Ako
jedna permutacija nastaje iz neke druge tako sto dva elementa zamene svoja
mesta, kazemo da je ta permutacija nastala transpozicijom tih elemenata.

Neka je skup S,, ureden relacijom < tako da vazi (2.3.2). Za elemente a;,
i a;  u permutaciji

(0 € 7 S ¢ 7 S ¢ 79

kazemo da obrazuju inverziju ako je ix > i,,. Ako je u nekoj permutaciji

broj parova elemenata koji obrazuju inverzije jednak j, tada kazemo da ta
permutacija ima j inverzija.
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Definicija 2.3.2. Za permutaciju kazemo da je parna ili da je parne klase
ako ima paran broj inverzija.

Za permutaciju koja ima neparan broj inverzija kazemo da je neparna ili
da je neparne klase.

Osnovna permutacija je parna.

Teorema 2.3.2. Permutacije koje nastaju jedna iz druge transpozicijom
dva elementa pripadaju razlicitim klasama parnosti.

Dokaz. Ako su elementi ¢ijom transpozicijom nastaje nova permutacija
susedni elementi, tada se broj inverzija u ovim permutacijama razlikuje za je-
dinicu. U tom slucaju se posmatrane permutacije zaista razlikuju u parnosti,
tj. pripadaju razli¢itim klasama.

Pretpostavimo sada da se izmedu elemenata ¢ijom je transpozicijom na-
stala nova permutacija nalazi s elemenata. Nova permutacija je, u stvari,
nastala tako §to je jedan od tih elemenata izvrsSio s uzastopnih transpozi-
cija sa susednim elementima, a drugi s + 1 transpoziciju sa sebi susednim
elementima. Prema tome, izvrSeno je ukupno 2s + 1 transpozicija susednih
elemenata, Sto znaci da je broj inverzija promenjen za neparan broj.

Dakle, i u ovom slucaju ove dve permutacije pripadaju razli¢itim klasama
parnosti. [

Primer 2.3.1. Neka je S5 = {a1,a2,a3,a4,a5}. Odredi¢emo broj inverzija u
permutaciji aga1asasas u odnosu na osnovnu permutaciju ajazazasas.

Kako inverzije obrazuju sledeéi parovi elemenata:

(a4,a1), (as,a2), (as,a3), (as,a3y),

zakljuCujemo da je broj inverzija u permutaciji aqaiazasas jednak cetiri. Dakle,
ova permutacija je parne klase. A

Primer 2.3.2. Ako sa i(py) oznacimo broj inverzija u permutaciji pi skupa
S3 = {a1,a2,a3}, imamo

i(pl) = i(alagag) =0, i(p2) = i(alagag) =1
i(p3) = i(agaraz) = 1, i(ps) = i(azazar) = 2
i(p5) = i(agalag) =2, i(ps) = i(agagal) =3.
Dakle, permutacije p1, p4 i p5 su parne klase, dok su p2, p3 i pg neparne
klase. A

Napomenimo da se sa permutacijama mogu izvoditi izvesne operacije kao,
na primer, mnozenje permutacija. Ilustrova¢emo to na skupu svih permuta-
cija od elemenata 1,2, 3.
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Posmatrajmo, dakle, skup Py = {123, 132, 213, 231, 312, 321}, tj. skup

tzs) (132 (1) () (o) G

Ako, kao i ranije, uvedemo oznake

123 123 123
pl::<123>’ p2::<132>’ p3::<213>’

123 123 123
p4::<231>’ p5::<312>’ p6::<321>’

skup Ps je odreden sa Ps = {p1,p2,p3, P4, D5, P6}-
Napomena 2.3.3. Nije tesko proveriti da permutacije

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1
23 1)°\213)’\3 2 1/"\3 1 2)>\1 2 3/ \1 3 2

predstavljaju jednu istu permutaciju, jer u svakoj od njih 1 prelazi u 2, 2 prelazi
u 31 3 prelazi u 1. U stvari, svako od ovih pisanja jedne iste permutacije moze se

dobiti iz bilo kog drugog permutovanjem kolona 27 39 i’

Definisa¢emo sada u P; mnozenje permutacija.

Uoc¢imo dve permutacije iz skupa S3, na primer permutacije

(123 . (123
P3=1913 PP T319)

i neka je njihov proizvod ps - ps permutacija (iji) Dakle, neka je

/123\ [123\ (123
P3:Ps=1913) \312) ~ \ayz/)

123\ . (213} . . .. .
Kako su (3 1 2> i (1 32> jedna ista permutacija ps, imamo

C/123\ 123\ /123 (213
P3:Ps=1913) \312) ~ \213/) \132)

Za ovako napisane permutacije p3 i ps uocavamo da je gornji red cifara u
permutaciji ps istovetan donjem redu cifara u permutaciji ps.
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Kada su permutacije p3 i ps tako napisane, tada za permutaciju ps - ps
kazemo da je permutacija Ciji se gornji red cifara poklapa sa gornjim redom
u permutaciji p3, a donji red sa donjim redom cifara u permutaciji ps.

Prema tome, imamo

123\ [213\ (123
P3:P5=1913) \132) = \132)

tj. p3 - ps = p2. Takode,

123\ (123 123\ (213 123
p3’p4::<213> '(231) - (213) '(321) (321) be,

123\ (123 123\ (312 123
p5'p4::<312> '<231> - (312>' (123) - (123>__p“

L /123\ 123\ [123\ [231\ (123
p4'p3_’<231> '<213> _'<231> '<132> _'<132> '

Dakle, ako su

<1 2 3> . <1 2 3)
pi=1\|. . . 1 pi=1. . .
11 12 13 J1J2 J3

permutacije za koje treba odrediti proizvod p; - p;, tada permutovanjem po
kolonama, prvo permutaciju p; dovodimo na oblik

o <1 2 3) _ <i1’i2i3>
bi J1J2 J3 kikoks)’

a zatim zakljucujemo da je proizvod p; - p; odreden sa
<1 2 3) <1 2 3)
pi-pi=1. . . J-{. . .
11 12 13 J1J2 J3
(123 111913 123
“ iy igis)  \ky ko ks ki ko ks) — PF

Ovim smo definisali mnoZenje permutacija u skupu Ps.

Naravno, ako posmatramo skup P,, tj. skup svih permutacija od eleme-
nata 1,2,... ,n, na isti na¢in je moguce definisati mnozenje permutacija p;
ipjiz P,, tj. permutacija

(1 2 ... n 14—12"'71
Pi=\iy iy iy Pim\q G2 oo gn )
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Naime, ako permutovanjem po kolonama permutaciju p; dovedemo na

oblik
Pi Ji o J2 -+ Jn kv ko ... k, )’

proizvod p; - p; definiSemo kao permutaciju p, koju odredujemo na sledeci

nacin:
i pi = 12 ... n\ (1 2 ... n
S Z‘1 Z’2 Zn jl j2 Jn
R T ki ko ... Kk,
(1 2 ... n\
“\k ke .. k) PR
Napomena 2.3.4. MnozZenje permutacija p; i p;j, u stvari, predstavlja kom-

poziciju ta dva preslikavanja.
O nekim osobinama mnozenja permutacija bi¢e re¢i u odeljku 4.1.
2. Kombinacije. Posmatrajmo sada skup S, = {a1,as2,... ,a,} i sve

njegove neprazne podskupove ukljucujuci i sam skup S,,, pretpostavljajuci
pri tom uredenje (2.3.2).

Definicija 2.3.3. Za svaki podskup skupa S,, (kK < n), u oznaci
iy Qg - - - Ay, (’il,’iz,... ,ik€{1,2,... ,n}),

kazemo da je kombinacija klase k od n elemenata ay,as, ... ,an.

Za kombinaciju klase k kazemo i da je kombinacija k-te klase.

Napomena 2.3.5. Kao §to ¢emo videti, pretpostavka o leksikografskom ispi-
sivanju ovih podskupova omogucava lakse dobijanje kombinacija odredene klase, a
narocito odredivanje njihovog broja.

Primer 2.3.3. Neka je S; = {a,b,¢,d}. Kombinacije druge klase su

ab, ac, ad, bc, bd, cd,

a kombinacije treé¢e klase
abc, abd, acd, bcd.

Kombinacije prve klase su a, b, ¢, d, a jedina kombinacija cetvrte klase je abed.
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Napomenimo da je, na primer, kombinaciju abc moguée pisati na bilo koji od
sledeé¢ih nacina: ach, bac, bca, cab, cba, ako bi se izostavila pretpostavka o uredenju
skupa Sy4. Svih Sest pisanja, u stvari, predstavljaju jednu istu kombinaciju. A

Za skup S, = {aj,as,...,a,} kombinacije prve klase su svi elementi
ai,as, ... ,a, uzeti ponaosob, tj. kombinacije prve klase su a1, as,... ,ay.
Njih je, naravno, n na broju.

Sve kombinacije druge klase dobi¢emo ako svakom elementu a; (i =
1,2,...,n — 1) pridodamo zdesna, tj. ako mu dopiSemo sa desne strane,
svaki od elemenata a;i1,a;y2,...,a,. Prema tome, ukupan broj kombi-
nacija druge klase jednak je broju elemenata koje na ovaj nacin dodajemo
elementima a; (i = 1,2,... ,n — 1). Kako je za svaki element a; njihov broj
n — i, ukupan broj kombinacija druge klase od n elemenata je

(n—1)+(n—2)+~'—|—1:<n11>+<n12>+-~+<1>= <Z>

Do ovog ukupnog broja kombinacija druge klase od n elemenata, mogli
smo da dodemo i na nacin koji ¢emo izloziti za utvrdivanje broja kombinacija
trece klase.

Naime, broj kombinacija treée klase od n elemenata, u kojima je element
a1 na prvom mestu, jednak je broju kombinacija druge klase od elemenata
as,as, ... ,a,. Kako tih kombinacija ima (ngl), broj kombinacija treée

Klase, u kojima je element a; na prvom mestu, jednak je (" h.

Isto tako, broj kombinacija trece klase, u kojima je element as na prvom
mestu, jednak je broju kombinacija druge klase od elemenata as, ay, ... ,ay,

tj. jednak je broju (n ; 2).
Naravno, broj kombinacija tre¢e klase, u kojima je element a3z na prvom
. . m—3
mestu jednak je ( ) )-
I na kraju, broj kombinacija treée klase, u kojima je element a,_s na

prvom mestu, jednak je jedinici, jer se radi o jednoj jedinoj kombinaciji
Gpn_20yn_1a,. Broj tih kombinacija je, dakle, jednak jedinici, tj. njihov broj
om—=(n—=2) /2
J€ ( 2 ) - (2)

Prema tome, ukupan broj kombinacija treée klase od n elemenata jed-

nak je <ng1>+<”;2>+ +<;>=<§>
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Kao $to smo videli, broj kombinacija prve klase je (711), klase dva je (;) i
trece klase (n)
3

Broj kombinacija klase k od n elemenata zavisi, dakle, i od broja n i od
broja k. Ako taj broj oznaéimo sa C¥, tada je, o¢igledno,

A=) a-() 2-()

n

k
indukcije dokaza¢emo da je ova pretpostavka tacna.

Prirodno, namece se pretpostavka da je Ck = ( ) Metodom matematicke

Teorema 2.3.3. Broj kombinacija klase k od n elemenata (1 < k < n)

odreden je sa Ck = (Z

Dokaz. Dokaz ¢emo izvesti matematickom indukcijom, naravno, u odnosu
na k, pretpostavljaju¢i da je n fiksirani prirodan broj.

Kao sto smo videli, tvrdenje teoreme je tacno za k = 1,2,3. Stoga ¢emo
pretpostaviti da je teorema tacna i za k =m > 1.

Broj kombinacija klase m + 1, od elemenata a,as,... ,a,, u kojima je
element aq na prvom mestu, jednak je broju kombinacija klase m od ele-
mena{ta a2,a3, ... ,a,. Taj broj je, prema induktivnoj pretpostavci, jednak

n—
()

Naravno, broj kombinacija klase m 4+ 1 od elemenata aj,as,... ,a,, u

kojima je element as na prvom mestu, jednak je broju kombinacija klase m

.. .. .om—2
od elemenata az, aq, . .. ,a,. Prema tome, njihov broj iznosi ( )-
m

Najzad, broj kombinacija klase m+1, u kojima je element a,,_,, na prvom
n—(n— m))
m
Kako nema drugih kombinacija klase m+1 od n elemenata, zaklju¢ujemo

da je njihov ukupan broj

o () () () ()

Tvrdenje teoreme je, prema tome, tacno i za k = m + 1. Dakle, za svako

k=1,2,... ,n, vazi jednakost Ck = (:) O

3. Varijacije. Smatrajuci svaku kombinaciju klase k od n elemenata kao
osnovni poredak odgovarajuéih k elemenata, moguce je elemente te kombi-
nacije permutovati, tj. menjati im poredak u kombinaciji.

mestu, iznosi ( = (m), tj. ravan je jedinici.
m
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Definicija 2.3.4. Za bilo koju permutaciju kombinacije klase k od n ele-
menata kazemo da je varijacija klase k od tih n elemenata.

Primer 2.3.4. Varijacije druge klase od elemenata a, b, ¢, d su sve permutacije
kombinacija druge klase, tj. kombinacija

ab, ac, ad, bc, bd, cd.
Prema tome, sve varijacije druge klase od elemenata a,b, c,d su
ab, ba, ac, ca, ad, da, be, cb, bd, db, cd, dc.

Dakle, ima ih ukupno 12.

Sve varijacije cetvrte klase su, u stvari, sve permutacije jedine kombinacije abcd.
Kako je broj tih permutacija jednak 24, zaklju¢ujemo da je ukupan broj varijacija
cetvrte klase od cetiri elementa, takode jednak 24. A

Kao §to vidimo, i broj varijacija klase k od n elemenata zavisi i od n i od
k, gde je, naravno, 1 < k < n. Ako taj broj oznac¢imo sa V*, pokaza¢emo
da vazi sledeée tvrdenje:

Teorema 2.3.4. Broj varijacija klase k (1 < k < n) od n elemenata odreden
je sa

n!
V= __—
" (n—k)!

Dokaz. Kako se sve varijacije klase k od n elemenata, prema definiciji
2.3.5, dobijaju permutovanjem elemenata svih kombinacija iste klase k, za-
kljuéujemo da ih je k! puta vige od svih kombinacija klase k.

Ima ih, dakle, V¥ = k! CF, tj. ima ih

B ek o ()
VE = pICk k<k> e O

4. Permutacije, kombinacije i varijacije sa ponavljanjem. Pret-
postavimo, sada, da medu elementima skupa 5,, ima jednakih medu sobom.
Na primer, neka se element a; ponavlja i; puta, i neka su ostali elementi
ag, ..., y (i + m —1 = n) medu sobom razli¢iti. Naravno, m oznacava
broj razli¢itih elemenata u skupu S,. Tada se permutacije koje nastaju
transpozicijama jednakih elemenata ne razlikuju jedna od druge. Dakle,
u ovom slucaju, stvarni broj permutacija je manji od P(n). Ozna¢imo sa
P11 (n) taj broj. U tom slucaju, tj. u slucaju kada medu elementima
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skupa S,, ima jednakih, tj. kada se neki od njih ponavljaju, za permutacije
kazemo da su permutacije od n elemenata sa ponavljanjem.

Primer 2.3.5. Permutacije sa ponavljanjem od elemenata a, a, a, b, ¢ su sledece
permutacije:
aaabe, aaacb, aabac, aabca, aacab,
aacba, abaac, abaca, abcaa, acbaa,
acaba, acaab, baaac, baaca, bacaa,
bcaaa, caaab, caaba, cabaa, -cbaaa.

Dakle, njih je P(3’1’1)(5) = 20 ukupno. A

Medutim, moze se desiti da se u skupu S, pored elementa a;, koji se
ponavlja ¢; puta, ponavlja i element as, na primer, 5 puta, a da su ostali
elementi as, ..., a, (i1 +1i2 +m —2 = n) medu sobom razli¢iti. Tada ¢emo
ukupan broj takvih permutacija oznacavati sa P(1:%2:11)(p),

Primer 2.3.6. Od elemenata a,a,b, b, c dobijaju se sledeé¢ih P(2,2,1)(5) =30
permutacija sa ponavljanjem:

aabbc, aabch, aacbb, ababc, abacb, abbac,
abbca, abcab, abcba, acabb, acbab, acbba,
baabc, baach, babac, babca, bacab, bacba,
bbaac, bbaca, bbcaa, bcaab, becaba, bebaa,

caabb, cabab, cabba, cbaab, cbaba, cbbaa. A

Bez ikakvih ogranicenja, moze se pretpostaviti da se skup S,, sastoji od
m razli¢itih elemenata, ali tako da se element aj ponavlja iy puta (k =
1,2,... ,m), pri ¢emu je, naravno,

11 +i+ -+ 1y, =n.

Ako sa P(1:#2:im)(n) oznatimo ukupan broj permutacija sa ponavlja-
njima 41,13, ... , %4, od n elemenata vazi sledeée tvrdenje koje navodimo bez
dokaza:

Teorema 2.3.5. Ukupan broj permutacija od n elemenata sa ponavljanjima
01,02, yim (i1 + 12+ - + iy = n) jednak je

o . !
P('le'LQw-- 7'an)(n) — ni .
ipligl- - ip,!

Ako medu elementima nema jednakih, tada je ocigledno

PO (n) = P(n).
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Neka su sada, opet, elementi ay, as, ... ,a, medu sobom razli¢iti. Dakle,
neka imamo n razli¢itih elemenata. Pretpostavimo da se svaki od ovih ele-
menata moze uzimati bar k puta.

Sada ¢emo formirati kombinacije klase k od elemenata ay,as,... ,a,, ali
tako da se svaki od ovih elemenata u tim kombinacijama pojavljuje najvise
k puta, dakle, k puta, kK — 1 puta, ..., jednom ili nijednom.

Za takve kombinacije kazemo da su kombinacije sa ponavljanjem, klase k
od n elemenata.

Primer 2.3.7. Kombinacije sa ponavljanjem, druge klase od elemenata a, b, c
su:

aa, ab, ac, bb, be, cec.

) ) ) 7 7

Ukupno ih je 6. A

Primer 2.3.8. Kombinacije sa ponavljanjem, trece klase od elemenata a,b,c
su:
aab abb, abc,acc, bbb, bbc, bce, ccc.

aaa aac

)

Ima ih, dakle, 10. A

Primer 2.3.9. Kombinacije sa ponavljanjem, ¢etvrte klase od elemenata a, b, c
su:

7 ) )

aaaa, aaab, aaac, aabb, aabc,
aacc, abbb, abbc, abce, acce,
bbbb,  bbbc, bbce, beee, cecce.

Kao sto vidimo, ukupno ih je 15. A
Ako ukupan broj kombinacija sa ponavljanjem, klase k od n elemenata,
. —k . . .. , .
oznacimo sa C,,, moze se dokazati da vazi sledece tvrdenje:
Teorema 2.3.6. Ukupan broj kombinacija sa ponavljanjem, klase k od n
n+k—1

) .

Naravno, sada se moze govoriti i o varijacijama sa ponavljanjem. Naime,
permutacije sa ponavljanjem svih kombinacija sa ponavljanjem, klase k£ od
n elemenata su, u stvari, varijacije sa ponavljanjem, klase k od n elemenata.

elemenata, odreden je sa U,’i = <

Primer 2.3.10. Permutovanjem svih kombinacija iz primera 2.3.8 dobijamo
varijacije sa ponavljanjem, trece klase od elemenata a,b, c,

aaa, aab, aba, baa, aac, aca, caa, abb, baa,

bba, abc, acb, bac, bca, cab, cba, acc, -caa,

cca, bbb, bbc, becb, cbb, bce, cbe, ccb, ccc.
Kao sto se vidi, ima ih ukupno 27. A

Ako sa V,, oznacimo broj svih varijacija sa ponavljanjem, klase k od n
elemenata, tada vazi sledeCe tvrdenje, koje takode navodimo bez dokaza:
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Teorema 2.3.7. Broj svih varijacija sa ponavijanjem, klase k od n eleme-

, —k
nata, odreden je sa V, =n*.

3. ALGEBARSKE STRUKTURE

3.1. Binarna operacija, osnovne strukture i morfizmi

Neka je G neprazan skup i f preslikavanje skupa G? u skup G. Dakle,
neka elementi a i b iz G, kao uredeni par (a,b) € G2, odreduju preslikavanjem
f jedan element c iz G, tako da je ¢ = f(a,b). Cini se, kao da elementi a
i b iz G, na odredeni nac¢in, proizvode, odreduju, treéi element c, takode iz
G. Elementi a i b iz G stupaju u jednu operaciju kojom se dobija element ¢
iz G.

Definicija 3.1.1. Preslikavanje (a,b) — ¢ = f(a,b) (a,b,c € G), u oznaci
a *x b= ¢, zovemo binarna operacija.

Nadalje ¢emo sa *, ili na neki drugi nac¢in, na primer sa o, ¢, %, ..., ozna-
¢avati binarnu operaciju u smislu definicije 3.1.1. Tada kazemo da je skup
G snabdeven operacijom *. Tu ¢injenicu ¢emo simbolizovati sa (G, *).

Naravno, moguce je u istom skupu definisati viSe operacija, na primer, u
skupu G operacije * i o. Tada bismo imali oznacavanje (G, *,0).

Za (G,x*) kazemo da je algebarska struktura. Ta je struktura bogatija
ako operacija * obiluje ve¢im brojem osobina. Bilo koja uvedena binarna
operacija ima izvesne osobine. Prirodno je ispitivati da li ta operacija ima
bar neke od osobina koje imaju, na primer, nama dobro poznate operacije
sabiranje i mnozenje u skupu realnih brojeva. Medutim, valja ispitati da li
uvedena operacija ima i neke druge osobine.

Stoga ¢emo, pre nego Sto pristupimo detaljnijem ispitivanju nekih alge-
barskih struktura, definisati osnovne osobine binarnih operacija.

Neka je binarna operacija * definisana u nepraznom skupu G.

Definicija 3.1.2. Kazemo da je binarna operacija * asocijativna ako za
svako a,b,c € G vazi
ax(bxc)=(axb)x*c.

Dakle, ako je operacija * asocijativna, moguce je pisati

ax(bxc)=(axb)*xc=axbxc.
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Definicija 3.1.3. Binarna operacija * je komutativna, ako za svako a,b € G
vazi jednakost
a*xb="bxa.

Definicija 3.1.4. Ako u (G, *) postoji element e, takav da je za svako a € G
axe=ex*xa=a,

kazemo da je e € G neutralni ili jediniéni element za operaciju *.
Ponekada, za jedini¢ni element se kaze da je jedinica.

Teorema 3.1.1. Ako u (G, *) postoji neutralni element, onda je on jedin-
stven.

Dokaz. Pretpostavimo suprotno, tj. da u skupu G postoje dva elementa
eif (e# f), takva da je za svako a € G
(3.1.1) axe=exa=a
i
(3.1.2) a*xf=f*a=a.

Kako je a proizvoljan element iz G, stavimo a = f u (3.1.1) ia = e u
(3.1.2). Tada dobijamo

fre=exf=f i exf=fxe=e,

odakle sleduje e = f, §to je u kontradikciji sa pretpostavkom e = f. [

Definicija 3.1.5. Ako u (G, *) postoji neutralni element e i ako za a € G
postoji element a~! € G, takav da je

ail*a:a*a’lze,

kazemo da je a~!

operaciju .

inverzng ili simetriéni element za a € G, u odnosu na

Naravno, ako, u smislu definicije 3.1.5, postoji a=! € G, tada je a € G

inverzni element za a~'. Vazi, dakle, (a™1)™! = a.

1

Umesto oznake a~! za inverzni element koristimo i oznaku a’.
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Teorema 3.1.2. Neka u (G, *) postoji neutralni element e i neka je * aso-
cijativna operacija. Ako za element a € G postoji inverzni element a™' € G,
tada je on jedinstven.

Dokaz. Pretpostavimo suprotno, tj. neka za a € G postoje dva medu
sobom razli¢ita inverzna elementa a; ' i a;'. Tada vazi

1

ay :al_l*e:al_l*(a*agl):(al_l

xa)xay,  =exay =a;",
§to je u suprotnosti sa ucinjenom pretpostavkom. [

Izuci¢emo sada neke algebarske strukture. Neka je * jedna binarna ope-
racija definisana u nepraznom skupu G.
Definicija 3.1.6. Za algebarsku strukturu (G, x) kazemo da je grupoid.
Definicija 3.1.7. Ako je operacija * asocijativna, za strukturu (G, ) kaze-
mo da je asocijativni grupoid ili polugrupa (ili semigrupa).

Primer 3.1.1. Kako je operacija sabiranja u skupu prirodnih brojeva N aso-
cijativna, struktura (N, +4) je asocijativni grupoid. A
Definicija 3.1.8. Ako u grupoidu (G, #) postoji neutralni element, tada
kazemo da je grupoid (G, *) sa jedinicom.

Primer 3.1.2. Strukture (Ng,+) i (N,-) su grupoidi sa jedinicom. Neutralni

elementi u ovim strukturama su 0 i 1, respektivno. A

Definicija 3.1.9. Neka je binarna operacija *, definisana u skupu G. Za
grupoid (G, %) kazemo da je grupa ako su ispunjeni sledeéi uslovi:

1° Operacija * je asocijativna;

2° U skupu G postoji neutralni element za operaciju *;

3° Za svaki element iz G postoji u G njemu inverzni element u odnosu
na operaciju *.

Primer 3.1.3. Neka je S = {1,4,j,k,—1,—i,—j, —k} i neka je u S definisana
binarna operacija * na sledeéi nacin:
1° Zasvakozr € Sjelxxz=x%1=1x;
2° Za elemente i, j, k € S vaze jednakosti:
(a) ixi=jxj=kxk=—1,
(b) 1xj=k, jxk=1, kx*xi=j
(c) jxi=—k, kxj=—i, ixk=—3;
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3° Za svako x,y € S je

(—z)xy=xx*(—y) = —(zxy),
(~2) (—y) =@ *v.

Jednostavno se proverava da je ovako definisana operacija * asocijativna, da u
skupu S postoji neutralni element e = 1 i da za svaki element z € S postoji u
S inverzni element ! = —z u odnosu na operaciju *. Prema tome, struktura
(S, %) je grupa. A

Slededi primer se odnosi na skup svih permutacija P3 od elemenata 1,2, 3.
Uoc¢imo operaciju mnozenje permutacija, u oznaci - (videti odeljak 2.3).

Primer 3.1.4. Dokazac¢emo da je (P3,-) grupa. Nije tesko proveriti da se svi
proizvodi permutacija p; - p; (i,5 = 1,2,...,6) mogu predstaviti sledeCom tzv.
Cayleyevomlo) tablicom:

b1 P2 P3 P4 P5 D6
yan p1 P2 P3 P4 P5 D6
p2 p2 P1 P4 P3 P6 D5
p3 p3 Ps P1 P66 P2 P4
P4 pPse Pe P2 P5 P1 D3
2 pPs P3 P6 P1 P4 P2
b6 be P4 P5 P2 P3 D1

Iz ove tablice moze se konstatovati:

1° Operacija mnoZenje permutacija je, o¢igledno, unutrasnja operacija;

2° Operacija mnoZenje permutacija je asocijativna operacija;

3° Neutralni element za operaciju mnoZenje permutacija je osnovna permuta-
cija p1;

4° Za svaku permutaciju p; postoji u P3 njoj inverzna permutacija pi_l, takva
dajepi-pi ' =pi " pi=p1.

Prema tome, (Ps,-) je grupa. A

Bez dokaza navodimo sledeée tvrdenje:

Teorema 3.1.3. Ako je P, skup svih permutacija od n elemenata i - mno-
Zenje permutacija, tada je (Py,,-) grupa.

Za grupu (P,,-) kazemo da je grupa permutacija od n elemenata. Isto
tako, kazemo da je grupa (P,,-) simetri¢na grupa stepena n.

10)  Arthur Cayley (1821-1895), engleski matematicar.
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Definicija 3.1.10. Za grupu (G, ) kazemo da je komutativna ili Abelova™,
ako operacija * ima osobinu komutativnosti.

Ako skup G sadrzi konacan broj elemenata, na primer n, za grupu (G, )
kazemo da je kona¢nog reda n.

Primer 3.1.5. Neka je S = {0,1,2,3}. Uvedimo binarnu operaciju & tako
da je
adb=c < a+b=c(mod4).
Nije tesko pokazati da je (S, ®) komutativna grupa. A

Napomena 3.1.4. Kada se radi o grupi (G, *), u slu¢ajevima kada je binarna
operacija * prepoznatljiva ili kada ne moze da dode do zabune o kojoj je binarnoj
operaciji re¢, umesto grupa (G, ), govori¢emo i pisa¢emo samo grupa G.

Definicija 3.1.11. Neka su (G1,*) i (G2, 0) grupe i neka je f preslikavanje
skupa G1 u skup G5 takvo da je, za svako a,b € Gy,

flaxb) = f(a)o f(b).

Za preslikavanje f kazemo da je homomorfizam grupe (Gip,*) u grupu
(G3,0). Ako je f preslikavanje na, za grupu (Gs,o) kazemo da je homo-
morfna slika grupe (Gy, *).

Primer 3.1.6. Ako je Z skup svih celih brojeva i G = {1, —1}, tada su (Z,+)
i (G,-) grupe. Preslikavanje f:Z — G, dato sa

1, z=2k (keZ),

f(m):{_L x:?k‘i‘l (kEZ),

je homomorfizam grupe (Z,+) na grupu (G,-). A

Definicija 3.1.12. Ako su (G1,*) i (G2,0) grupe istoga reda i ako je f bi-
univoko preslikavanje skupa G na skup G takvo da je, za svako a,b € Gy,

flaxb) = f(a)o f(b),

kazemo da je preslikavanje f izomorfizam grupe (G1,*) na grupu (Ga, o).

Primer 3.1.7. Funkcija = — f(z) = logz je jedan izomorfizam grupe (RT,")
na grupu (R, +). A

) Niels Henrik Abel (1802-1829), norveski matematicar.
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Teorema 3.1.4. Ako je preslikavangje f izomorfizam grupe (G1,*) na grupu
(Ga,0), tada je inverzno preslikavanje f~' izomorfizam grupe (Ga,0) na
grupu (Gy, *).

Dokaz. Neka su z i y bilo koji elementi iz G5. Tada su f~!(z)i f~(y)
njima odgovarajuéi elementi iz G.

Kako je f izomorfizam grupe (Gj,*) na grupu (Ga,0), vazi jednakost

FUT@ =) =F (@) o fF (1) =z oy,

odakle neposredno sleduje

FHroy) =7 (FF @)+ ) = F @)+ ().

Prema tome, preslikavanje f~! je izomorfizam grupe (Ga,0) na grupu
(G1,%). O

Dakle, ako postoji izomorfizam grupe (Gi,*) na grupu (Gs,o), postoji
i izomorfizam grupe (Gz,0) na grupu (G, *). Zbog toga, za takve grupe
kazemo da su izomorfne, tj. kazemo da je svaka od njih izomorfna onoj
drugoj.

Primer 3.1.8. Neka su dati skupovi S = {0,1,2,3} i Q = {1,¢,—1,—i}. U
primeru 3.1.5 uvedena je operacija @, za koju je (S, ®) grupa. U skup @ uvedimo
operaciju - na sledeé¢i nacin:

Nije tesko proveriti da je (Q, ) grupa, ¢iji je neutralni element 1.
U skupu @ definiS§imo stepenovanje elementa a pomoc¢u
=1, ad*=a-dF' (keN).
Grupe (S,®) i (Q,-) su izomorfne jer je preslikavanje f:S — Q, definisano
pomocu f(k) = i*, izomorfizam. A
Definicija 3.1.13. Ako je preslikavanje f izomorfizam grupe (G, *) na samu
sebe, za preslikavanje f kazemo da je automorfizam grupe (G, *).

Primer 3.1.9. Neka je S = {1,—1,i,—i}. Obostrano jednozna¢no preslika-
vanje skupa S na skup S, definisano sa x — f(z) =iz (x € 9), je jedan izomorfi-
zam grupe (.S, ) na samu sebe.

To znaéi da je preslikavanje f jedan automorfizam grupe (S,-). A
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3.2. Podgrupe

Neka je (G, *) grupa i neka je H C G. Pretpostavimo da za sve elemente
skupa H vazi

(i) akosu z,y € H, tada jeizxy € H,
(ii) ako jex € H, tada jeiz~ ! € H.
Ako u skup H uvedemo binarnu operaciju o tako da je, za svako x,y € H,
TOY=2T*Y,
nije tesko pokazati da je (H,o) grupa.
Naime,

1° Operacija o je asocijativna, jer je za svako z,y,z € H
zo(yoz)=uxx*x(y*xz)=(rx*xy)xz=(roy)oz.

2° Ako je e jedini¢ni element grupe G, on pripada i skupu H jer je,
prema (ii), za svako = € H

e=zxzr ‘=gxoxleH 1 e=zlsxx=a"toxreH.

Jedini¢ni element e € G je, takode, jedini¢ni element i u (H, o).

3° Podskup H je tako izabran da je, prema (ii), za svako x € H i

x~! € H, tj. za svaki element = iz H postoji u H i u odnosu na

operaciju o njemu inverzni element = *.

Prema tome, (H, o) je grupa.
Definicija 3.2.1. Za grupu (H, o) kazemo da je podgrupa grupe (G, x).

Bez bojazni da moze doé¢i do zabune, operaciju o moguce je identifikovati
kao operaciju #, pa ¢emo, nadalje, umesto (H,o) pisati (H, *).

Primer 3.2.1. Grupa ({1, -1}, ) je podgrupa grupe ({1, —1,1,—1}, ) A

Ocigledno, ({e},*) i (G, *) su podgrupe grupe (G, *) za koje kazemo da
su trivijalne.

Teorema 3.2.1. Ako je (G,*) grupa konacénog reda n i (H,*) njena pod-
grupa reda m, broj n je deljiv brojem m.

Dokaz. Neka je H = {a1,as9,... ,a,} i neka je a; neutralni element, tj.
e =ay.
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Ako jem = 1ili m = n, onda je H trivijalna podgrupa grupe G i, naravno,
u oba slucaja tvrdenje teoreme je tacno.

Ako je 1 < m < n, tada u skupu G postoji bar jedan element, na primer
aq, takav da ay € H. Pokazademo da, u tom sluc¢aju, u skupu G\ H postoji
bar m elemenata.

Oznac¢imo sa «; * H skup {a1 % a1, a1 * ag,... ,a1 % an}, tj. neka je
ay* H={ay *xa|a € H}. Ocigledno, skup a; * H je podskup skupa G.

Za i # j elementi oy * a; i oy * a; su razliciti elementi. Da bismo ovo
dokazali, pretpostavimo suprotno, tj. da je ay *a; = a1 *a; za i # j. U tom
slucaju vazi

aytx(ayxa) =0y (arxa;) (i # ),

odakle, zbog asocijativnosti operacije * i postojanja neutralnog elementa,
sleduje

1

(a7 xo1)xa; = (o] " *xay)xa; (i #]),

tj. a; = ex*a; =exaj; = aj za it # j, Sto je nemoguce.

Isto tako, nijedan od elemenata a; *a; (i =1,2,...,m) ne pripada skupu
H, jer ako bi bilo oy * a; € H, znacilo bi da je oy x a; = a;, tj. vazilo bi
a1 = a; * a;~' € H, sto je suprotno pretpostavci da o & H.

Prema tome, skup a; * H je skup od m razli¢itih elemenata i nijedan
od tih elemenata ne pripada skupu H. Znaci, skup G, pored elemenata iz

H, sadrzi i elemente iz skupa «a; * H. Dakle, skup G ima najmanje 2m
elemenata.

Ako je n = 2m, tvrdenje teoreme je tacno.

U slucaju 2m < n, u skupu G postoji bar jedan element «s, takav da
as € HU (a1 x H).

Neka je ag x H = {aa x a1, ag *ag,... ,as*ay,}. Kao iu slicaju elementa
a1, nijedan od elemenata as * a;, gde je ¢ = 1,2,... ,m, ne pripada skupu
H i svi su oni medu sobom razliciti.

Medutim, nijedan od elemenata as *a; (i = 1,2,... ,m) ne pripada ni
skupu oy * H. Zaista, ako bi, za neko i i neko j, bilo as * a; = oy * a;, onda
bi to znacilo da je

as = (a1 * a;) wa; L= o % (a; xa; ') € ay* H,

§to je suprotno pretpostavci da as ne pripada skupu aq * H.
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Prema tome, i skup as * H je skup od m razli¢itih elemenata, pri ¢emu
ni jedan od njih ne pripada ni skupu H ni skupu oy * H.

Skup G, prema tome, sadrzi bar 3m elemenata.

Naravno, ako je n = 3m tvrdenje teoreme je dokazano.

Ako to nije slu¢aj, produzujuéi ovaj postupak, zakljucivac¢emo da u skupu
G uvek ima novih m elemenata. Medutim, kako je n konacan broj, mora
postojati prirodan broj k, takav da je n = km, §to, zapravo, znaci da je broj
n deljiv brojem m. O

Teorema 3.2.1 je poznata kao Lagrangeova'? teorema.

Napomena 3.2.1. Iz teoreme 3.2.1 neposredno sleduje da grupa prostog reda
nema nijednu podgrupu koja nije trivijalna.

Neka je n red grupe G, gde je n slozen broj, tj. neka je n = km (k,m € N).
Kao sto smo videli, ako grupa G ima netrivijalne podgrupe, njihov red mora
biti ¢inilac broja n.

Medutim, vazi i sledece tvrdenje:

Teorema 3.2.2. Neka je G konacéna grupa reda n i neka je m € N éinilac
broja n. Grupa G me mora da sadrzi podgrupu reda m.

Dokaz. Dokaz teoreme ¢emo sprovesti tako §to ¢emo naéi jednu takvu

Neka je (Py,-) grupa permutacija od elemenata 1,2,3,4. Jedna njena
podgrupa je (G, ), gde je

G = {p1, pa, Ps, Ps, Po; P12, P13, P16, D175 P205 P21, P24}

(1234 (1234 (1234 (1234
Pr=11234)" P27 \1342)" P"7 {1423) P#7 \2143)°
(1234 (1234 (1234 (1234
P9=193714) P127 \9g31 ) P13 7 {3124/ P16 7 {3241 )
(1234 (1234 (1234 (1234
PIr=\g412) P20 7 \4132) P21 T \4213) P>* 7 \4321)

Naravno, (G,-) je grupa. Njen red je 12, dakle, slozen broj. Medu
¢iniocima broja 12 je i broj 6.

e

12)  Joseph Louis Lagrange (1736-1813), francuski matematicar.
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Medutim, grupa GG nema nijednu podgrupu reda 6. [

Napomena 3.2.2. Ovaj primer kojim je dokazano tvrdenje teoreme 3.2.2, ob-
javljen je u knjizi: B. R. GELBAUM and J. M. H. OLMSTED, Theorems and Coun-
terezamples in Mathematics, Springer-Verlag, New York — Berlin — Heidelberg,
1990 (Primer 1.2.3.1, str. 3).

Napomena 3.2.3. Ocigledno, netrivijalne podgrupe jedne grupe beskona¢nog
reda su, takode, beskona¢nog reda.

Napomena 3.2.4. Iz dokaza teoreme 3.2.1 sleduje da skupovi
H, a1 «xH, agxH, ..., apy—1*x H
¢ine jednu particiju skupa G.
Definicija 3.2.2. Ako je (H,x*) podgrupa grupe (G, %), skupovi
exH, anxH, aox H,... ,aty_1 x H
predstavljaju levo, a skupovi
Hxe Hxoy, H*oo,... ,H*oy,_1
desno razlaganje grupe G pomoc¢u podgrupe H.
Definicija 3.2.3. Ako je (H, %) podgrupa grupe (G, *) i ako za svako a € G
vazi a x H = H % a, za podgrupu H kazemo da je normalna ili invarijantna
podgrupa grupe G.
Prema tome, podgrupa H je normalna podgrupa grupe G ako se leva i
desna razlaganja grupe GG, pomoc¢u podgrupe H, poklapaju.

Napomena 3.2.5. Ocigledno, trivijalne podgrupe grupe G su njene normalne
podgrupe. Zovemo ih trivijalne normalne podgrupe.

Napomena 3.2.6. Za grupu koja, sem trivijalnih normalnih podgrupa, nema
drugih normalnih podgrupa kazemo da je prosta grupa.

Napomena 3.2.7. Sve podgrupe Abelove grupe su njene normalne podgrupe.

Neka je (G, *) grupa i neka je a € G. Ako sa a®

otigledno je i a? € G, aliia3,a, ... € G.

oznafimo proizvod a * a,

Definicija 3.2.4. Neka je (G,x*) grupa reda n i neka je a € G. Ako je broj
k (0 < k < n) najmanji prirodan broj za koji je a* = e, kazemo da je k red
elementa a.

U slucaju k = n, za element a kazemo da je generatorni element grupe G
ili da generise grupu G ili da je proizvodi.

Naravno, ako je k < n, element a iz G je generatorni element podgrupe
grupe GG. Red te podgrupe je k. Za k = 11 k = n dobijaju se trivijalne
podgrupe.

Ocigledno, broj k je ¢inilac broja n.



60 OSNOVI ALGEBRE

Definicija 3.2.5. Za grupu koja ima generatorni element kazemo da je
cikliéna grupa.

Vaze sledeCa tvrdenja koja navodimo bez dokaza:
Teorema 3.2.3. Svaka prosta Abelova grupa je ciklicna grupa.
Teorema 3.2.4. Svaka ciklicna grupa prostog reda je Abelova grupa.

Teorema 3.2.5. Svaka konacéna grupa je izomorfna nekoj grupi permuta-
cija, tj. jednoj podgrupi neke simetriéne grupe.

Teorema 3.2.5 poznata je kao Cayleyeva teorema.

3.3. Algebarske strukture sa dve operacije

Neka je S neprazan skup i neka su u njemu definisane dve binarne ope-
racije * i o. Samim tim, (S,%) i (S,0) su izvesne algebarske strukture.
Medutim, moguée je posmatrati novu strukturu koju ¢ini skup S snabdeven
obema operacijama.

Pre nego sto izuéimo neke od ovih struktura, definisa¢emo osobinu distri-
butivnost jedne operacije u odnosu na drugu operaciju.

Definicija 3.3.1. Kazemo da je binarna operacija * distributivna u odnosu
na binarnu operaciju o ako za svako a,b,c € S vaze jednakosti

ax(boc)=(axb)o(ax*c), (aob)xc=(axc)o(bxc).

Naravno, ako za svako a, b, c € S vaze jednakosti
ao(bxc)=(aob)x*(aoc), (axb)oc=(aoc)*(boc),

kazemo da je binarna operacija o distributivna u odnosu na operaciju .

Primer 3.3.1. MnozZenje realnih brojeva je distributivna operacija u odnosu
na sabiranje realnih brojeva. Obrnuto, sabiranje nije distributivna operacija u
odnosu na mnozenje realnih brojeva. A

Definicija 3.3.2. Neka su u skupu S definisane dve binarne operacije * i o.
Ako su ispunjeni sledeé¢i uslovi:

1° (S, *) je komutativna grupa;

2° Operacija o je asocijativna,

3° Operacija o je distributivna u odnosu na operaciju x,
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kazemo da skup S ¢ini prsten u odnosu na operacije * i o, oznacavajuéi ga
sa (S, *,0).

Primer 3.3.2. (Z,+,) je prsten. Zaista, ovde je (Z,+) Abelova grupa, ope-
racija - je asocijativna i, najzad, operacija - je distributivna u odnosu na operaciju
sabiranja + . A

Posmatrajmo, sada, prsten (5,x*,0). Kako je (S,*) grupa, u odnosu na
operaciju * u skupu S postoji neutralni element e za operaciju *.

Definicija 3.3.3. Ako je (S\ {e}, o) grupa, za prsten (5, , o) kazemo da je
telo.

Definicija 3.3.4. Ako je (S \ {e},o) Abelova grupa, za prsten (S,x*,0)
kazemo da je polje.

Primer 3.3.3. (Q,+,) je polje. A
Definicija 3.3.5. Ako skupovi S; i Sy imaju istu moé, ako (Si,4+,-) i

(S2,®,®) imaju strukturu polja i ako je f obostrano jednoznacno preslika-
vanje skupa S; na skup So, za koje je

flatb)=fl@a f) i  fla-b)=fla)o f(b) (a,beS),
kazemo da je f izomorfizam polja (S1,+,-) na polje (S2,®, ®).

Definicija 3.3.6. Ako je preslikavanje f izomorfizam polja (.5, *, o) na polje
(S, %, 0), za preslikavanje f kazemo da je automorfizam polja (S, *,0).

3.4. Polje realnih brojeva

Tako se moze smatrati da nam je skup realnih brojeva R dovoljno poznat,
zbog izuzetnog znacaja koji ovaj skup ima u matematickoj analizi, u ovom
odeljku ukazaé¢emo na njegove osnovne osobine.

Skup realnih brojeva R snabdeven je binarnim operacijama: sabiranjem,
u oznaci +, i operacijom - koju zovemo mnoZenje, kao i binarnom relacijom
mange ili jednako, u oznaci <, na sledeé¢i nacin:

Definicija 3.4.1. Za svako z,y,z € R vazi:
(Al) (@+y)+z=z+(y+2)
(A2) (F0€R) (Vz) 24+0=0+2x ==z,
(A3) (Vx) (3(—x) €R) z+ (—x)=(—x)+z =0,
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(Ad) z+y=y+mx

B1) (z-y)-z=x-(y-2),

(B2) (31 eR\{0}) (Vx) z-1=1-2=ux,
(B3) (Vx e R\{0}) Bz teR\{0} z-z =zt -2=1,
B4) z-y=y-x

(C1) z-(y+z)=z-y+u-z

D) @<yAly<s) = v<2

(D2) (<yA(y<z) = z=y,

D3) (z<y)V(y<a),

(D4) (z<y) = (x+z2<y+2),

(D5) (0<x)A(0<y) = (0<z-y)

Na osnovu aksioma (Al) — (A4) zakljucujemo da vazi:
Teorema 3.4.1. (R, +) je komutativna grupa.

Na osnovu aksioma (B1) — (B4) iz definicije 3.4.1 vazi sledec¢i rezultat:
Teorema 3.4.2. (R\ {0}, -) je komutativna grupa.

Na osnovu algebarskih osobina iskazanih u prethodnim teoremama i ak-
siome (C1) moze se zakljuciti da vazi sledece tvrdenje:

Teorema 3.4.3. (R,+,-) je polje.

Definicijom 3.4.1 uvedena je i relacija totalnog uredenja < aksiomama
(D1) — (D5). Za takvo polje, u oznaci (R,+,-,<), kazemo da je uredeno
polje.

Najzad, napomenimo da je za uvodenje osnovnih pojmova analize neop-
hodno dodefinisati uredeno polje (R, +,-) slede¢om aksiomom supremuma:

(E1) Svaki skup A C R koji ima majorantu ima supremum u R.

Cesto se, medutim, ova aksioma zamenjuje njoj ekvivalentnom, tzv. ak-
stomom neprekidnosti:

(E1") Akosu A, B C R takvi da je x <y za svako z € A i svako y € B,
tada postoji z € R takvodajez <z<y (x € A, y € B).

U tom slucaju, moze se dokazati da vazi iskaz, dat aksiomom supremuma,
koji se tada naziva teorema supremuma.
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U nasim daljim razmatranjima, posebno kada se radi o grani¢nim vredno-
stima, neprekidnosti i slicno, pod poljem realnih brojeva podrazumevaé¢emo
uredeno polje (R, +,-), uz prisustvo jedne od pomenutih aksioma. Kada ne
postoji moguénost zabune, to polje oznacava¢emo jednostavno sa R, dok
¢emo za elemente skupa R reé¢i da su realni brojevi.

Uobicajeno je da se u skup R uvode jo§ dve operacije: oduzimanje i
deljenje realnih brojeva.

Neka je —y simetri¢ni element za y u odnosu na operaciju sabiranje realnih
brojeva. Tada se oduzimanje definise kao z —y = x+ (—y). Broj x —y naziva

se razlika brojeva x i y.

1 simetriéni element za y (# 0) u odnosu na mnoZzenje

Sli¢no, ako je y~
realnih brojeva, deljenje se definise kao z/y = z - y~!. Broj z/y naziva se

koli¢nik brojeva x i y. Umesto oznake x/y koriste se i oznake % i z:y.

Zato, umesto y~! ¢esto pisemo 1/y. Takode, proizvod x -y oznacavamo

jednostavno zy, izostavljajuci oznaku operacije.

U skup R moguce je uvesti i operaciju stepenovanje realnog broja celim
brojem, kao preslikavanje skupa R x Z u skup R. Naime, uredenom paru
(z,n) € R X Z mozemo pridruziti realan broj y = z, pri ¢emu je

=1, 2"=z-2"' (n>1), 2"=(1/z)"" (n<0;z#0).

Za svaki realan broj x € R moze se definisati apsolutna vrednost broja x,
u oznaci |z|, pomoéu

x, za x > 0,

2| = max{z, —z} = {

-, za x < 0.

Ocigledno, za svako x,a € R i svako € > 0 vazi:

|t —a|<e <= a—e<z<a+e,
|t —a|<e <= a—e<z<a+e.

Teorema 3.4.4. Za svako x,y € R vaZi:

lz| 20, [z]/=0 & 2=0;
lz+y| <l|z|+1yl, |lz|l—lyl|< |z -yl
lzyl = |x] - yl, |=/y| = |=|/ly| (y #0).
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Napomenimo, dalje, da skup realnih brojeva R ¢ine: skup racionalnih
brojeva Q i skup iracionalnih brojeva I. Vazi, naime, jednakost R = Q U I.
Kako su Q i I disjunktni skupovi, oni ¢ine jednu particiju skupa realnih
brojeva R.

Naravno, postoje i druge particije skupa R. Na primer, skup svih alge-

barskih brojeva i skup svih transcendentnih, tj. nealgebarskih brojeva. Za
realan broj = kaze se da je algebarski ako postoji algebarska jednacina

ar" + a1z 4+ 4+a,=0 (ap, €Z,k=0,1,... ,n),

¢ije je reSenje broj x.
Primer 3.4.1. Iracionalan broj v/2 je algebarski broj. Na primer, v/2 je jedno
reSenje jednacine 2—2=0. A

Napomena 3.4.1. Prvi dokaz da je broj
m = 3.14159 26535 89793 23846 26433 83279 50288 . ..

iracionalan dobio je Lambert'®) 1766. godine. Medutim, njegov dokaz nije bio
sasvim korektan. Stotinak godina kasnije Legendrel4) je ispravio tu nekorekt-
nost. Medutim, transcendentnost broja 7w utvrdio je Lindemann'® 1882. godine
koriséenjem jednog metoda Hermitea16), koji je devet godina ranije dokazao da je
osnova prirodnih logaritama

e = 2.71828 18284 59045 23536 02874 7135266249 . .. ,

takode, transcendentan broj.

Cinjenicom da je 7 transcendentan broj definitivno je dokazana nemoguénost
kvadrature kruga. Problem da se samo pomocu lenjira i Sestara konstruise kvadrat
¢ija ¢e povrSina biti jednaka povr$ini datog kruga, poznat kao problem kvadrature
kruga, vekovima je zaokupljao generacije i generacije matematicara. Na primer,
kada je poluprec¢nik kruga jednak jedinici, odgovarajuéa stranica kvadrata je

a = /7 = 1.77245 38509 05516 02729 81674 83341 14518 ... .

duzine izrazene brojevima iz nekog skupa algebarskih brojeva.

13)  Jochan Henrich Lambert (1728-1777), nemacki matematicar, fizicar i astronom.

™) Adrien Marie Legendre (1752-1833), francuski matematicar.
15) Carl Luis Ferdinand Lindemann (1852-1939), nemacki matematicar.

16) Charles Hermite (1822-1901), veliki francuski matematicar.
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Napomena 3.4.2. U casopisu Quarterly Journal of Pure and Applied Math-
ematics, 45(1913/14), str. 350, Ramanujan17) je postavio hipotezu da je e™V163

ceo broj, pri ¢emu je, radeéi ,ruéno“, nasao da je
TVI63 96253741 26407 68743 . 99999 99999 99.

Kako njegov metod nije omoguéavao dobijanje sledeé¢e decimale, on je pretpostavio
da se cifra 9 stalno ponavlja, i da je onda e™V163 = 26253741 26407 68744.

Danas, medutim, postoji veéi broj programskih sistema koji mogu da koriste
aritmetiku takoreéi prozvoljne preciznostils). Koriséenjem poznatog programskog
sistema MATHEMATICA dobijamo

163 — 26253741 26407 68743 . 99999 99999 99250 07259 71981 85688 87935 . .. ,

Sto ukazuje da je hipoteza Ramanujana bila pogresna.

Kako je skup racionalnih brojeva prebrojiv (videti primer 1.5.6), a skup
R ima moé¢ kontinuuma (videti primer 1.5.8), zaklju¢ujemo da je skup svih
iracionalnih brojeva neprebrojiv skup. Moguée je, takode, pokazati da je
skup svih algebarskih brojeva prebrojiv, a da skup svih transcendentnih
brojeva ima mo¢ kontinuuma.

Radi jednostavnijih formulacija mnogih rezultata u analizi, pogodno je
prosiriti skup R simbolima —oo i +00. U tom sluc¢aju se operacije sabiranje
i mnozenje, kao i uredenje, kada u njima ucestvuju simboli —oco i 400, moraju
posebno definisati:

Definicija 3.4.2. Ako x € R, tada je

(+00) + (+00) = 400, (—00) + (—00) = —o0,
(+00) - (+00) = +00, (—00) - (—0) = +00,
(+00) - (—00) = =00,  (—00) - (+00) = —00,
z + (+00) = 400, z+ (—00) = —o0,
x - (+00) = 400, x-(—00)=—00 ),
x - (+00) = —o0, x - (—00) =400

Uredenje < se prosiruje stavljajuéi da je —oco < z < +00 za svako = € R.

17)  Srinivasa Ramanujan (1887-1920), indijski matematicar.

18)  Jedino ogranicenje je memorija racunara.
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Za skup R = RU{—o00, +00} kaze se da predstavlja prosireni skup realnih
brojeva.

Na kraju ovog odeljka, napomenimo da je inf R = —oo i supR = +o0
(videti odeljak 1.3).

Napomena 3.4.3. Izrazi

oo

—, 00 — 00
00

nemaju smisla u skupu R.

3.5. Polje kompleksnih brojeva
Posmatrajmo sada skup uredenih parova realnih brojeva
R* =R xR = {(z,y) | 2,y € R}.
Uvedimo u R? dve operacije: sabiranje uredenih parova, u oznaci +, i
mnozenje uredenih parova, oznac¢eno sa - .

Definicija 3.5.1. Zbir dva uredena para (z1,y1) i (z2,%2) iz R? odreden je
sa

(T1,y1) + (T2,y2) = (1 + 22, y1 + Y2).

Definicija 3.5.2. Proizvod dva uredena para (z1,y1) i (z2,%2) iz R? odre-
den je sa
(w1,91) - (72,92) = (L1272 — Y1Y2, T1Y2 + Y172).
Iz definicije 3.5.1 neposredno sleduje:
1° Operacija sabiranje uredenih parova je komutativna operacija jer za
bilo koja dva uredena para (z1,y1) i (z2,y2) iz R? je
(x1,y1) + (22, 92) = (T1+ 22, y1 + Y2)
= (w2 + 21,92 + 1)
= (w2, 92) + (z1,91).
2° Operacija sabiranje uredenih parova je asocijativna operacija jer za
bilo koja tri para (z1,y1), (¥2,¥2), (v3,y3) iz R? je
(z1,91) + ((22,92) + (23,93)) = (x1,91) + (22 + 3,92 + y3)
= (z1 + 22+ 23,91 + Y2 + ¥3)
= (71 + 22,91 +y2) + (3,93)
= ((xlayl) + (x27y2)) + (23,3).
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3° Za operaciju sabiranje uredenih parova postoji u R? neutralni element.
To je par (0,0) jer za svaki uredeni par (z,y) € R? je

(,9) +(0,0) = (z,y).
Napomenimo da zbog komutativnosti operacije + nije potrebno proveravati
jednakost (0,0) + (z,v) = (z,y).
Uredeni par (0,0) je jedinstveni neutralni element (videti teoremu 3.1.1).

4° Za svaki par (x,y) € R?, u odnosu na operaciju sabiranje uredenih
parova, postoji jedan jedini par (—z, —y) € R?, takav da je

(‘Tay) + (—.Z', _y) = (070)
Prema tome, vazi sledeée tvrdenje:
Teorema 3.5.1. (R2?,+) je komutativna grupa.

Isto tako, iz definicije 3.5.2 za proizvoljne uredene parove vazi:

1° Operacija mnozenje uredenih parova je komutativna operacija jer je

(1,1) - (T2, y2) = (X122 — Y1Y2, T1Y2 + Y122)
= (xox1 — Y2Y1, T2y1 + Y221)

= (2,y2) - (T1,91)-

2° Operacija mnozenje uredenih parova je asocijativna operacija jer je

(5171,3/1)‘((1172,312) : ($37y3))
= (21,91) - (T2T3 — Y2y3, T2y3 + T3Y2
= (961(352963 — y2y3) — y1(T2ys + Y273
21 (v2ys + yaw3) + y1 (2273 — Y2y3))
= ((z122 — y1y2)23 — (T1Y2 + Y122)Y3,
(z1y2 + y122)23 + (£122 — Y1y2)Y3)
= (172 — Y1Y2, T1Y2 + y172) - (T3,¥3)
= ((5171,@/1) ) ($2,y2)) - (3, Y3)-

)
)

)

3° Za komutativnu operaciju mnozenje uredenih parova postoji neutralni
element. To je uredeni par (1,0) jer je za svaki par (z,y) € R?

(z,9) - (1,0) = (z,y).
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Uredeni par (1,0) je jedinstveni neutralni element.

4° Za svaki uredeni par (x,y) € R?, sem za par (0,0), u odnosu na
komutativnu operaciju mnozenje uredenih parova, postoji jedan i samo jedan
inverzni uredeni par

_ x Yy
(.’L’,y) b= < 20 2>€R27

2 +y? a2 +y

takav da je

(a:,y)'< e 2>:(1,0).

24+ y? 2?4y
Prema tome, vazi sledeée tvrdenje:
Teorema 3.5.2. Struktura (R?\ {(0,0)}, -) je komutativna grupa.

Na osnovu definicija 3.5.1 i 3.5.2 mozemo dokazati da je operacija mnoze-
nje uredenih parova distributivna prema operaciji sabiranje uredenih parova.
Zaista, imamo

(x1,91) - ((xz,yz) + ($37y3))
= (z1,y1) - (v2 + 3,92 + ¥3)
(33 (2 +23) —y1(y2 +v3), 21(y2 +y3) + y1 (22 + 963))
= ((z122 — Y192) + (2123 — y1y3), (T1y2 + Y122) + (21Y3 + Y173))
= (172 — Y1Y2, T1Y2 + y172) + (173 — Y1Y3, T1Y3 + Y123)
= (v1,91) (T2, 92) + (¥1,91) - (3, ¥3)-

Na osnovu dokazanih teorema 3.5.1 i 3.5.2 i distributivnosti mnozenja
prema sabiranju, zaklju¢ujemo da vazi sledece tvrdenje:

Teorema 3.5.3. Struktura (R?,+, -) je polje.

Izuci¢emo ovo polje predstavljajuéi njegove elemente, tj. uredene parove
(z,y), na nacin koji je pogodniji za rad sa njima. Naime, svaki se uredeni
par (z,y), u skladu sa operacijom sabiranje uredenih parova, moze napisati
na sledeéi nacin

(,y) = (2,0) + (0, y).
Medutim, kako je, za svako y € R,

(07y) = (07 1) : (y70)7
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mozemo pisati
(:an) = (ZE,O) + (Oyy) = (ZE,O) + (07 1) : (y70)7

tj.
(LE, y) = (LE, O) + i(yv 0)7
gde smo uveli oznaku (0,1) = ¢ i izostavili znak za operaciju mnozenje
uredenih parova.
Interesantno je da je (0,1)? = (0,1) - (0,1) = (—1,0).

Posmatrajmo sada skup uredenih parova oblika (z,0), tj. skup
R = {(2,0) | = € R}.

Ocigledno, R2 je podskup skupa RZ.

Nije tesko proveriti da (R2, +, ), takode, ima strukturu polja. Naglasimo
da je ovo polje izomorfno polju realnih brojeva (R, +, -). Naime, preslika-
vanje f:R — RZ, definisano sa = — f(x) = (z,0) je izomorfizam polja
(R, +, -) na polje (R2,+, ). Zaista, f je bijekcija i, za svako z,y € R,
imamo

flz+y)=(z+y,0) = (z,0) + (y,0) = f(z) + f(y)

flx-y) = (2-y,0) = (2,0) - (y,0) = f(x) - f(y).

Stoga ¢emo, imajuéi u vidu pomenuti izomorfizam, svesno praviti gresku
pisuéi umesto (x,0) samo x. To, zapravo, zna¢i da ¢emo poistoveéivati
uredeni par (z,0) i realan broj .

Naravno, tada mozemo pisati
(z,y) = (,0) +i(y,0) = z +iy.

Navedena nekorektnost u pisanju omogudi¢e nam da operacije sa urede-
nim parovima obavljamo jednostavnije, a da, pri tome, formalno nekorektno
pisanje ne moze dovesti do pogresnog zakljucka.

Dakle, svaki uredeni par (x,y) je moguée predstaviti brojevima z i y i
koris¢enjem oznake i za uredeni par (0, 1).
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Bilo bi zgodno da onda i uredeni par (x,y) smatramo brojem. U tu svrhu
uvedimo oznaku z = (z,y). Umesto uredenog para (x,y) posmatraéemo
z, kao broj, i zvatemo ga kompleksan broj. Tada i oznaka ¢ nije viSe samo
oznaka, ve¢ kompleksan broj kojim smo oznagcili uredeni par (0,1). Taj broj
nazivamo imaginarna jedinica. Uredeni par (1,0) zovemo realna jedinica i,
saglasno izomorfizmu, oznacavamo sa 1. Takode, par (0,0) nazivamo nula i
oznacavamo sa 0.

Napomena 3.5.1. Sada se za kompleksan broj ¢ moze re¢i da je to broj ¢iji
je kvadrat jednak —1. Dakle, i2=—1.

Naravno, medu realnim brojevima nema takvog broja.

Napomena 3.5.2. Nije tesko proveriti da je i3 = —1, it = 1, pa zbog i? = -1,

zakljuéujemo da, za k € N, vazi

4k ARFL o k2 g k3

:1,

) )

Kako je («,0) - (z,y) = (ax,ay), proizvod («,0)z, u stvari, znaci az =
oar + iay.

Neka je C={z | z =z + iy, x,y € R} skup svih kompleksnih brojeva.

Ocigledno je da operacije u polju (R?, +, ) induciraju odgovarajuée ope-
racije u C. Naime, za proizvoljna dva kompleksna broja z; = z1 + iy 1
29 = X2 + 1Yo imamo

21+ 20 = (21 + x2) +i(y1 +y2)

21+ 22 = (172 — y1y2) + i(T1Y2 + Yy172).
Moze se lako pokazati da vazi sledece tvrdenje:
Teorema 3.5.4. (C,+,-) je polje.

To éemo polje oznacavati sa C, a zvatemo ga polje kompleksnih brojeva.

Napomena 3.5.3. Polje realnih brojeva R je potpolje polja kompleksnih bro-
jeva C.

Videli smo, dakle, da se kompleksan broj z, odreden uredenim parom
(z,y), moze predstaviti u obliku

z=x+iy  (v,y €R).

Za ovaj oblik kazemo da je algebarski oblik kompleksnog broja z. Realni
broj x zovemo realni deo kompleksnog broja z, u oznaci Re z, a realni broj
y zovemo imaginarni deo kompleksnog broja z i oznacavamo ga sa Im z.
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Dakle,
z=x+1ty=Rez+ilmz.

Sabiranja i mnozenja kompleksnih brojeva, napisanih u algebarskom ob-
liku, izvode se kao sa binomima. Pri tome, kod mnozenja uvek treba voditi
racuna da je i2 = —1.

Primer 3.5.1. Ako je z1 =2 — 3i, z0 = —1 + 4, vaZe jednakosti

242 =(2-30)+ (=144 =(2—1)+i(-3+1)=1—2i,

2120 =(2—3)(=1+4)=-2+2i+3i—3i°=—-24+3+2+3i=1+5i. A

Za broj —z = —x — iy kazemo da je suprotni broj broju z = = + iy, a za
broj
1 T —
S=zl= iy —
z 2 +y? 2?4 y?

da je reciprocan broju z = x + iy # 0.

Imajuéi u vidu sabiranje i mnozenje kompleksnih brojeva, moguce je, kao
i kod realnih brojeva, uvesti operacije: oduzimanje i deljenje kompleksnih
brojeva. Tako, za kompleksne brojeve zy = x1 4+ ty1 i 20 = 2 + 1y imamo

21— 20 =21 + (—22) = (v1 — 22) +i(y1 — ¥2)

21 I mizo+wyiya | —T1y2 + 122
T AL = 2,2 t 2 .2
Z2 22 T3 + Y3 3 + Y3

Ako je z kompleksan broj koji odgovara uredenom paru (x,y), tada kom-
pleksan broj koji odgovara uredenom paru (x,—y) zovemo konjugovano—
kompleksan broj kompleksnom broju z i ozna¢avamo ga sa Z. Prema tome,
ako je z = x + iy, tada je Z = x — iy. Naravno, vazi z = z. Isto tako je

1 1
Re z 2(2+2) i mz 22,(2 Z)
Nije tesko proveriti sledeée tvrdenje:

Teorema 3.5.5. VaZe jednakosti
21+ 22 =71 + 22, 21— 22 =21 — 22,

Z122 = Z172, 21/20 =Z1/Z2 (22 #0).

Naravno, matematickom indukcijom je moguce dokazati opstije tvrdenje:
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Y Y
M(z,y) z=(z,y)
Y

Sl 3.5.1 Sl 3.5.2

Teorema 3.5.6. VaZe jednakosti

n

()= o (=)=

k=1

Kako je izmedu skupa R? = R x R i ta¢aka jedne ravni, uvodenjem koordi-
natnog sistema, moguce uspostaviti obostrano jednozna¢nu korespondenciju,
to je mogudée uspostaviti korespondenciju i izmedu skupa svih kompleksnih
brojeva C i skupa svih tacaka jedne ravni. Prema tome, svaki kompleksan
broj z je moguée identifikovati sa jednom jedinom tackom M u ravni (slike
3.5.1 1 3.5.2). Tu ravan zovemo kompleksna ravan ili z-ravan, x-osu zovemo
realna osa, a Yy-osu iMaginarna 0sa.

U slobodnijem izrazavanju, za tacku M kompleksne ravni koja odgovara
kompleksnom broju z govori¢emo da je kompleksan broj z.

Definicija 3.5.3. Broj |z| = /22 + y? zovemo modul ili moduo kompleks-
nog broja z.

Y
-z=(-2,y) z=(z,y) T M(z,y)
N o
—z=(-z,-y) z=(2,-y) 9] v x

Sl 3.5.3 Sl 3.5.4
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Ocigledno je [Z| = |z], kao i 2Z = |z|?. Takode, vaZe i nejednakosti:

Rez < |2] i Imz < |z|.

Na slici 3.5.3 predstavljeni su kompleksni brojevi z, Z, —z i —Z. Svi ovi
brojevi imaju isti moduo. Duzina r = OM na slici 3.5.4 predstavlja moduo
kompleksnog broja z. Za duz OM cesto kazemo da je poteg tacke M.

Geometrijske interpretacije sabiranja i oduzimanja dva kompleksna broja
date su na slikama 3.5.5 i 3.5.6, respektivno.

21+ 22

- 29 AR

—Z9

Sl. 3.5.5 Sl. 3.5.6

Teorema 3.5.7. Ako su z1 i z9 kompleksni brojevi, tada je

1° |z + 22| < 21| + |22];
2° ||z =l [< |21 — 22l

3% |aze| = a1 - [22].
Dokaz. Kako je

|Z1 + ZQ|2 = (21 + 22)(21 + 22) = (Zl + 22)(21 —|—32)
= |Zl|2 + |ZQ|2 + 2Re(z122)

i Re(z1Z2) < |z21Z2| = |21/|Z2] = |21]|22], zaklju¢ujemo da je
|21+ 22* < [ ]? + |22 + 2021 ||22] = (1] + [22])?,

odakle sleduje nejednakost 1°.

Stavljajuéi wq = 21 — 22 1 wa = 23, nejednakost |wy + wy| < |wq| + |we|
se svodi na |z1] < |21 — 29| + |22], tj.

|z1| — 22| <21 — 22].
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Kako su z; i 29 proizvoljni kompleksni brojevi, zaklju¢ujemo da vazi i
nejednakost
|z2| — |21] < |22 — 21| = |21 — 22|

Poslednje dve nejednakosti daju
—lz1 = 22| < 21| = [22| < [z1 — 22,

tj. nejednakost 2°.

Najzad, za dokaz jednakosti 3° dovoljno je primetiti da je
|2122]” = (2122)(7172) = (2122)(Z1%2) = (2171)(22%2) = |21]?[22]*. OO

Napomena 3.5.4. Stavljajuéi —zo, umesto zo, nejednakosti 1° i 2° svode se
na
|21 —za| <Jaa| + 22l 1 lz] = e[S e + 2.

Napomena 3.5.5. Odgovaraju¢om geometrijskom interpretacijom, mozemo
videti da su nejednakosti 1° i 2° u prethodnoj teoremi, u stvari, poznate nejed-
nakosti za trougao.

Matematickom indukcijom lako se dokazuju generalizacije nejednakosti
1° 1 3° za slucaj n kompleksnih brojeva:

Teorema 3.5.8. Ako su z, (k=1,2,...,n) kompleksni brojevi, tada je
n n n n
S < Xl i [ TLa|=TTIal
k=1 k=1 k=1 k=1

Ugao 6 koji zaklapa poteg OM sa pozitivnim delom realne ose Ox zovemo
argument kompleksnog broja z (videti sliku 3.5.4).

Ocigledno vaze jednakosti
x = |z|cosf i y = |z|sin b,
ali i jednakost

Y
5.1 = =tané.
(3.5.1) ~ =tan

Zbog periodi¢nosti funkcija 6 — cos@ i 0 — sin 0, vaze i jednakosti

x = |z| cos(0 + 2km) i y = |z|sin(f + 2kn) (kez),
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pa se kao argument kompleksnog broja z moze uzeti bilo koja vrednost 6 +
2km, koju ¢emo oznacavati sa Arg z.

Za vrednost argumenta kompleksnog broja z, za koji je
(3.5.2) - < Argz <m,

kazemo da je glavna vrednost argumenta kompleksnog broja z i ozna¢avamo
je sa arg z. Tako imamo

Argz = argz + 2km (keZ).

Prirodno je da se glavna vrednost argumenta kompleksnog broja z odre-
duje iz jednakosti (3.5.1). Naime, iz (3.5.1) sleduje

argzz@zarctang—l—km (ke Z).
T

Ovde k treba izabrati tako da arctan(y/x) + km zadovoljava uslov (3.5.2).

Naravno, odredivanje glavne vrednosti uslovljeno je polozajem tacke z u
kompleksnoj ravni, §to, zapravo, znac¢i vrednostima realnih brojeva x i y. U
stvari, moze se zakljuciti da je

arctan 2 (x > 0),
x
arctan 2 + 7 (x<0,y>0),
T
0 =argz = arctan% -7 (x <0,y <0),
/2 (x=0,y>0),
—7T/2 ($_07y<0),
T (x <0,y=0).

Primer 3.5.2. Za kompleksne brojeve
21=141i, 20=-14iV3, 25=-1—14, z4=1—1iV3,
imamo

argz) = /4, argzo =2m/3, argzs = —3mw/4, argzq=-w/3. A

Ocigledno, za kompleksan broj z = 0 vazi |z| = 0. Medutim, njegov argu-
ment je neodrediv. Ta ¢injenica nam ne smeta da sa kompleksnim brojem
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z = 0 operiSemo kao sa bilo kojim drugim kompleksnim brojem. Naravno,
tek pri pokusaju da se za kompleksne brojeve z = a (# 0) i z = 0 odredi
koli¢nik @ /0, nailazimo na odredene teskoce. Naime, nije tesko zakljuciti da
je moduo tog koli¢nika neograni¢en broj, ali odredivanje njegovog argumenta
je nemoguce. Koliénik a/0, tj. kompleksan broj z = a/0, obelezava¢emo sa
oco. Pisa¢emo, dakle, z = co. Pravo razumevanje broja z = co moguce je
tek sa definisanjem tzv. stereografskog preslikavanja'® z-ravni na Rieman-
novu?®) sferu.

Sada uvodimo neke operacije sa kompleksnim brojem z = oc.

Definicija 3.5.4. Za kompleksne brojeve z = a (# 0,00) 1 z = oo vaze
sledece jednakosti:

ocot+a=a+t o0 =00, 00-a=a-00 =00, 00+ 00 = 00,
a 00 a
— =0, — = 00, — = 00.
00 a 0
Izrazi
0 o0

cofxoo, 0-00, =, —
0 00

nemaju smisla u polju kompleksnih brojeva.

Kompleksna ravan koja sadrzi i tacku z = oo zove se prosirena kompleksna
ravan.

|z| = 7 i ¢iji je argument arg z = 6, moze se pisati
z =r(cosf + isin).

Ovo je tzv. trigonometrijski oblik kompleksnog broja z.

Takode, u upotrebi je i eksponencijalni ili Eulerov®?) oblik kompleksnog
broja z A
z=re?,
gde je e osnova prirodnih logaritama. Pravo objasnjenje ovog oblika kom-
pleksnog broja zahteva znanje iz kompleksnih funkcija.

Iz trigonometrijskog i eksponencijalnog oblika kompleksnog broja sleduje

jednakost
e’ = cos 0 + isin 6.
19)  Stereografsko preslikavanje se izucava u Kompleksnoj analizi.
20) Bernhard Riemann (1826-1866), veliki nemagki matematicar.
21 Téonhard BEuler (1707-1783), veliki svajcarski matematicar.
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Napomenimo da je moduo kompleksnog broja cos 8+i sin 8 jednak jedinici,
tj.
|cosf + isinf| = 1.
Za ovaj broj kazemo da je unimodularni broj. Pored pomenute eksponen-
cijalne notacije €?, za unimodularan broj se koristi i oznaka cisf. Tako se

svaki kompleksan broj z moze predstaviti kao proizvod modula r i unimodu-
larnog broja cisf. Dakle, z = rcis 6.

Ocigledno, iz z = r(cos f + isin @) sleduju jednakosti
Rez=rcosf i Imz=rsinf.
Takode, imamo
Z =1r(cosf — isinf) = r(cos(—6) + isin(—0)).

Ovo znaéi da je argZ = — arg z.
Kao sto ¢emo videti, za neka razmatranja trigonometrijski oblik komp-
leksnog broja pogodniji je od njegovog algebarskog oblika.

Neka su kompleksni brojevi z; i z9 odredeni sa
(3.5.3) z1 =r1(cosfy +isinfy) 1 29 =ry(cosby + isinby).
Tada je

2129 = ri(cos 0y + isinfy) - ro(cos b + isin fy)
= ryro(cos 6y + isin 6y )(cos B2 + i sin b,)
= 7172 ((cos 0y cos By — sin b sin ) + i(sin 1 cos b + cos by sin bs))
= 1172 (cos(61 + 62) + isin(f; + 62)).

argumenti 01 i 05, je kompleksan broj ¢iji je moduo r = rirs i ¢iji je argument
0 =061+ 0-.

Posmatrajmo opet unimodularan broj cis @ = cos 6 + isin 6.

Kako je (cisf)(cisf) =1 i cisf = cis(—0), zakljuéujemo da je

1 -
(cos@ +isinf) ' = —————— = cosf +isind,
cosf + isinf
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tj.
(3.5.4) (cos@ +isin®) ™ = cos(—0) + isin(—0).

Koriséenjem ove jednakosti mozemo definisati deljenje kompleksnih bro-
jeva u trigonometrijskom obliku.

Dakle, neka su kompleksni brojevi z1 i 25 (# 0) dati pomoc¢u (3.5.3). Tada
imamo .

z1 1y cisth 1

= . = — cisf cis(—6s).
Zo Tg cisfy g

Prema tome,
z r
2= —1(008(91 —6>) + isin(6 — 62)),
22 T2
§to znaci da je moduo koliénika r = 71 /7o, a argument 6 = 61 — 0.
Napomenimo da, kada su #; i 0> glavne vrednosti argumenata komplek-
snih brojeva z1 1 z9, to ne znaci da je i 81 4+ 02 glavna vrednost argumenta
kompleksnog broja z1z3, tj. ne mora da vazi
arg(z1zo) = arg z; + arg 2o,
ali je uvek
Arg(z129) = Argz; + Arg zo.
U stvari, vazi sledeée tvrdenje koje navodimo bez dokaza:
Teorema 3.5.9. Ako je z129 # 0, tada je
arg z; + arg 2o + 2m (=27 < argz + argze < —m),
arg(z12z2) = ¢ argz; +argz, (—m < argz; + argze < 7),

arg z1 + arg zo — 27 (7T < argz; +argzg < 27r).

Primer 3.5.3. Zaz; =1+1%¢ i 29 =% imamo
argz) = /4, argzo = /2, 2120 = —1 414, arg(z122) = 37/4.
Dakle, ovde je arg(z129) = arg 21 + arg z9. Medutim, za 21 = —1+1¢ 1 20 =14
je
argz) = 3n/4, argzo = w/2, 2120 = —1 — i, arg(z122) = —37/4.
Prema tome, arg(z1z2) # arg z1 +argza. A

Naravno, matematickom indukcijom je mogucée dokazati da je za kom-
pleksne brojeve zp = rg(cos @y +isinfy), k=1,2,... ,n, uvek

2122-~-zn:rlrg---rn(cos(Ol—|—92—|—~--—|—9n)—|—isin(01+92—|—~--+9n)).

Dokazaéemo sledeCe tvrdenje:
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Teorema 3.5.10. Ako je z = cosf + isinf, vaZi jednakost
(3.5.5) 2" = (cos @ +isinfh)" = cosnb + isinnd

za svako n € N.

Dokaz. Za n =1, jednakost je ta¢na.

Pretpostavimo sada da je ona tacna i za n =k > 1. Tada je

(cos B 4 isin 0)*1 = (cos  + isin §)*(cos @ + isin )
= (cos kO + isin kf)(cos 0 + isin )
= cos(k+1)0 +isin(k+1)0. O

Jednakost (3.5.5) poznata je pod imenom Moivreova®?) formula.

Moivreova formula vazi i u slucaju kada je n negativan ceo broj. Da bismo
ovo dokazali stavimo n = —k, gde je k € N. Stepenovanjem jednakosti (3.5.4)
i primenom prethodno dokazane formule (3.5.5), dobijamo

(cosf +isin @) F = (cos(—0) + isin(—0))* = cos(—kf) + i sin(—k0),

.
(cos @ +isinf)"™ = cos(nb) + isin(nd).

Na kraju ovog odeljka razmotri¢cemo problem odredivanja kompleksnog
broja z, za koji je

(3.5.6) 2" =a,

gde je a (# 0) dati kompleksan broj i n € N. Drugim re¢ima, razmotri¢emo
problem resavanja binomne jednacine (3.5.6).

Naravno, za n = 1 postoji jedno jedino resenje z = a. Zan=21ia > 0,
poznato je, postoje dva reSenja: zgp = +\/a i 21 = —/a.

Neka je kompleksan broj a dat u trigonometrijskom obliku
a = R(cos ¢+ isiny).

Resenja jednacine (3.5.6) potrazimo, takode, u trigonometrijskom obliku
z =r(cosf + isin).

22)  Abraham de Moivre (1667-1754), engleski matematicar.
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Tada imamo
r""(cos @ +isin )" = R(cos  + isinp),
tj.
r"(cosnb +isinnd) = R(cos p + ising),

odakle zakljucujemo da mora biti

m=R AN nl=¢p+2mr (meZ).

n 2
r=VE>0 A 0=0,=2""""  (nen).

n

Prema tome, sva reSenja jednacine (3.5.6) data su pomocu

n 2
Zm = \/RcisM (m e Z).
n

Lako je, medutim, videti da skup reSenja {z,, | m € Z} ima samo n
razli¢itih tacaka, na primer,

(357) {2’072’1,... 7Zn71}-

Zaista, ako m ¢ {0,1,... ,n — 1}, tada se takvo m moze predstaviti u
obliku m = pn + k, gde je p = [m/n], a k odgovarajuéi ostatak pri deljenju
m sa n. U tom slu¢aju imamo

+2mm o+ 2k7m

Hm:(’p = + 2pm = 0, + 2pm,
n n

gde k € {0,1,... ,n — 1}. Kako je cosf,, = cosfp i sin#,, = sinby,
zakljucujemo da je, za svako m € Z, z, = z, gdesup = [m/n] i k=
m — pn. Dakle,

n 2k
zkzx/ﬁcisy (k=0,1,... ,n—1).

Prema tome, vazi sledeée tvrdenje:
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Teorema 3.5.11. Ako je a = R(cosy + isinp) # 0, sva resenja binomne
jednacine (3.5.6) odredena su pomocu

n 2k 2k
(3.5.8) zp = \/E(cos ot ohm + isin u)

k=0,1,... ,n—1).

- - ( )
Geometrijska interpretacija ovog rezultata pokazuje da su svi kompleksni

brojevi z; rasporedeni na krugu poluprecnika R tako da predstavljaju

temena pravilnog poligona od n strana. Slucaj n = 8 prikazan je na slici
3.5.7.

Ako sa g, oznac¢imo unimodularan broj sa argumentom 27 /n, tj.

. 2w 2 . 2w
€p =CIS— = COS — + s —,
n n n
formule (3.5.8) mogu se iskazati u obliku
(3.5.9) 20 = \/chiSf, 2e = 206" (k=0,1,... ,n—1).
n

Geometrijski posmatrano, rotacijom zg za ugao 27 /n u pozitivnom smeru,
dobija se z1. Uopste, rotacijom z,_1 za isti ugao 2w /n dobija se zj.

Y
z Yy
2 | 21 2
e
Z3 /7 \\
| 20 3/2_
!
| Z Z9 Z
L = 20
Z6
SL. 3.5.7 Sl 3.5.8

Primer 3.5.4. Neka je 22 =—1—1.
Kakoje R=|—1—i]=+v2 i ¢ =arg(—1 —i) = —371/4, imamo

2 = v/2cis <—%+2]‘%) (k=0,1,2),
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tj.

z0 = \6/5 [cos (—%) + ¢sin (—%)} = ! _i,

21 = S/i[cos%—l—isin?—g] ,

6 137 . . 137w
29 = \/5 [COSE + 7s1n E] .

Ako stavimo e3 = cis(27/3) = (—1 +4+/3)/2, na osnovu (3.5.9), imamo

_ _VB-1+4i(V3+41) _  VB4+1+4i(V3-1)
21 = 20€3 = 3 y R2 = Z1€3 = — 3 .
22 22

Koreni zg, 21,22 prikazani su na slici 3.5.8. Napomenimo da dobijeni argu-
ment 137/12 kod korena 29 nije glavna vrednost argumenta. Naime, argzo =
—11n/12. A

3.6. Vektori i operacije sa vektorima

Medu osnovnim pojmovima koji se javljaju u fizici, mehanici i elektroteh-
nici su sila, brzina, ubrzanje, elektricno polje i slicno. Sve ove veli¢ine se,
pored intenziteta, karakteriSu i pravcem i smerom. Nas ¢e ovde interesovati
geometrijski analogon takvih pojmova.

Ne upustajuéi se u razmatranje nekih osnovnih geometrijskih pojmova
kao $to su prava, ravan, prostor, translacija i sli¢no, koristi¢emo sledeé¢a oz-
nacavanja: FE za skup svih tacaka prostora koji opazamo; R za proizvoljnu
ravan u F; p za proizvoljnu pravu u E. Proizvoljne tacke iz E oznacavacemo
velikim slovima latinice: A, B, C, M, O, itd.

Neka su A i B dve razlicite tacke iz E. One ocigledno, na jedinstven
nacin, odreduju jednu duz ili odse¢ak AB kao skup tacaka koje se nalaze na
pravoj izmedu tacaka A i B. Ako pri tom definiSemo jednu od tih tacaka
kao pocetnu, a drugu kao krajnju, dobi¢emo tzv. orijentisanu duz. Ako je,
recimo, A pocetna, a B krajnja tacka, duz je orijentisana od tacke A ka tacki
B. Za tako orijentisani odsecak kazemo da je vektor, koji deluje u tacki A.
Cesto se kaze da je to vektor vezan za tacku A. Ako je neophodno nagla-
siti pocetnu i krajnju tacku vektora, koristi se notacija AB. U protivnom,
dovoljno je za vektor koristiti notaciju @ ili @ (videti sliku 3.6.1).

Rastojanje izmedu tacaka A i B naziva se intenzitet vektora ili norma
vektora i oznacava se sa |A—B> | ili |@| ili |a|. Ponekad se umesto |a| koristi
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B
B /P ~.
N
A
A -~
e
SL. 3.6.1 SI. 3.6.2

samo oznaka a. Za vektor ¢iji je intenzitet jednak jedinici kazemo da je
jedinicéni vektor ili ort i oznacavamo ga obi¢no sa indeksom nula, na primer,
ap.

Prava p koja prolazi kroz tacke A i B odreduje pravac vektora AB. Za
—
pravu p kazemo da je nosac vektora AB.

Najzad, kazemo da vektor AB ima smer od A prema B.

ga sa o. To je, zapravo, vektor ¢ija se poCetna i krajnja tacka poklapaju.
Pravac i smer takvog vektora nisu odredeni.

Posmatrajmo skup svih moguéih vektora V = V(E) = {14—B> | A,B € E}
i njegov podskup

(3.6.1) Vi =Vi(E)={AB| B € E}.

Ocigledno,

V=] Va

A€eE

U radu sa vektorima veoma je vazno koje ¢emo vektore tretirati kao jed-
nake, Sto zavisi od uvedene relacije jednakosti u V.

Definicija 3.6.1. Za dva vektora A—B>, CD €V kazemo da su jednaki, tj.
—_— —
(3.6.2) AB = CD,

ako i samo ako postoji translacija takva da tacku A prevede u tacku C' i
istovremeno tacku B u tacku D.

Pomenuta translacija predstavlja tzv. paralelni prenos vektora AB u tacku
C (slika 3.6.2). Ako se pritom tacka B poklopi sa tackom D vaziée jednakost
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(3.6.2). Jasno je, iz ove definicije, da jednaki vektori imaju i jednake inten-
zitete. Pri ovako uvedenoj definiciji jednakosti vektora, za vektore iz skupa
V kazemo da su slobodni vektoriZ®).

S obzirom da uvedena relacija jednakosti poseduje osobine: refleksivnost,
simetri¢nost i tranzitivnost, zaklju¢ujemo da vazi sledece tvrdenje:

Teorema 3.6.1. Relacija jednakosti dva vektora iz V' je relacija ekvivalen-
cije.

Uvedenom relacijom ekvivalencije, izvrSena je particija skupa V na klase
ekvivalencije, koje se veoma lako mogu opisati. Naime, posmatrajmo proiz-

voljan vektor AB. Paralelnim prenosom ovog vektora u svaku tacku prostora
FE dobijamo skup vektora

(3.6.3) W ={a €V |a=A4B},

koji predstavlja jednu klasu ekvivalencije. Dakle, svi vektori iz W,z su
medusobom jednaki, pri ¢emu u svakoj tacki prostora deluje jedan i samo

jedan od njih.

Imajuéi u vidu dobijene klase ekvivalencije, za naSe dalje tretiranje vek-
tora dovoljno je uzeti samo po jedan vektor iz svake klase ekvivalencije,
takozvanog predstavnika klase, pri ¢emu se mozemo opredeliti tako da svi
oni deluju u istoj tacki, tj. da imaju isti pocetak.

Dakle, ako uzmemo jednu proizvoljno fiksiranu tacku prostora, na primer
O € E, trazeni skup vektora (predstavnika svake klase ekvivalencije) bice,
saglasno notaciji (3.6.1),

(3.6.4) Vo = Vo(E) = {OM | M € E}.

—
Primetimo da nula-vektor o = OO pripada ovom skupu.

Napomena 3.6.1. Neka su O i O’ dve fiksirane tacke prostora E. Saglasno
definiciji 3.6.1 o jednakosti dva vektora, prostori Vp/(E) i Vo (F) mogu se tretirati
kao ekvivalentni. Prostor Vp:(F) nastaje iz prostora Vo (E) translacijom.

23) U naSem daljem razmatranju isklju¢ivo ¢emo raditi sa slobodnim vektorima. Me-
dutim, ¢esto u primenama u fizici, mehanici i elektrotehnici, vektorske veli¢ine su vezane
za tacku ili pravu. U tom slu¢aju imamo tzv. vektore vezane za tacku ili vektore vezane
za pravu. Na primer, kod vektora vezanih za tacku, za jednakost dva vektora, pored
definicije 3.6.1, zahteva se da oba vektora deluju u istoj tacki. Naravno, kod vektora
vezanih za pravu, dodatni zahtev, u definiciji jednakosti dva vektora, je da oba vektora
imaju isti nosac.
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Kao sto smo videli, skup W3, dat sa (3.6.3), predstavlja skup vektora ko-

jisu jednaki sa datim vektorom AB. U mnogim razmatranjima od interesa su
i drugi podskupovi od V', na primer, skup kolinearnih ili skup komplanarnih
vektora.

kazemo da su kolinearni vektori. Koristeéi paralelni prenos vektora u tacku
O € p i notaciju (3.6.1), skup kolinearnih vektora moze se predstaviti u
obliku
—
Vo(p) ={OM | M € p}.

Sl. 3.6.3 Sl 3.6.4

Sli¢no, za sve vektore koji leze u datoj ravni R, ili u bilo kojoj ravni
paralelnoj sa R, kazemo da su komplanarni vektori. U ovom slucaju to je
skup

Vo(R) = {OM | M € R}.

Na slikama 3.6.3 i 3.6.4 prikazani su proizvoljni elementi skupova Vp(p)
i Vo(R).

Oslanjajuéi se na tzv. slaganje sila u mehanici, §to se ogleda kroz delovanje
rezultante za dve sile, moguée je uvesti sabiranje vektora.

Neka su data dva vektora a = AB i b= CD i neka se, paralelnim preno-
som vektora a u tacku O, krajnja tacka B vektora a prevodi u tacku M.
Tako dobijamo ekvivalentni vektor OM. Sada, paralelnim prenosom vek-
tora b u tacku M, dobijamo ekvivalentni vektor MN , pri cemu je tacka D
prevedena u tacku N (videti sliku 3.6.5). Za vektor ¢ = ON kazemo da je
zbir vektora a i b, tj.

c=a+b.

Drugim re¢ima, ako paralelnim prenosom vektore a i b dovedemo u tacku
O tako da je O—]\f =ai O—Cj = b, a zatim nad njima konstruiSemo paralelo-
gram OMNQ (slika 3.6.6), tada ¢e vektor ¢ = ON predstavljati zbir a + b.
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Ovakav nacin sabiranja dva vektora poznat je kao pravilo paralelograma.
Dakle, oba vektora se dovedu na isti pocetak i konstruiSe se paralelogram
nad njima kao susednim stranicama. Zbir vektora se, zatim, dobija kao di-
jagonala paralelograma usmerena od zajednickog pocetka. Iz ovoga proizilazi
da je sabiranje vektora komutativna operacija, tj. a +b = b + a.

A -
X
D B
- J\/Y
. c
b 0 i
C a
M
Sl 3.6.5 Sl. 3.6.6

Na ovaj nacin, vektore prvo svodimo na vektore skupa Vp, koji je dat
pomocu (3.6.4), a zatim dobijamo zbir koji je vektor iz istog skupa.

Teorema 3.6.2. Neka je + sabiranje vektora. Struktura (Vo,+) je komu-
tativna grupa.

Dokaz. Pre svega treba uociti da je operacija sabiranja vektora komuta-
tivna i asocijativna, tj. da je

a+b=b+a (a,be Vp)

(@a+b)+c=a+(b+c) (a,b,c € Vo).
Za asocijativnost operacije videti sliku 3.6.7.

Kako je, za svako a € Vp,
at+o=o0+a=a,

zaklju¢ujemo da je nula-vektor o neutralni element za sabiranje vektora.
Najzad, za svaki vektor a € V postoji vektor a’ € V takav da je

(3.6.5) a+a =a +a=o.

Za vektor a’ kazemo da je suprotni vektor vektoru a i oznacavamo ga sa —a
(videti sliku 3.6.8). Ovaj vektor je, u stvari, inverzni element za a.
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Sl 3.6.7 Sl 3.6.8

Prema tome, (Vo,+) je Abelova grupa. O
Jednakost (3.6.5), napisana u obliku

a+(-a)=(~a)+a=o,
sugerise uvodenje operacije oduzimanje vektora:
a—b=a+ (-b).

Dakle, razlika a — b je vektor koji se dobija kao zbir vektora a i suprotnog
vektora od b (slika 3.6.9).

Za zbir a + a pisemo 2a. Naravno, za a + a + a = 2a + a piSemo 3a. U
opstem slucaju, za n jednakih vektora, piSemo

at+a—+---+a=na.

Vektor na je kolinearan sa vektorom a. Njegov pravac i smer se poklapaju sa
pravcem i smerom vektora a, dok mu je intenzitet n puta veéi od intenziteta
vektora a.

Zan=01in =1 imamo

0a =0 i la = a.
Formalno, za n = —1, dobijamo suprotni vektor vektoru a, tj. imamo
(-1)a = —a.

Na slican na¢in mozemo uvesti, na primer, vektor —ma, gde je m € N.
To ¢e biti vektor suprotan vektoru ma, tj. imaée pravac vektora a, smer
suprotan ovom vektoru, dok ¢e mu intenzitet biti m puta veéi od intenziteta
vektora a.
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Na osnovu prethodnog, mozemo uvesti operaciju mnozenje vektora pro-
izvoljnim realnim brojem A, koji nazivamo skalar. Dakle, Aa je vektor &iji
se intenzitet dobija mnoZenjem intenziteta vektora a sa |\|, pravac mu se
poklapa sa pravcem vektora a, a smer zavisi od znaka skalara A. Naime,
ako je A > 0, smer se poklapa sa smerom vektora a, dok je, za A < 0, smer
suprotan smeru vektora a. Naravno, a i Aa su kolinearni vektori.

Navedena operacija mnozenja vektora skalarom moze se tretirati kao pres-
likavanje skupa R x Vo na skup V. Za razliku od operacije sabiranja vektora
u Vp, koja je interna binarna opracija u Vp, jer se radi o preslikavanju skupa
Vo x Vo na skup Vo, ovde je re¢ o jednoj eksternoj operaciji.

M

Sl 3.6.9 Sl. 3.6.10

Nije tesko dokazati sledeéi rezultat:
Teorema 3.6.3. Za mnoZenje vektora skalarima imamo
1° Mpa) = (An)a,
2° A+ pa = Aa+ pa,
3° AMa +b) = Aa+ \b,
4° la = a,
za sve vektore a,b i sve skalare A\, .

Ocigledno, pri fiksiranoj tacki O € FE, svakoj tacki M € FE odgovara jedan
—
i samo jedan vektor OM, koji je usmeren od tacke O prema tacki M.

Definicija 3.6.2. Za vektor OM kazemo da je radijus vektor ili vektor
polozaja tacke M u odnosu na tacku O.

Za radijus vektor OM koristimo oznaku 7 ili 7 (videti sliku 3.6.10).

Napomena 3.6.2. Preslikavanje f: E — V, dato pomoéu M — OM, je
biunivoko.
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4. ZADACI ZA VEZBU

4.1. Neka je a = v/2 i =1+ V2 + V4. Ako su f i g preslikavanja
definisana pomodu

f(a,b,c):a+ﬁa+ca2 (a,b,c € Q),
g(aljb/70/) — a/+b//8+c//82 (a,,b/7c, E Q)7

dokazati da se skupovi f(Q3) i g(Q3) poklapaju.

Uputstvo. Dovoljno je dokazati da za svaku uredenu trojku (a, b, ¢) racionalnih brojeva
a, b, c postoji takode uredena trojka (a’,b’,c’) racionalnih brojeva a’,b’,c’ takva da vaze
jednakosti

fla,b,¢c) =g(a’,b', ) (a,a’,b,b' ,¢c,c € Q).

4.2. Neka su definisana preslikavanja:
1°  f:Z—7Z* takodaje f(p)= (p,1) (pe i),
2°  ¢:Z* — R takodaje g(p,q) =p+qv2  (p,q € ),
3 hR-—7Z takodaje h(x)=[z] (xe€R),

kao i kompozicije

fog, goh, hog, fogoh, gohof, ho fog.

Utvrditi koja su od svih ovih preslikavanja surjektivna, a koja injektivna
preslikavanja ?

Rezultat. Preslikavanje h je surjekcija, a preslikavanja: f, g, fog, fogoh su injektivna
preslikavanja.

4.3. Neka je dato preslikavanje f:R — R pomocu
fx)=alz+1|4+bz—-1+(b—a+1)xz—a—>b (x € R),

gde su a i b realni parametri.

Ispitati za koje je vrednosti parametara a i b dato preslikavanje bijekcija,
a zatim eksplicitno odrediti analiticki izraz za inverzno preslikavanje f~! da-
juéi tom izrazu formu koju ima prslikavanje f.

Rezultat. Preslikavanje f je bijekcija ako je a #1/2 i b# —1/2.
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1+
1_

4.4. Ako je z — f(x) = (z € R\ {1}), dokazati da je preslikavanje
f injektivno preslikavanje.

4.5. Neka je m fiksirani prirodan broj, neka je n € N i neka je f funkcija
definisana sa

O L

m+n (n>m).
1° Odrediti skup f (N).
2° Ako je f obostrano jednoznacno preslikavanje, odrediti funkciju

71.
FLF(N) — N,
Rezultat. 1° f(N) =N\ {m,m+1,...,2m—1}, 2° Inverzna funkcija f~! postoji
i odredena je pomocu

m-—n (n <m),

ne 7 (n) = {

n—m (n > 2m).
4.6. Ako je n prirodan broj i ako je

an = ﬁ ((+2v2)" =~ (3-2v2)"),

dokazati da je a,, prirodan broj.

4.7. Neka je S = {a,b, c} skup u kome je definisana binarna operacija * sa
osobinama predstavljenim tzv. Cayleyevom tablicom:

x| a b c
al a b c
b| b c a
c| ¢ a b

Proveriti tvrdenje: (5, %) je komutativna grupa.
4.8. Neka je m prirodan broj i neka je S ={0,1,2,...,m — 1}.

Ako je za svako a,b € S definisana operacija * pomocu

{a—l—b (a+b<m),
axb=
a+b—m (a+b>m),
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dokazati da je operacija * unutrasnja operacija, a zatim dokazati da (.5, *)
ima strukturu komutativne grupe.

4.9. Neka je S skup ¢iji je a jedini element. Ako su u skupu S definisane
unutrasnje operacije sabiranje, u oznaci + , i mnozenje, u oznaci -, ispitati
strukture (S,+, <) i (S, -,+).

Rezultat. Obe strukture, i (S,+, ) i (S, -,+), imaju strukturu prstena.
4.10. Neka je R? = {(a,b)|a € R, b € R}, tj. neka je R? = R x R skup

uredenih parova realnih brojeva.
Ispitati strukturu (R?, +, x), ako se zna da je

1° (a,b)=(d,V) <= a=d ib=V,
2° (a,b) +(a',V') = (a+d,b+ V),
3°  (a,b) x (a/,b') = (abl + ba',bV).

Rezultat. (R2, +, ><) ima strukturu prstena sa jedinicom.

224+z+1
24 —1

4.12. Odrediti sve vrednosti z za koje je (v/3 —14)z% =1 +1.

e*ﬂ'i/?) (1 + Z\/§)7
; .

4.11. Odrediti kompleksan broj w = , ako je z =2+ 3i.

4.13. Neka je z =

Odrediti: Rez, Imz, |z], i argz.

4.14. Ne koristedi se trigonometrijskim oblicima kompleksnih brojeva, odre-
diti kompleksne brojeve:

1° u=V3+4i, 20 v=V-T+24  3° w=VT+24.

Rezultat. 1° u=+(2+1), 2° v==%(3+4i), 3° w==x(2+14) 1 w==x(1-29).

4.15. Resiti jednacinu
22 =202 4i)z+T7+4i=0.

Rezultat. 2437 i 2 —1.

4.16. U z-ravni odrediti sve tacke koje odgovaraju kompleksnim brojevima

Z 2
z ako se zna da je w = <—) realan broj.
z+1

Rezultat. Trazeni skup ¢ine tacke prave z = z, tj. tacke realne ose i t¢ke kruga |z| = 1.
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4.17. Dokazati da je

5tanf — 10 tan? 6 + tan® 6

tan 50 =

a zatim proveriti jednakost

2 3

™
tan — - tan — - tan — - tan

5 5 5

4.18. Izracunati zbir

sinx sin2x sin3x
S, =1+

1 —10tan’ 60 + 5tan* 0

sinz  sin’z  sin®z

Uputstvo. Posmatrati uporedo i zbir

Ccos cos 2x cos 3x
C’I’L = . + .2 + -3
sin x sin® x sin

T

)

47
— = 5.
5

sinnx

sin” x

cosnxe

sin™ x



II GLAVA
Linearni prostori, linearni
operatori i matrice

1. LINEARNI PROSTORI

1.1. Struktura linearnog prostora i baza prostora

U prvoj glavi ove knjige razmatrali smo algebarske strukture sa jednom bi-
narnom operacijom (grupa) ili sa dve binarne operacije (prsten, telo, polje).
Medutim u odeljku 3.6, glava I, gde smo uveli pojam vektora i razmatrali
neke operacije sa vektorima, videli smo da se pored operacije sabiranja vek-
tora u skupu Vo = Vo (E), koja je unutrasnja (interna) operacija u Vo, uvodi
i jedna spoljasnja (eksterna) operacija, tzv. mnozenje vektora skalarom, kao
preslikavanje skupa R x Vp na skup V. Tom prilikom dokazali smo da skup
Vo snabdeven operacijom sabiranja vektora ¢ini Abelovu grupu (teorema
3.6.2), dok je mnozenje vektora skalarom takvo da vaze jednakosti:

AMpa) = (Aw)a, A+p)a=ra+pa, Ma+b)=XIa+ b, la=a,

za sve vektore a,b € Vp i sve skalare A\, u € R (teorema 3.6.3).

Imajuéi u vidu navedene osobine, za skup Vo = Vp(F) kazemo da je
vektorski prostor prostora E pridruzen tacki O. U opstem slucaju, vektorski
ili linearni prostor uvodi se na sledeéi nacin:

Definicija 1.1.1. Skup X = {u,v,w,...} naziva se vektorski ili linearni
prostor nad poljem K ako je:

(1) U skupu X definisana jedna binarna operacija + u odnosu na koju
skup X ¢ini Abelovu grupu;

(2) Ako je svakom paru (u,\) (u € X; A € K) dodeljen po jedan element,
u oznaci Au, skupa X tako da su ispunjeni uslovi:

12 Apw) = (Ap)u,

2° (A + p)u = Au+ pu,
3° AMu+v) = Au+ v,
4° 1lu = u,
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za sve elemente u,v € X i A\, u € K, gde je 1 jedini¢ni element polja K.

Elementi skupa X nazivaju se vektori (tacke), elementi polja K skalari,
operacija + u skupu X vektorsko sabiranje (unutrasnja komporzicija) i ope-
racija (u,\) — Au mnozenje vektora skalarom (spoljasnja kompozicija).
Najcesce se kao polje K uzima polje realnih ili polje kompleksnih brojeva. U
tim slucajevima kazemo da je re¢ o realnom, tj. kompleksnom vektorskom
prostoru. U naSim razmatranjima uvek ¢emo pretpostavljati da je K = R ili
K=_C.

1z jednakosti 2°, za A =11 p = —1, dobijamo da je za svako u € X

gde je 0 neutralni element skupa X za operaciju vektorskog sabiranja. Osim
toga, ako u 3° stavimo v = —u, dobijamo da je za svako A € K

A0 =0.

Za element 0 kazemo da je nula-vektor prostora X.

Definicija 1.1.2. Za vektore u; (i = 1,...,n) linearnog prostora X kaze
se da su linearno zavisni ako u polju K postoje skalari A; (i = 1,... ,n), koji
istovremeno nisu svi jednaki nuli, tako da je

(1.1.1) )\1U1 +---—|—)\nun = 0.
Vektori u; (1 =1,...,n) su linearno nezavisni ako je jednakost (1.1.1) tacna
samoza A, =0 (i=1,...,n).

Za levu stranu u (1.1.1) kazemo da je linearna kombinacija vektora u; (i =
1,...,n). Napomenimo da, ako je bar jedan od vektora uq,...,u, nula-
vektor, tada su ti vektori linearno zavisni. Tako na primer, ako je u; = 0,
tada je

1U1 +OuQ+'~+0un :9,

tj. (1.1.1) vazi, pri ¢emu je A\; = 1 # 0. Inace, ako se radi o skupu nenula-
vektora, tada su oni linearno zavisni ako i samo ako se neki od njih moze
izraziti kao linearna kombinacija ostalih vektora iz tog skupa.

Definicija 1.1.3. Za beskona¢no mnogo vektora kazemo da su linearno
nezavisni ako je svaki konac¢an podskup tih vektora linearno nezavisan.
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Definicija 1.1.4. Ako u vektorskom prostoru postoji n linearno nezavisnih
vektora i ako je svaki skup od n + 1 vektora linearno zavisan, kazemo da je
prostor n—dimenzionalan. Za broj n kazemo na je dimenzija prostora.

Ako u vektorskom prostoru postoji beskona¢no mnogo linearno nezavisnih
vektora, za taj vektorski prostor kazemo da je beskonacno—dimenzionalan.

Definicija 1.1.5. Neka je A = {uy,... ,un}, gde su uy (k = 1,...,m)
vektori prostora X. Skup svih linearnih kombinacija ovih vektora naziva se
linearni omotac ili lineal nad A i oznacava se sa L(A).

Dakle,
L(A):{u]u:)\lul—i——i—)\mum ()\1, ,)\mEK)}

Definicija 1.1.6. Skup B linearno nezavisnih vektora prostora X obrazuje
algebarsku ili Hamelovu®® bazu prostora X ako je L(B) = X.

Teorema 1.1.1. Swvaki vektor linearnog prostora X moZe se na jedinstven
nacin izraziti kao linearna kombinacija vektora algebarske baze tog prostora.

Dokaz. Neka je B = {uy,...,u,}. Kako je L(B) = X, svaki vektor
u € X moze se predstaviti kao linearna kombinacija vektora baze B. Da
bismo pokazali jedinstvenost ovog predstavljanja, pretpostavimo da postoje
dve reprezentacije

w=Aur + AUz + -+ AU 1w = paug + poug + o+ Uy,

Tada je
(A1 = p)ur + (A2 — p2)ug + -+ + (A — pin) iy = 0,

odakle, zbog linearne nezavisnosti bazisnih vektora, sleduje
)‘1:M17 )‘2:,“27"'7)‘?1:Mn- O

Napomenimo da linearni prostor, u opstem slucaju, ima beskona¢no mno-
go razli¢itih baza, medutim, sve one imaju isti broj elemenata, tj. iste su
kardinalnosti. Kod n-dimenzionalnog prostora baza sadrzi tacno n vektora.
Prema tome, svaki skup od m (> n) vektora u n-dimenzionalnom prostoru
je linearno zavisan. S druge strane, svaki linearno nezavisan skup vektora je
ili baza prostora ili je deo neke baze tog prostora.

24)  Georg Karl Wilhelm Hamel (1877-1954), nemacki mehanigar i matematicar.
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Vratimo se opet vektorskom prostoru Vo (E). Neka je u prostoru E data
prava p i ravan R. Skupovi

Vo(p) ={OM |Me€p} i Vo(R)={OM|M e R},

snabdeveni operacijom sabiranje vektora i operacijom mnozenje vektora ska-
larom, ¢ine takode vektorske prostore. Prvi od njih, vektorski prostor prave
p pridruzen tacki O, naziva se prostor kolinearnih vektora. Za vektorski pro-
stor ravni R pridruzen tacki O kazemo da je prostor komplanarnih vektora.

Prostor Vp(p) je jednodimenzionalan. Svaki vektor a # o vektorskog
prostora Vo (p) je njegova baza. Proizvoljni vektor b € Vi (p) moze se jed-
nozna¢no predstaviti u obliku b = Aa, $to je, u stvari, karakterizacija koli-
nearnih vektora. Ako poslednju jednakost napisemo u obliku Aa+(—1)b = o,
zaklju¢ujemo da su vektori a i b linearno zavisni. Dakle, dva vektora u
jednodimenzionalnom prostoru su linearno zavisni.

Prostor komplanarnih vektora Vp(R) je dvodimenzionalan. Bilo koja dva
linearno nezavisna vektora a i b prostora Vo (R) ¢ine njegovu bazu, tako
da se proizvoljan vektor ¢ € Vp(R) moze jednoznacno predstaviti u obliku
(videti sliku 1.1.1)

c = )\a+ ub.

Iz poslednje jednakosti, koja karakterise komplanarne vektore, moze se za-
kljuciti da su vektori a, b i ¢ linearno zavisni.

Sl 1.1.1 Sl 1.1.2

Prostor Vo (F) je trodimenzionalan. Kao njegova baza moze se uzeti bilo
koji skup od tri linearno nezavisna vektora, na primer, B = {a, b, c¢}. Tada
se svaki vektor d € Vp(E) mozZe jednoznacno predstaviti u obliku (videti
sliku 1.1.2)

(1.1.2) d=Xa+ ub+ve

Cetiri proizvoljna vektora u Vo (E) su uvek linearno zavisna. Napomenimo
da su vektori baze u Vo (F) tri nekomplanarna vektora.
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Definicija 1.1.7. Svaka baza prostora naziva se koordinatni sistem tog pro-
stora.

Neka je B = {uy,...,u,} jedna baza prostora X. Tada se, na osnovu
teoreme 1.1.1, svako u € X moze predstaviti u obliku

U =2T1U] + -+ Tply,

gde su zy,...,x, potpuno odredeni skalari. Dakle, ako je zadata baza B,
vektor u je potpuno odreden skalarima zq,...,z, i moze se koriS¢enjem
matri¢ne?®) notacije opisati pomocu tzv. koordinatne reprezentacije

x =[x ... 2,]7.

Skalari z1, ... ,z, nazivaju se koordinate vektora. Cesto se, ako to ne dovodi
do zabune, u i & poistoveéuju.

Posmatrajmo prostor Vo(E) sa bazom B = {a,b,c}. Vektori baze B
odreduju jedan koordinatni sistem prostora Vo(E). Tacku O nazivamo ko-

. . % % . —) . . .
ordinatni pocetak. Neka su OA = a, OB = b i OC = ¢. Bazisni vektori
odreduju tri ose, u oznaci x, y i z, respektivno (videti sliku 1.1.3). Na osnovu
(1.1.2) vidimo da je vektor d potpuno odreden skalarima, tj. koordinatama
A? M? v.

Sl 1.1.3 Sl.1.1.4

Ako su vektori baze izabrani tako da su im pravci uzajamno upravni, a
intenziteti jednaki jedinici, tada kazemo da je zadat pravougli koordinatni
sistem. U tom slucaju, bazisne jedini¢ne vektore oznacavamo redom sa 2, j

25) Teorija matrica se razmatra u sledeé¢em poglavlju.
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i k. Uoctimo proizvoljnu tacku M € F i radijus vektor » = OM. Tada se
—_—
vektor OM moze predstaviti pomocéu

(1.1.3) OM = i + yj + zk,

gde su koordinate x, y i z jednoznac¢no odredene vektorom oM , tj. tackom
M (videti sliku 1.1.4). Za koordinate x, y i z kazemo da su redom apscisa,
ordinata i aplikata tacke M. S druge strane, svakoj uredenoj trojki realnih
brojeva (x,y,z) jednoznacno se moze pridruziti vektor O—]\j , tj. tacka M,
tako da vazi (1.1.3). Dakle, preslikavanje g: E — R3, dato pomo¢u (1.1.3), je
biunivoko. Istu ¢injenicu smo konstatovali i za preslikavanje f: E — Vo (FE),
dato pomoéu M +— O—]\j (videti napomenu 4.6.2, glava I). Imajuéi sve ovo
u vidu, ¢esto identifikujemo tacku M sa uredenom trojkom (z,y, z), piSudi
M = (z,y, 2) ili, pak, r = (z,y, 2). Nije tesko videti da skup R?, snabdeven
unutrasnjom i spoljasnjom kompozicijom

(‘T7 y7 Z) —"_ (x/7 y/7 Z,) = (‘T —"_ "1:"7 y —"_ y,7 z —"_ 2,)7 A(‘TJ y7 Z) = (A"B7 Ay? AZ)?

za svako (z,y,2), (z/,y',2") € R i svako A € R, ¢ini vektorski prostor nad
poljem R. Nula-vektor ovog prostora je uredena trojka (0,0,0).

Napomenimo jos da se unutrasnja i spoljasnja kompozicija u prostoru
Vo (E), kada su vektori izrazeni pomocu

—

.
r=0M =uxt+yj+ zk i r'=0M =2'i+y'j5+ 7k,
svode na
r+r'=(@+2)i++y)it 2k Ar= ()it (Wi + (A2)k.

Primer 1.1.1. Neka je R™ = {(z1,...,2n) |z; € R (i =1,...,n)}. Akou
ovaj skup uvedemo unutrasnju i spoljasnju kompoziciju pomocu

(1, yzn) + W1y yyn) = (@1 4+ Y15« s Zn + Yn),
Az, oo xn) = (Ax1,. .., Azn),

on postaje vektorski prostor.

Kao jedna baza ovog prostora moze se uzeti skup {e1,ea,...,en}, gde su

(1.1.4) e1 =(1,0,...,0), e = (0,1,...,0), ..., en = (0,0,...,1).
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Ukoliko drugacije nije receno, uvek é¢emo u daljem tekstu podrazumevati da
je u prostoru R™ zadata pomenuta baza (1.1.4), koja se naziva i prirodna baza.
Saglasno prethodnom, za tacke ovog prostora, pored oznake u = (x1,...,Zn),
koristi¢emo i koordinatnu reprezentaciju

T =[x ... xn]T.

Primetimo da je prirodna baza (1.1.4) privilegovana u smislu da se tacka u =

(z1,...,7zn) € R™ i njena koordinatna reprezentacija @ = [fEl xn]T opi-
suju pomocu istih skalara z1,...,zn € R. Zato ¢emo Cesto koristiti i notaciju
T =(x1,...,Zn). A

Primer 1.1.2. Neka je X = C skup kompleksnih brojeva, a K = C polje
kompleksnih brojeva. Skup C je linearni prostor nad poljem C pri standardno
uvedenim operacijama sabiranja i mnozenja kompleksnih brojeva:

21+ 22 = (w1,11) + (¥2,92) = (21 + 22,91 +y2) (21,22 € C),
Az = (a, 8) - (z,y) = (ax — By, ay + PBx) (zeC i XxeC).

Ovaj linearni prostor je jednodimenzionalni jer se za proizvoljne tacke 21 i z9 iz C
(21 # 22) mogu odrediti kompleksni skalari Aj i A9, tako da je

A12z1 + A2z2 = (0,0),
§to znac¢i da su tacke z; i zo linearno zavisne. Takve vrednosti skalara su, na
primer, Ay = z9 1 Ag = —27.

Medutim, ako za polje K uzmemo polje realnih brojeva R, tada je odgovarajudi
linearni prostor dvodimenzionalan. A

Primer 1.1.3. Posmatrajmo stepene funkcije ¢ — th (k=0,1,... ,n) defini-
sane na R. Kako je

(Vt e R) col +cit+cot’ + -+ cnt" =0

samo ako je ¢cg = ¢; = -+ = ¢n = 0, zakljuéujemo da je skup (sistem) funkcija

{1,t,t2, ...,t"} linearno nezavisan. Lineal nad njim je skup svih polinoma%)

stepena ne viSeg od n, u oznaci P,
Pn:{u|u(t):00+clt+---+cnt", g eR(E=0,1,... ,n)}

Ako u skup Pp uvedemo unutrasnju i spoljasnju kompoziciju (sabiranje dva
polinoma i mnozenje polinoma skalarom) pomocu

(ut 0)(t) = u(t) +o() i (u)(t) = Mu(?),

26) Teorija polinoma bi¢e razmatrana u &etvrtoj glavi. Za razumevanje ovog primera
dovoljno je znanje iz srednje skole.
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tada Pn postaje vektorski prostor nad poljem R. Nula—vektor ovog prostora je
polinom koji je identicki jednak nuli. Slicno se P, moze tretirati i kao vektorski
prostor nad poljem kompleksnih brojeva.

Kako baza prostora {1, t, 2. ,t"} sadrzi n + 1 elemenata (vektora, funkcija),
prostor Pp, je dimenzije n + 1. A

Primer 1.1.4. Prostor svih polinoma stepena ne viSeg od dva, tj. prostor svih
kvadratnih trinoma

Po={u|ut) =co+cit+ 62t2, co,c1,c2 € R}

je trodimenzionalan.

Naravno, umesto baze B = {1,t,t2} moguce je uzeti i neku drugu bazu, na
primer, B’ = {1,t — 1,t*> + t}. Trinom u(t) = 5 + 3t — 2t u novoj bazi B’ ima
reprezentaciju

u(t) =104 5(t — 1) — 2(t2 + t).

Dakle, odgovarajucée koordinatne reprezentacije ovog elementa u u bazama B i
B’ su [5 3 —2]Ti [10 5 —2]T, respektivno. A

Definicija 1.1.8. Neprazan skup Y C X je potprostor vektorskog prostora
X nad poljem K ako je Y vektorski prostor nad istim poljem K.

Lako je pokazati da je Y C X potprostor prostora X ako i samo ako vaze
slede¢a dva uslova:

(1) u,veY = ut+veyY;

2)ueY, aeK = aueyY.

Drugim re¢ima, potrebno je i dovoljno da Y sadrzi vektor au+pv («, 5 € K)
kad god on sadrzi vektore u i v.

Primer 1.1.5. Neka je u prostoru E data prava p i ravan R. Prostori Vp(p) i
Vo (R) su potprostori vektorskog prostora Vo (E). A

Neka je X vektorski prostor i U skup svih njegovih potprostora. Prime-
timo da su {f#} i X dva trivijalna potprostora prostora X. Na skupu U
mozemo definisati dve algebarske operacije koje omogucavaju konstrukciju
drugih potprostora na osnovu datih potprostora Y7 i Ys.

Definicija 1.1.9. Neka Y7, Y5 € U. Suma linearnih potprostora Y7 i Y5, u
oznaci Y7 + Y5, je skup vektora oblika w = u + v, gde u € Y7, v € Yo, tj.

i+Yo={w|lw=u+v,ucY,veYs}.
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Definicija 1.1.10. Neka Y7, Y5 € U. Presek linearnih potprostora Yi i Yo,
u oznaci Y7 NYs, je skup svih vektora koji istovremeno pripadaju potprosto-
rima Y; i Y5, tj.

YlﬂYQZ{U’U€Y1/\U€Y2}.

Primetimo da suma i presek dva potprostora uvek sadrze nula-vektor
prostora X. Moze se dokazati da su i oni potprostori prostora X. Takode,
za bilo koji potprostor Y vazi

Y+{0l=Y, YNnX=Y.

Bez dokaza navodimo slede¢u teoremu:

Teorema 1.1.2. Za dva proizvoljna konacno-dimenzionalna potprostora Yi
1 Yo vaZi jednakost

gde je dim oznaka dimenzije prostora.
Na kraju ovog odeljka uvodimo i pojam direktne sume potprostora.
Definicija 1.1.11. Neka Y7, Y5 € U, neka je Y =Y; + Y5 i neka je
w=1u+7v (weY,ueY,veYs).

Ako su vektori u € Y7 i v € Y5 jednoznacno odredeni vektorom w, tada se
suma Y s takvim svojstvom naziva direkina suma i oznacava sa

Y =Y,+Ys,.

Ako je Y = Yj +Y,, napomenimo da je tada Y; NYy, = {#}. Takvi
potprostori Y7 i Y5 Cesto se nazivaju komplementarni potprostori.

Prethodna definicija se moze proSiriti na slucaj viSe potprostora.

Definicija 1.1.12. Neka su Y7, Yo, ... ,Y,, € U. Ako je za svako w € Y
reprezentacija

w=uy + Uz + -+ Up (up €Y1, ups € Yo, .., Uy € Vo)
jedinstvena, suma potprostora je direktna i oznacava se sa

Y =Yi4Yad o Y.
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Razlaganjem prostora X na direktnu sumu potprostora cesto je moguce
pojednostaviti problem koji se tretira i izbe¢i glomazan racun.

Neka je X linearan prostor dimenzije n sa bazom B = {uj,us,... ,u,}.
Ako definiSemo jednodimenzionalne potprostore Y, kao lineale nad B, =

{ug} (k=1,2,... ,n), tj.
Y1 =L(By), Yo=L(B3), ..., Y,=L(B,),

tada je, ocigledno, X = Y; +Y,+ --- +Y,. Naravno, prostor X se moze
razloziti na direktnu sumu potprostora i na druge nacine, uzimajuéi potpro-
store razlicitih dimenzija. U vezi s tim, navodimo slede¢u teoremu koju nije
tesko dokazati.

Teorema 1.1.3. Neka su Yy, Yo, ..., Y, potprostori linearnog prostora X.
Jednakost
X=Y1+Ye+---+Y,

vazi ako i samo ako je

dimX =dimY; +dimY5 +--- +dimY,, .

Dakle, ako su By, Bs,... ,B,, baze potprostora Y7, Ys,...,Y,,, respek-
tivno, tada unija ovih baza predstavlja bazu prostora X.

1.2. Izomorfizam linearnih prostora

Posmatrajmo skup svih linearnih prostora X nad istim poljem K. Svaki
od posmatranih linearnih prostora sadrzi konkretne elemente — vektore tog
prostora, Cija priroda Cesto nije bitna. Daleko znacajnije su uvedene ope-
racije (unutrasnja i spoljasnja kompozicija), kao i njihova svojstva koja su
nezavisna od prirode elemenata. U vezi s tim, uveséemo pojam izomorfnih
prostora.

Definicija 1.2.1. Za dva vektorska prostora X i X’ kazemo da su izomorfni
prostort ako postoji biunivoko preslikavanje f: X — X’ takvo da je za svako
u,v € X isvako A € K

(1.2.1) Fu+v) = F)+ f0),  fOu) = Af(w).
Za funkciju f kazemo da je izomorfizam prostora X na prostor X'.

Napomenimo da se za prvo svojstvo funkcije f u (1.2.1) kaze da je adi-
tivnost, a da se njena druga osobina u (1.2.1) naziva homogenost.



LINEARNI PROSTORI 103

Neka je v’ = f(u) (v € X, v’ € X'). Ako sa 6 i 0’ oznac¢imo nula-vektore
u prostorima X i X’ respektivno, tada, na osnovu (1.2.1), imamo

(1.2.2) f(0)= f(0u) =0f(u) =0u"=6".

Dakle, nula-vektor prostora X preslikava se u nula-vektor prostora X’.
Jos vaznije svojstvo izomorfnih prostora odnosi se na preslikavanje skupa
linearno nezavisnih vektora.

Teorema 1.2.1. Neka je A = {uy,... ,u,} skup linearno nezavisnih vek-
tora u X i neka je f: X — X' izomorfizam prostora X na prostor X'. Tada
je A= f(A) ={f(u1),..., f(u,)} skup linearno nezavisnih vektora u pros-
toru X'.

Dokaz. Posmatrajmo linearnu kombinaciju vektora iz skupa A’, koja je
jednaka 6’. Tada, s obzirom na (1.2.1) i (1.2.2), imamo

0" = A f(ur) + -+ M flun) = fFMrur + - - - + Apug) = f(8),

odakle sleduje
AUy + -+ Apu, = 6.

Kako su vektori uq,... ,u, linearno nezavisni, iz poslednje jednakosti za-
klju¢ujemo da svi skalari A\ (k =1,...,n) moraju biti jednaki nuli. O

Teorema 1.2.2. Dva konacno-dimenzionalna prostora X 1 X', nad istim
poljem K, imaju jednake dimenzije ako i samo ako su izomorfna.

Dokaz. Na osnovu prethodne teoreme moze se zakljuciti da izomorfni vek-
torski prostori imaju jednake dimenzije.

Pretpostavimo sada obrnuto, tj. da je dim X = dim X', i dokazimo da su
X i X’ izomorfni. U prostorima X i X’ izaberimo proizvoljne bazise B =
{uy,...,u,} i B" = {u),... ,u,}, respektivno, i definisimo preslikavanje
f: X — X’ pomocu

(1.2.3) flu) =Mu + -+ A\,
gde je
(1.2.4) U= AU+ -+ AUn.

Preslikavanje f je biunivoko jer su razlaganja (1.2.3) i (1.2.4) jedinstvena
(videti teoremu 1.1.1). Da bismo dokazali da su prostori X i X’ izomorfni,
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izaberimo dva proizvoljna vektora u,v € X i proizvoljni skalar A € K. Neka
su koordinatne reprezentacije vektora u i v date sa

=AUt Aplln, U=ty e U,

Tada imamo

flu+v)=f((M+p)ur + -+ A+ fn)un)
= (A1 4 p)uy 4+ (An + o)y,
= Mt A Al )+ (- + i)
= f(u) + f(v)

FOw) = fF((AXM)ur 4+ Ap)un) = (AA)uf + -+ 4+ (AAp)ul,
= A \u) + -+ A = A f(u). O

Na osnovu prethodne teoreme zaklju¢ujemo da je za proizvoljan n-di-
menzionalni vektorski prostor nad poljem K, sa algebarske tacke gledista,
dovoljno poznavati vektorski prostor K™ (za prostor R™ videti primer 1.1.1).
Za vektorski prostor K" ¢esto kazemo da je koordinatni ili aritmeticki pros-
tor.

Definicija 1.2.2. Ako je preslikavanje f izomorfizam vektorskog prostora
(X, +,-) na vektorski prostor (X, +, ), za preslikavanje f kazemo da je au-
tomorfizam prostora (X, 4+, ).

1.3. Linearni prostor prosto-periodi¢nih oscilacija

U primeru 1.1.2 naveli smo da je C linearni dvodimenzionalni prostor nad
poljem realnih brojeva R. Uobi¢ajena baza u tom prostoru sastoji se od
realne i imaginarne jedinice, tj. B = {1,i}. Kao Sto je poznato, svaki vektor
z € C, tj. svaki kompleksan broj z = (z,y), moze biti predstavljen u obliku

z=x-14+y i =x-+1y,

gde su z i y koordinate (realni i imaginarni deo kompleksnog broja).

Za zadati fiksni pozitivan broj w, posmatrajmo skup funkcija t — u(t) =
Acos(wt + ), definisanih na R, gde je A > 01 —7m < ¢ <, tj.

X, = {u ‘ u(t) = Acos(wt +¢), A>0, -1 <p < 71}.
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Takve funkcije su periodi¢ne sa periodom 7' = 27/w i u fizici i tehnici su
poznate kao prosto-periodicne oscilacije. Pri tome, za nenegativni param-
etar A kaze se da je amplituda, dok se za ¢ kaze da je pocetna faza. Ako je
amplituda A jedanka nuli, odgovarajuca funkcija se svodi na nulu i tu funk-
ciju éemo oznacavati sa ug = ug(t) = 0. Razumljivo, zbog periodi¢nosti,
dovoljno je ove funkcije posmatrati kada proizvod wt € [—m, 7.

Neka su u;(t) = Ay cos(wt + 1) 1 ua(t) = Agcos(wt + ¢2) dve bilo koje
funkcije iz X,,. Ako u X, na uobic¢ajeni na¢in, uvedemo operaciju sabiranja,
tada je

(w1 + u2)(t) = ua(t) + ua(t)
= A; cos(wt + ¢1) + A cos(wt + ¢2)
= (Aj cos p1 + Ag cos o) coswt — (Aj singy + Ay sin p9) sin wt,
.
u(t) = (up + ug)(t) = Acoswt cos p — Asinwt sinp = A cos(wt + @),
gde smo stavili
(1.3.1) Ajcospy + Ascosps = Acosp, Ajsinp; + Agsingy = Asinp,

pri cemusu A >0, -7 < p < 7.
Kvadriranjem jednakosti (1.3.1), a zatim sabiranjem, nalazimo

Aj sin 1 + As sin g

A% = A2 4 A2 24,4 - tan p = '
1+ A5 +2A1Ascos(p1 — @2), tangp Ay cos 1 + Az cos g2

Primetimo da je (A; + Ag)? > A2 > (A; — A2)? > 0, tj. da se zaista moze
uzeti da je A > 0, kao i da postoji jedinstveno ¢ iz intervala (—, 7] za koje
vazi (1.3.1). Ovo je potpuno analogno odredivanju modula i glavne vrednosti
argumenta kompleksnog broja

z = (A1 cospy + Az cosps) +i(Ag singy + Agsinpg),

koji je, inace, zbir kompleksnih brojeva z; = A€ i 25 = Aze’¥2. Moduo
zbira z = z1 + 29 je, evidentno, jednak A, dok je glavna vrednost njegovog
argumenta . Dakle,

2 =2+ 2z = Acos ¢ + ising) = Ae'?.

Na osnovu prethodnog zakljuc¢ujemo da zbir v € X,. Nije tesko dokazati
sledeée tvrdenje:
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Teorema 1.3.1. (X, +) ima strukturu Abelove grupe.

Ocigledno je da je uvedena operacija sabiranja komutativna i asocijativna.
Neutralni element je ug = 0, dok je za u = A cos(wt + ¢) simetriéni element
u' = —u= Acos(wt+ ¢'), pri ¢emu je pocetna faza

022 R DA
Primer 1.3.1. Neka su
uy = cos(wt — /6) i ug = V3 cos(wt + 27/3),
tj. Ay =1, o1 = —7/6, Ay = /3, v = 27/3. Kako su, na osnovu prethodnog,
A2 =1+4342-1-v3 cos(—7/6 —27/3) = 1,

Ajsinpy + Agsinps = 1, Aj cospy + Ag cos pa = 0, zakljucujemo da je A =1 i
p=m/2, tj.

u(t) = (u1 + u2)(t) = cos(wt + 7/2) (= —sinwt).

Grafici funkcija u; (isprekidana linija), ue (linija tipa tacka—crta) i zbira u (puna
linija), kada wt € [—m, 7], prikazani su na slici 1.3.1.

ZZ
2 %‘\\
<N N
s/ . vz
’ A li-=—=< \ i
-7 IR 4 \ \\
/’\/ \\\ :'/ wt \ \\
pis -m2,e” N\ N Z \ \
g \ '/ o \ \\
S~ -1IN ; h -0.5 < 0.5
AN - // NN
-9 S 2
Sl. 1.3.1 Sl 1.3.2

S druge strane, odgovarajuci kompleksni brojevi z; = eI/ zZ9 = \/gei%/?’
prikazani su na slici 1.3.2. Njihov zbir je z = 21 + 20 = 4, tj. z = eim/2, Dakle,
moduo je A =1, a glavna vrednost argumenta je ¢ = w/2.

Primetimo da je znatno lakSe obaviti operaciju sabiranja u skupu kompleksnih
brojeva, nego sabrati dve prosto-periodi¢ne oscilacije. A
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Ako uvedemo mnozenje prosto-periodi¢ne oscilacije u(t) = A cos(wt + ¢)
skalarom A € R, pomoéu

(M) (t) = Au(t) = { Meos(wt +¢),  A=0,

—AMcos(wt+¢'), A <O,

gde je ¢’ odredeno sa (1.3.2), mozemo lako zakljuéiti da, za svako u,v € X,
i svako A, u € R, vaze sledece jednakosti:

Alpu(t)) = (Apu(t), A+ pu(t) = Au(t) + pu(t),
Au(t) +v(t) = Au(t) + Mo(t),  1u(t) = u(t).

Dakle, na osnovu prethodnog zaklju¢ujemo da vazi sledeée tvrdenje:

Teorema 1.3.2. Skup prosto-periodi¢nih oscilacija X, snabdeven operaci-
jom sabiranja + i operacijom mnozZenja realnim skalarom ¢ini vektorski pro-
stor nad poljem R.

I ovaj vektorski prostor, kao i vektorski prostor kompleksnih brojeva nad
poljem R (pomenut na pocetku ovog odeljka), je dvodimenzionalan. Bilo
koje dve linearno nezavisne ne-nula prosto-periodi¢ne oscilacije?”) mogu se
uzeti za bazu linearnog prostora X, .

Teorema 1.3.3. Linearni prostori C i X, (nad istim poljem skalara R) su
izomorfni.

Dokaz. Neka je z proizvoljan kompleksni broj predstavljen u Eulerovom
obliku z = Ae'?, gde A i ¢ predstavljaju njegov moduo i glavnu vrednost nje-
govog argumenta, respektivno. Uo¢imo preslikavanje f: C — X, definisano
pomodéu

f(Ae') = Acos(wt + ),

koje je ocigledno biunivoko.

Neka su z; = A1e?1 i 25 = Aze™? dva proizvoljna kompleksna broja, ¢ije
su slike uq (t) = A cos(wt+¢1) 1 ua(t) = Ay cos(wt + ps), respektivno. Kako
je z =21+ 20 = Ae'?, a u(t) = ui(t) + ua(t) = Acos(wt + ¢), imamo

f(A1er + Age'®?) = f(Ae'?) = Acos(wt + )
= A cos(wt + ¢1) + Az cos(wt + p2)
= (A1) + f(Aze™®?),
27) Ne-nula prosto-periodi¢ne oscilacije sa potetnim fazama 1 1 2 su linearno zavisne

(kolinearne) ako su te faze jednake (1 = ¢2) ili ako se razlikuju za m, tj. ako je o1 = patm
(videti (1.3.2)).
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§to znaci da je f aditivna funkcija (prvi uslov u (1.2.1)).

Neka je sada z = Ae’ proizvoljan kompleksan broj, ¢’ definisano sa
(1.3.2) i neka je A proizvoljan realan broj.

Za X > 0 imamo f(AAe™?) = AAcos(wt +¢) = Af(Ae'¥), dok je u slucaju
A <0,

FAAE®) = f(=AAe™®) = —AAcos(wt + ¢') = A cos(wt + @) = f(Ae'?).

Dakle, i drugi uslov u (1.2.1) je zadovoljen.

Ovim smo dokazali da je f izomorfizam prostora C na prostor X,,, tj. da
su ovi prostori izomofni. [

Zahvaljujuéi izomorfizmu prostora C na prostor X, analiza linearnih
sistema sa prosto-periodi¢nim oscilacijama se znacajno pojednostavljuje.
Naime, sva izracunavanja se mogu sprovesti u prostoru C, a zatim je potreb-
no samo interpretirati rezultate u prostoru X,,. Tipi¢an primer se pojavljuje
u elektrotehnici kod analize linearnih elektri¢nih kola sa naizmeni¢nom stru-
jom.

1.4. Normirani prostor

Definicija 1.4.1. Linearni prostor X nad poljem K (CiliN) je normiran
ako postoji nenegativna funkcija u +— ||ul|, definisana za svako u € X, takva
da je

(1) ||lu|=0 < u=20 (definisanost),
(2) [[Aull = [A] - [Ju] (homogenost),
(3) w4+ vl < |lu|l + |Jv] (relacija trougla),

gde suu,v € X i A € K. Za ovakvu funkciju u +— |[Ju|| kazemo da je norma
elementa u.

U normirani prostor uvodi se metrika pomocu
d(u,v) = [lu — .

Napomena 1.4.1. Metrika na skupu X je funkcija d: X2 - [0, +00) sa svojst-
vima datim u definiciji 5.1.1, glava I.

Primer 1.4.1. Vektorski prostor Vo (FE) je normiran jer je za svaki vektor r
definisan intenzitet ili norma vektora ||r|| = |r| = r, pri ¢emu su ispunjeni svi
uslovi iz definicije 1.4.1.
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Ako bismo definisali pravougli koordinatni sistem sa bazom B = {1, j, k}, tada
se intenzitet vektora r = xt + yJ + zk moze izraziti u obliku

(1.4.1) rl=r=va2+y2+22. A

Primer 1.4.2. Vektorski prostor R" se moze normirati uvodenjem norme ele-
menta £ = (z1,... ,2n) pomoéu

n 1/p
(1.4.2) el = (Z |xk|p) (1< p < +00)
k=1
ili
x|l = gggnlxkl-

Od svih normi (1.4.2), najcesée se koriste norme za p =11 p = 2, tj. norme

n n 1/2
lely =3 el i ||m||2=(z|xk|2) .

k=1 k=1
Norma za p = 2 poznata je kao euklidska norma i Cesto se oznacava sa |||l .
Specijalno, u prostoru R? euklidska norma vektora svodi se na (1.4.1). A

Primer 1.4.3. Linearni prostor polinoma P na segmentu [a,b] moze postati
normiran ako za svako u € Py uvedemo normu, na primer, pomocéu

= t)|.
lull = max, u(t)

Za ovu normu kazemo da je uniformna norma. A
Postojanje norme u linearnom prostoru omogucuje nam da razmatramo
problem konvergencije niza tacaka u X.

Definicija 1.4.2. Neka je {uj}ren niz tacaka u normiranom prostoru X i
neka je u € X takvo da je kliIJrrl |lur — u|| = 0. Tada kazemo da ovaj niz
— 100

konvergira po normi ka tacki u.

S druge strane, kao $to je poznato iz prethodne glave (odeljak 2.1), niz
{ug }ren za koji je . lim ||ux — u,|| = 0 naziva se Cauchyev niz.
——+00

)

Definicija 1.4.3. Normiran vektorski prostor je kompletan prostor ako u
njemu svaki Cauchyev niz konvergira.

Definicija 1.4.4. Za kompletan normirani prostor kazemo da je Bana-
chov?® prostor.

28) Stefan Banach (1892-1945), poznati poljski matematicar.
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1.5. Skalarni proizvod i unitarni prostor

Definicija 1.5.1. Vektorski prostor X nad poljem kompleksnih brojeva C
naziva se prostor sa skalarnim proizvodom ili unitarni prostor ako postoji
funkcija (-, -): X2 — C koja za svako u,v,w € X i A € C zadovoljava sledece
uslove:

Funkcija (u,v) se naziva skalarni proizvod.
Teorema 1.5.1. Za skalarni proizvod vazi:
1° (u, M) = Mu,v),
2° (u,v1 +v2) = (u,v1) + (u, v2),
3° |(u,v)]? < (u,u)(v,v).

Dokaz. Tvrdenja 1° i 2° se jednostavno dokazuju. Da bismo dokazali
tvrdenje 3°, koje je poznato kao Bunjakowsky—Cauchy—Schwarzova nejed-
nakost (videti odeljak 5.1, glava I), uzmimo tacku w = u + t(u, v)v, gde je t
realno i u,v € X. Kako je, na osnovu (1) iz definicije 1.5.1,

(w, w) = (u+t(u, v)v, u + t(u,v)v) =0,
koriséenjem osobina (3)—(5) iz definicije 1.5.1 i osobina 1° i 2° zaklju¢ujemo

da je
(w,u) + 2|(u, 0) [t + |(u, ) [* (v, 0)¢* 2 0,

odakle sleduje da diskriminanta D dobijenog kvadratnog trinoma mora biti
manja ili jednaka nuli, tj.

= = o)l — () () (v,0) < 0.

Iz poslednje nejednakosti sleduje nejednakost 3°. [

Unitaran vektorski prostor moze se normirati uvodenjem norme pomocéu

(1.5.1) Jull = v/ (u, u),
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s obzirom da funkcija u +— +/(u,u) ispunjava sve uslove iz definicije 1.4.1.
Za tako uvedenu normu kazemo da izvire iz skalarnog proizvoda. S obzirom
na (1.5.1), nejednakost 3° u teoremi 1.5.1 moze se predstaviti u obliku

(1.5.2) M v)l <1 (u,v # 0).

el - floll —

Ako umesto kompleksnog vektorskog prostora imamo realni vektorski
prostor, tada skalarni proizvod (-,-): X2 — R, umesto osobine (5) u definiciji
1.5.1, treba da poseduje tzv. osobinu simetrije

(5") (u,v) = (v,u).
U tom slucaju za prostor X kazemo da je Euklidov ili euklidski prostor.

Posebno ¢emo sada razmotriti uvodenje skalarnog proizvoda u trodimen-
zionalni vektorski prostor Vo (E).

Pretpostavimo da je u prostoru Vo (F) zadata baza B = {,j,k}. Neka
su dalje

—

a=0A=ayi+asjtask i b=OB=byi+byj+bsk

dva proizvoljna vektora u Vo (FE).

Teorema 1.5.2. Funkcija (+,-): Vo(E)? — R, definisana pomocu
(153) (a, b) = a1by + asbs + azbs,

je skalarni proizvod.

Dokaz. Direktno ¢emo proveriti osobine (1)—(4) iz definicije 1.5.1. Kako
je Vo(F) vektorski prostor nad poljem R, potrebno je da vazi uslov (5), tj.
(a,b) = (b,a), sto je ocigledno tacno na osnovu (1.5.3).

Kako je (a,a) = a? + a3 + a3, zakljucujemo da je (a,a) > 0, pri ¢emu je
(a,a) = 0 ako i samo ako je a; = as = ag = 0, tj. a = o. Takode, za tri
vektora a, b i ¢ (= c1t + 27 + c3k), imamo

(a+b,¢c) = (a1 +b1)c1 + (a2 + ba)ca + (as + b3)cs
= (alcl + agsc9 + a3c;>,) + (blcl + bgCg + 5363)
= (a,¢) + (b ¢).
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Najzad, za svako A € R isvako a,b € Vp(F) vazi jednakost

()\CI,, b) = ()\al)bl + ()\ag)bg + ()\(13)[)3
= )\(albl + agby + a3b3) = /\(a, b) ]

Umesto oznake (a, b), za skalarni proizvod (1.5.3) ¢es¢e se koristi oznaka
a - b ili jos jednostavnije ab.

Norma koja izvire iz skalarnog proizvoda (1.5.3) je euklidska norma, de-
finisana pomocu (1.4.1). Dakle, ovde imamo

af* = (a,a) = a* = a? + af +

la| =a=/a}+a3+ad3.

Koriséenjem geometrijske interpretacije vektora, moguce je skalarni pro-

tj.

izvod dva vektora uvesti i na jedan drugaciji nac¢in. Neka vektori a = OA i
—
b = OB zaklapaju ugao ¢ (videti sliku 1.5.1).

B B
b b
p=m/2
a a
SL 1.5.1 SL. 1.5.2

Primenom kosinusne teoreme na trougao OAB dobijamo
| 5A P=| OA[ +| OB [* 2| 04 |-| OB | -conce
tj.
(1.5.4) la —b|? = |a|* + |b]* — 2|al|b| cos ¢

—
jer je BA=a —b.

S druge strane imamo

la —b]* = (a—b,a—b) = (a,a) — (a,b) — (b,a) + (b,b),
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tj.

(1.5.5) la — b> = |a]* + |b]* — 2(a,b).
Poredenjem (1.5.4) i (1.5.5) dobijamo jednakost

(1.5.6) (a,b) = ab = |al|b| cos ¢,

koja se moze uzeti za definiciju skalarnog proizvoda dva vektora. Nije tesko
pokazati da su definicione formule (1.5.3) i (1.5.6) ekvivalentne.

Na osnovu (1.5.6), zaklju¢ujemo da je skalarni proizvod dva vektora a i
b skalar, ¢ija se vrednost nalazi izmedu —ab i +ab. Ocigledno, iz uslova
ab = 0 sleduje da je

a=0 V b=0o V ¢=1/2.

Dakle, skalarni proizvod dva vektora a i b jednak je nuli ako je bar jedan
od vektora jednak nula-vektoru ili ako su vektori ortogonalni, tj. ako je
¢ = m/2. Naslici 1.5.2 prikazani vektori @ i b su ortogonalni.

Kako za bazisne (jedini¢ne) vektore imamo

ii=1, i =0, i k=0,
j"LZO, .7.7:17 szov
k-i=0, k-j=0, k-k=1,

zakljuCujemo da su oni medu sobom ortogonalni. Za takvu bazu {%,j,k}
kazemo da je ortogonalna baza. StaviSe, koristi se termin ortonormirana
baza, ukazujuéi time da su u pitanju jedini¢ni bazisni vektori. Ako formiramo
skalarne proizvode vektora
a = ali + CLQj + agk,
redom sa bazisnim vektorima 2, 7, k, dobijamo
ai:al, aj:az, U,k:ag.

S druge strane, na osnovu (1.5.6), imamo

at =acosa, aj=acosf, ak=acosv,
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gde su a, 3, v uglovi koje vektor a zaklapa redom sa vektorima 2, j, k. Dakle,
vektor a se moze predstaviti u obliku

(1.5.7) a = a(cos ot + cos 35 + cos k).
Kako je |a| = a, zaklju¢ujemo da je
cos? a + cos® B + cos®y = 1.
Kosinusi uglova «, 8, mogu se odrediti pomoc¢u
a1 a9 as
cosa=—, cosff=—, cosy= —.
a a a

U opstem slucaju, koriséenjem skalarnog proizvoda dva vektora mogudée
je odrediti ugao ¢ koji oni zaklapaju. Tako imamo

ab N albl + CLng + a3b3
ab  \/a? + a% + a3 \/0? + b3+ 0%

cos p =

Primer 1.5.1. Neka su u prostoru Vp(FE) dati vektori @ =2t +k i b =
41 + 3 — 3k. Kako je njihov skalarni proizvod

ab=(02t+k)4i+3—-3k)=2-440-1+1-(-3) =5,
a intenziteti
a=lal=v224+02+12=v5 i b=|b]=4/424 12+ (-3)2 = /26,

zakljuCujemo da je ¢ = arccos(4/5/26). A
Posmatrajmo sada proizvoljni euklidski prostor. Nejednakost (1.5.2) svodi
se na
< WYy
=l Aol T

sto daje ideju da se i ovde, kao i u trodimenzionalnom euklidskom prostoru,
uvede jedan geometrijski pojam, ugao uzmedu dva vektora u i v, pomocu

(1.5.8) cos ¢ =
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Primer 1.5.2. Vektorski prostor R™ postaje euklidski ako se skalarni proizvod
uvede pomodéu

n
(®,9) =Y Tk,
k=1

gde su © = (z1,... ,2n) 1Y = (y1,...,Yn). Vektori baze {e1,ea,...,en}, dati sa
(1.1.4), medu sobom su ortogonalni. Dakle, ovo je ortonormirana baza u R".

Norma koja izvire iz skalarnog proizvoda, u ovom slucaju

ol = V@ @) = /T + -+ 22,

je, u stvari, euklidska norma ||| (videti primer 1.4.2). Na osnovu (1.5.8), ugao
izmedu vektora a i b odreden je sa

T1Yy1 + -+ Tnyn
N T

cosp =

Sliéno, ako razmatramo kompleksan vektorski prostor C", skalarni proizvod je
mogudée uvesti pomocu

k=1

Primetimo da se koordinate vektora ¥y pojavljuju kao konjugovane vrednosti.

Bunjakowsky—-Cauchy—Schwarzova nejednakost u C” ima oblik

n n 1/2 , n 1/2
Zwk?k < <Z |$k|2) <Z |yk|2) - A
k=1

k=1 k=1

Definicija 1.5.2. Unitaran vektorski prostor sa normom (1.5.1) naziva se
pred-Hilbertov?® prostor. Ukoliko je ovaj prostor kompletan naziva se Hilber-
tov.

1.6. Konstrukcija ortogonalne baze

Neka je dat linearan prostor X sa skalarnim proizvodom (-,-). U prethod-
nom odeljku pominjali smo ortogonalnu i ortonormiranu bazu u prostorima
Vo(F) i R™.

29) David Hilbert (1862-1943), veliki nemacki matematicar.
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Definicija 1.6.1. Skup vektora U = {uy,us,... ,u,} uunitarnom prostoru
X je ortogonalan ako je (u;,uy) = 0, za svako i # k. Ukoliko je i ||ug|| =1
(k=1,2,... ,n), kazemo da je skup U ortonormiran.

Neka je U = {uy,us,... ,u,} proizvoljan skup ortogonalnih nenula vek-
tora. Pokazimo, najpre, da je ovaj skup linearno nezavisan.

Ako podemo od jednakosti
Aug + Aqug + -+ Ay, =6

i obrazujemo skalarni proizvod sa proizvoljnim vektorom uy (1 < k < n),
dobijamo

A1 (ug,ug) + Ao(ug,ug) + - 4+ A (un, ug) = (0, ug) =0,

§to se, zbog ortogonalnosti, svodi na A (ug,ur) = 0. Kako je (ug,ux) =
|ugl|* # 0 i k proizvoljno, sleduje A, = 0, §to znaci da je posmatrani skup
vektora linearno nezavisan.

Jedan ortonormiran skup B = {uy,ua,... ,u,} predstavlja bazu u X ako
se svaki vektor v € X, na jedinstven nac¢in, moze da predstavi linearnom
kombinacijom

(1.6.1) U= T1UL + ToUg + -+ + Tyl .

Ocigledno, ovo je moguce ako je dim X = n. Za takvu bazu kazemo da je
ortonormirana. Obi¢no se vektori ortonormirane baze oznacavaju sa uj, (k =
1,2,... ,n). Ukoliko imamo ortogonalnu bazu B = {uy,us,... ,u,}, tada
se vektori ortonormirane baze B* = {u},u},... ,u’} jednostavno dobijaju
pomodéu "

. k
uy, = Taxl (k=1,2,... ,n).

Skalare x1,xs,... ,x,, tj. koordinate vektora uw u ortonormiranoj bazi B,
mozemo dobiti formiranjem skalarnog proizvoda (u,uy). Tada iz (1.6.1)
sleduje

xr = (u,ug) (k=1,2,... ,n).

Napomenimo, takode, da se skalarni proizvod dva vektora u i v predstav-
ljenih u obliku (1.6.1)

U = T1U] + XU + +++ + Tply, V= yi1ul + Yyouo + - + YpUnp,
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svodi na
(u,v) = 2191 + T2Y2 + -+ + Tpln -
Naravno,
(uyu) = JJull* = o1 + o + - + @]
Zbog jednostavnosti u primenama, ortogonalna baza ima prednosti nad

algebarskom bazom u unitarnom (ili Hilbertovom) prostoru. Zato je od
interesa prouciti postupak za konstrukciju ortogonalne baze.

Neka je dat skup linearno nezavisnih vektora {vy, v, ... } u n-dimenzional-
nom unitarnom prostoru X. Postupak kojim se ovom skupu vektora moze
pridruziti ortogonalni sistem vektora {ui,us,...}, tako da se lineali nad
ovim skupovima poklapaju, poznat je kao Gram39)—Schmidtov?) postupak
ortogonalizacije 1 on se moze iskazati na slede¢i nacin:

Uzmimo najpre u; = v, a zatim ug predstavimo u obliku
uz = v2 + Ag1u1,

gde je A1 nepoznati parametar koji odredujemo iz uslova da je vektor wug
ortogonalan sa u;. Tada je

(ug,u1) = (vg,u1) + Ao1(ur,u1) =0,

odakle sleduje

o (ve,u)
Aoy = —
(u1,u1)
i

v
Uy = Vg — ( 2,U1)
(u1,u1)

Pretpostavimo sada da smo konstruisali skup vektora {uy, ug, ... ,up_1}.

Vektor u predstavimo u obliku
Up = Vg + Ap1Us + Apata + -+ + A p_1Uk—1 -

Tada nepoznate parametre \g; (i = 1,2,... ,k — 1) odredujemo iz uslova
ortogonalnosti vektora uy sa svim prethodno konstruisanim vektorima wuq,
Ug, ..., up_1. Dakle,
k—1
(u, ) = (vr, i) + Y Meg(ujou) =0 (i=1,2,...,k—1).
j=1
30)  Jorgen Pedersen Gram (1850-1916), danski matematicar.
31) Erhard Schmidt (1876-1959), nemacki matematicar.
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Kako iz ovih jednakosti sleduje

(Ulm ul) .
Aji = — i=1,2...,k—1),
imamo
k—1 (g, u3)
1.6.2 Uk = v — L.
=1
Dakle, u opstem sluc¢aju, vektori ortogonalnog sistema {uy, us, ... } mogu

se konstruisati pomoéu formule (1.6.2). Odgovarajuéi ortonomirani sistem
vektora je {uf,u3, ...}, gde su
U

UE o k=1,2,...).
[l

uyp, =
Gram-Schmidtov postupak ortogonalizacije transformise skup linearno
nezavisnih vektora {vy,vs,...,v,} u ortogonalan, a samim tim i linearno
nezavisan skup vektora {uy,us,... ,u,}. Ako ovaj skup ne predstavlja bazu
u X, on se uvek moze uvodenjem novih ortogonalnih vektora prosiriti do
baze.
Primer 1.6.1. Neka su u prostoru Vo (E) dati vektori

a=2i+k, b=4i+j-3k, c=-i+2j+2k.

Gram—Schmidtovim postupkom ortogonalizacije odredi¢éemo ortogonalnu bazu
{u1, ug, us}.

Stavimo, najpre, u; = a = 2t + k.

Kako je w1y = 4+0+1=5 i bu; =8+0—3 =5, imamo Ap; = —5/5 = —1,
pa je

Uo :b+)\21u1 =4’l:—|-j—3k—(2’i—|—k)=2’l:+j—4k.

Kako je, dalje, ugus = 4+1+4+16 =21, cu; = —24+0+2 =01 cus =

—2+2—8 = -8, dobijamo A3; = —0/5=0 i Azp = —(—8)/21 = 8/21. Tada je

. . 8 . .
U3 = C+ A31U1 + A32U2 = —’L+2j+2k+ﬁ(21+] —4k),

tj.

us3 —1+ 107 + 2k).

:ﬁ(

Odgovarajuéa ortonormirana baza je

{i(zi+k), L (201 j - ak),

7 7 (—i+1oj+2k)}. A

1
/105
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1.7. Ortogonalni potprostori

Sem ortogonalnih vektora u prostoru X, moguce je razmatrati i tzv. orto-
gonalne skupove vektora. Za dva skupa vektora Y7 i Ys (Y7,Ys C X) kazemo
da su ortogonalna ako je svaki vektor u € Y; ortogonalan sa svakim vektorom
v € Ys. Ovu éinjenicu oznacavamo sa Y7 L Y5, Ako skup Y7 sadrzi samo
jedan vektor, na primer Y; = {u}, tada se moze govoriti o ortogonalnosti
vektora u na skup Ys. Dakle, u L Y5 ako je vektor u ortogonalan sa svakim
vektorom skupa Y5. Nije teSko dokazati sledeéi rezultat:

Teorema 1.7.1. Da bi vektor u € X bio ortogonalan na potprostor Y (Y C
X) potrebno je i dovoljno da je on ortogonalan sa svim vektorima proizvoljne
baze potprostora Y .

Dokaz. Neka je {v1,vs,... , vy} proizvoljna baza potprostora Y. Ako je
u L Y, tada je u ortogonalan sa svim vektorima iz Y, pa i sa vektorima
baze.

Obrnuto, pretpostavimo da je (u,v;) =0 za k = 1,2,... ,m i neka je v
proizvoljan vektor iz Y. Tada se v moze, na jedinstven nacin, predstaviti
pomocu linearne kombinacije bazisnih vektora

v =Av1 + AU2 + -+ AU,
odakle dobijamo

(u,v) = (u, \yv1 + Agvg + -+ + Api)
= A (u,v1) + Aa(u, v2) + -+ + A (0, v ) = 0.

Dakle, u L Y. O

Na osnovu prethodnog, zaklju¢ujemo da su dva potprostora Y; i Y5 or-
togonalna ako i samo ako su im proizvoljne baze ortogonalne.

Za sumu razli¢itih potprostora Y7, Ys, ..., Y,, kazemo da je ortogo-
nalna ako su svaka dva potprostora medu sobom ortogonalna. Takvu sumu
oznacavamo sa

(1.7.1) Y=Y1eYo® --BY,,.

Teorema 1.7.2. Ortogonalna suma Y nenula potprostora Y1, Yo, ..., Yo,
je uvek direktna suma.

Dokaz. Ako u svakom od potprostora Yy (kK = 1,2,...,m) izaberemo
ortonormiranu bazu By, onda se svaki vektor iz ortogonalne sume (1.7.1)
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moze na jedinstveni nacin izraziti kao linearna kombinacija vektora iz unije
bazisa, tj. iz skupa B = By UBy U ---U B,,. Skup vektora B je baza u Y
jer su, zbog ortogonalnosti, svi vektori iz B linearno nezavisni. [

Pretpostavimo da je prostor X ortogonalna suma svojih potprostora Y7,
Yo, ..., Y, tj. da je
X=Y106Yo2® - DYy,

Kako se vektori u,v € X, na jedinstven nacin, mogu predstaviti u obliku
U=Up + U+ F Up, V=01 U2t Uy,

gde je ug,vr € Yy (k=1,2,... ,m), skalarni proizvod (u,v) moze se izraziti
jednostavno kao

(u,v) = (ug,v1) + (u2,v2) + ++ + (U, Vi) -

Na kraju ovog odeljka razmotricemo slu¢aj dva potprostora koji su kom-
plementarni (videti odeljak 1.1).

Definicija 1.7.1. Neka je Y (# {#}) potprostor unitarnog prostora X. Za
skup svih vektora u € X koji su ortogonalni na Y, tj.

Yr={ueX|ulY}

kazemo da je ortogonalni komplement potprostora Y .

Teorema 1.7.3. Ortogonalni komplement Y+ potprostora Y je, takode, pot-
prostor.

Dokaz. Ako u,v € Y+, tadajeu LY iv LY. Takode, au+ Bv LY za
svako o, B € K, §to zna¢i au+ pfv e Y+, O

Teorema 1.7.4. Neka je Y potprostor unitarnog prostora X. Tada vaZi
jednakost
X=YoY™t

Dokaz. U potprostorima Y i Y+ izaberimo ortogonalne baze B i By, re-
spektivno. Tada je skup vektora B = B; U By, zbog ortogonalnosti, linearno
nezavisan. Potrebno je dokazati da je skup vektora B baza prostora X.

Pretpostavimo suprotno, tj. da B nije baza, a zatim dopunimo ovaj skup
ortogonalnim vektorima do baze. Oznac¢imo sa e (€ X) jedan od tih dopun-
skih vektora. Tada iz ¢injenice da je e 1 By sleduje e L Y, tj. e € Y1, Isto
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tako, iz e L By sleduje e L Y. Dakle, vektor e istovremeno pripada Y i
ortogonalan je na Y+, §to je moguée jedino ako je e = 6. Kako nula-vektor
ne moze biti bazisni vektor, zaklju¢ujemo da je skup B baza. O

2. MATRICE I DETERMINANTE

2.1. Pojam matrice

U mnogim problemima nauke i tehnike veoma je Cest slucaj da se po-
javljuju izvesne ,veli¢ine“ opisane konac¢nim ili beskona¢nim nizom brojeva,
na primer,

ai, Ao, ..., Qp ili A1, A2y «ooy Qpy o nn

ili pak nekom pravougaonom Semom brojeva, na primer,

ail a2 e A1n
a1 G22 QA2n
Am1 Am2 Amn

u kojoj se pojavljuje m vrsta i n kolona. Napomenimo da, ponekad, broj
vrsta i kolona ne mora biti konac¢an. Jasno je da svaki niz moze biti tretiran
kao pravougaona Sema sa jednom vrstom (m = 1). Obi¢no, brojevi a;, ili
ai;, pripadaju nekom brojnom polju K. U nasSim razmatranjima uvek ¢emo
pretpostavljati da je K = R ili K = C. U opstem slu¢aju, kao elementi
pravougaone Seme mogu se pojavljivati i drugacije ,veli¢ine®.

Definicija 2.1.1. Za pravougaonu Semu brojeva a;; € K (i = 1,... ,m;
j=1,...,n), predstavljenu u obliku

ail a12 e A1n

a1 22 A2n
(2.1.1) A= | ,

am1 Am2 Amn

kazemo da je matrica tipa m X n nad poljem K, a za brojeve a;; kazemo da
su elementi matrice A.

U zavisnosti od toga da li je polje R ili C, za matrice kazemo da su realne
ili kompleksne matrice.
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Umesto oznake (2.1.1) u upotrebi su i oznacavanja

ail a2 . A1n ail a2 e A1n

a21  G22 A2n a1 G22 A2n
)

am1 Am2 Amn Am1 Am2 Amn

Elementi matrice A sa istim prvim indeksom ¢ine jednu vrstu matrice.
Na primer, elementi

Ai1y, A2y -« 5 Qin

¢ine i-tu vrstu matrice A. Sli¢no, elementi sa istim drugim indeksom ¢ine
jednu kolonu matrice. Prema tome, prvi indeks odreduje pripadnost vrsti,
a drugi indeks pripadnost koloni matrice. Element a;; pripada i-toj vrsti
i j-toj koloni matrice A, tj. on se nalazi u preseku i-te vrste i j-te kolone
matrice, pa se za njega kaze da se nalazi na mestu (7,j) u matrici A. Kod
oznacavanja elementa matrice a;;, indekse 4 i j obi¢no ne odvajamo zapetom,
tj. ne piSemo a; ;, sem u slucajevima kada je to neophodno radi identifikacije.
Na primer, ag;—1 j+1 je element koji se nalazi na mestu (2: —1, j +1) u datoj
matrici A.

Umesto oznake (2.1.1) ¢esto se koristi kraéi zapis

A= [aij]mxn 5

pri ¢emu a;; predstavlja opsti element matrice A, koja ima m vrsta i n
kolona. Dakle, prvi indeks ¢ uzima redom vrednosti iz skupa {1,2,... ,m},
a drugi indeks j iz skupa {1,2,... ,n}.

Ako su dve matrice istog tipa, za elemente na mestu (7, 7) kazemo da su
odgovarajuci elementi. Na primer, za matrice A = [aij]lmxn 1 B = [bijlmxn
elementi a;; i b;; su odgovarajuci.

Definicija 2.1.2. Za dve matrice A i B kazemo da su jednake matrice ako
su istog tipa i ako su im odgovarajuéi elementi jednaki.

To znaci da su matrice A = [a;j|mxn 1 B = [bijlpxq jednake ako i samo
akojem=p, n=qia;=0; (i=12,... ,mj=12,...,n).

Napomenimo da je jednakost matrica, uvedena definicijom 2.1.2, jedna
relacija ekvivalencije u skupu matrica.
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Definicija 2.1.3. Matricu tipa m x n ¢iji su svi elementi jednaki nuli nazi-
vamo nula-matrica i oznacavamo sa O,,,.

U slucajevima kada ne moze do¢i do zabune, nula-matricu oznacavaéemo
jednostavno sa O.

Matricu tipa 1 X n nazivamo matrica-vrsta i tada pri pisanju elemenata
izostavljamo prvi indeks. Na primer, matrica-vrsta je

[a1 as ... ay].

Sliéno, matricu tipa n x 1 nazivamo matrica-kolona. U ovom slucaju,
koristi se i termin vektor-kolona, ili prosto vektor, i pri tom se oznacava sa

a
az
a —
an
U ovom slucaju za elemente aq, ag, ..., a, kazemo da su koordinate ili

komponente vektora a. Cesto za i-tu koordinatu vektora a koristimo oznaku
a; ={a};.

Ako su svi elementi vektora jednaki nuli, govori¢emo da je to nula-vektor
i oznacavacemo ga sa o, ili jednostavno sa o, kada ne moze do¢i do zabune.

Definicija 2.1.4. Za matricu tipa

a1 ai2 e A1n

a1  Aa22 G2p
(2.1.2) A = [aijlnxn =

Gnl  Gp2 Gnn

kazemo da je kvadratna matrica reda n nad poljem K.

Umesto oznake [a;;]nxn, koriSéene u (2.1.2), za kvadratne matrice reda n
cesto se koristi oznaka [a;;]7, koja ukazuje da oba indeksa (i i j) uzimaju
redom vrednosti od 1 do n.

Svi elementi kvadratne matrice A, kod kojih su oba indeksa jednaka, tj.

elementi ay1, ass, ..., Gun, Obrazuju glavnu dijagonalu matrice A. Sli¢no,
elementi a1y, a2 n—1, ..., an1 obrazuju sporednu dijagonalu matrice A.
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Kvadratnu matricu D, formiranu samo od dijagonalnih elemenata matrice
A, tj. od elemenata na glavnoj dijagonali, oznacava¢emo sa diag A. Dakle,

aii

a
D =diag A = * . )

Ann
ali i
D = dlagA = diag(an, asg, ... ,ann).

Svi elementi van glavne dijagonale matrice D = diag A su jednaki nuli.
Dakle, u opstem slucaju, ako su elementi kvadratne matrice D = [d;;]7 takvi
dajed;; = 0 zasvako i # j, a bar jedan element na glavnoj dijagonali razlicit
od nule, za matricu D kazemo da je dijagonalna.

Definicija 2.1.5. Dijagonalna matrica reda n ¢iji su svi elementi na dija-
gonali jednaki jedinici naziva se jedini¢na matrica i oznacava se sa I,.

Prema tome vazi jednakost I,, = diag(1,1,...,1).

U slucajevima kada je jasno koga je reda, jediniénu matricu I, oznacava-
mo samo sa 1.

Uvodenjem Kroneckerove3?) delte, pomoéu

1, i=j,
%:{ 7
0, @#7J,

jedini¢na matrica I,, moze se predstaviti kao
I = [655]7-
Na kraju, uvedimo i pojam tzv. trougaone matrice:
Definicija 2.1.6. Ako za kvadratnu matricu R = [r;;]7 vazi
1>7 = 1 =0,

kazemo da je R gornja trougaona matrica.

Ako za kvadratnu matricu L = [l;;]} vazi
1< j = lij = 0,

32) TLeopold Kronecker (1823-1891), nemagcki matematicar.
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kazemo da je L donja trougaona matrica.

Dakle, gornja i donja trougaona matrica reda n imaju sledece oblike:

11 T2 ... Tin li1
92 Ton lor a2
R = , L= .
T'nn lnl ln2 e lnn

Primetimo da su svi elementi ispod glavne dijagonale u matrici R, kao i
svi elementi iznad glavne dijagonale u matrici L, jednaki nuli.

2.2. Linearni operatori

Neka su X i Y linearni prostori nad istim poljem skalara K. Pod opera-
torom A: X — Y podrazumeva se preslikavanje

(2.2.1) ur—g=Au

koje svakom elementu v € X pridruzuje samo jedan element g € Y.

Prostor X se naziva oblast definisanosti operatora A. Element g iz (2.2.1)
naziva se slika elementa u, a sam element u original. Skup svih slika, tj.
{Au | u € X}, naziva se oblast vrednosti operatora A i oznacava se sa A(X).
U sluéaju, kada svakom elementu g € A(X) odgovara samo jedan original,
za operator se kaze da je obostrano jednoznacan, tj. da je preslikavanje A
bijekcija prostora X na A(X).

U daljem razmatranju interesuju nas samo tzv. linearn: operatori, koji
imaju znacajnu ulogu u opstoj teoriji operatora. Posebno su interesantni
linearni operatori na konacno-dimenzionalnim prostorima jer su oni u uskoj
vezi sa teorijom matrica.

Pre nego $to definiSemo linearni operator, definisa¢emo aditivni operator
i homogeni operator.

Definicija 2.2.1. Operator A: X — Y je aditivan ako je
A(u+v) = Au+ Av

za svako u,v € X.

Definicija 2.2.2. Operator A: X — Y je homogen ako je
A(Au) = MNAu

za svako u € X isvako )\ € K.
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Definicija 2.2.3. Operator A: X — Y je linearan ako je istovremeno adi-
tivan i homogen, tj. ako je za svako u,v € X i svako A\, p € K

A(Au + pv) = NAu + pAv.

Definicija 2.2.4. Za operator 7: X — X, za koji je Zu = u za svako u € X,
kazemo da je identicki operator.

Primer 2.2.1. Neka je « fiksirani skalar iz polja K i neka je operator A: X — X
definisan pomoéu Au = au za svako u € X. Operator A je linearan jer je

Au + pv) = a(Au + pv) = (aN)u + (ap)v = (Aa)u + (pa)v,
tj.
AAu + pv) = AMaw) + plav) = NAu + pAv.
Ovako definisan operator A naziva se skalarni operator. U specijalnom slucaju,

kada je @ = 0, operator A se svodi na tzv. nula-operator O, dok se za a = 1
operator A svodi na identicki (jedini¢ni) operator Z.

Primetimo da nula-operator O preslikava svako u € X na neutralni element
0 € X, tj. da je Ou = 0. Primetimo, takode, da se nula-operator moze definisati i
kao operator koji preslikava svaku tacku prostora X na neutralni element prosto-
raY. A

Skup svih linearnih operatora koji preslikavaju prostor X u prostor Y,
oznaci¢emo sa L(X,Y).
Teorema 2.2.1. Neka je A€ L(X,Y). Tada je A0 = 6.

Dokaz. Kako je

A0 = A0 +0) = A0 + A0,

zakljué¢ujemo da je A0 =60. O

Na samom pocetku ovog odeljka pomenuli smo A(X) kao oblast vrednosti
operatora A. Za linearni operator A sa T4 oznac¢imo ovu oblast. Nije
tesko utvrditi da je T4 potprostor prostora Y. Zaista, ako je g = Au i

h = Av, vektor ag + Bh je slika vektora au + Pv, za svako «a, 3 € K. Dakle,
ag + BheTy.

Definicija 2.2.5. Rang operatora A € L(X,Y), u oznaci r4 ili rang A, je
dimenzija potprostora T4, tj.

raq =rang A = dim(7T).

U vezi sa potprostorom 7 4 moze se razmatrati i skup vektora u € X koji
zadovoljavaju jednakost Au = 6.
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Definicija 2.2.6. Jezgro operatora A € L(X,Y), u oznaci N4 ili ker A, je

skup
Np=kerA={ue X | Au=0}.

Dimenzija jezgra naziva se defekt operatora A i oznacava se sa ny ili

def A.
Jezgro operatora ker A C X je potprostor prostora X, s obzirom na imp-
likaciju
u,v €kerA4 = (Va,B €K) au+ fv € ker A.

Rang operatora i defekt operatora nisu nezavisne karakteristike linearnog
operatora. O tome govori sledeca teorema:

Teorema 2.2.2. Neka jedimX =n i A€ L(X,Y). Tada je

(2.2.2) rang A + def A = n.

Dokaz. Razlozimo X na direktnu sumu
(2.2.3) X =Ng+ My,

gde je N4 jezgro operatora A, a M4 bilo koji njemu komplementaran pot-
prostor. Za svaki element g € T4 postoji u € X takav da je g = Au. Kako
se u € X moze predstaviti u obliku zbira

U =uyn + up,
gde uy € Ngiupy € My, imamo
g=Au = A(uny + up) = Auny + Aupr = Auyy

jer je Auy = 6. Drugim rec¢ima, proizvoljan vektor g € T4 je slika jednog
vektora iz M 4. Moze se dokazati da je takav vektor uy; € M4 jedinstven.
Naime, ako pretpostavimo postojanje dva vektora uys € M iu)y, € My, za
koje je

g = Aupy = Au’M,

tada imamo
A(upr —uyy) =0,

tj. uM—u’MGNA.



128 LINEARNI PROSTORI, LINEARNI OPERATORI I MATRICE

S druge strane, ups —u)y; € M4 jer je M 4 potprostor. Kako je, medutim,
NAUMy = {0}, zakljucujemo da mora biti ups = u)y,.
Prema tome, linearni operator A predstavlja biunivoko preslikavanje vek-

tora iz potprostora M4 na T4, tj. A je izomorfizam, odakle zakljuc¢ujemo
da je dim(M4) = dim(7T4) = r4. Tada, na osnovu (1.1.5) i (2.2.3), imamo

dim(X) = dim(N4) + dim(M4),

tj. (2.22). O

Na osnovu (2.2.2) imamo
(2.2.4) rang A = dim T4 < dim X = n,

Sto zna¢i da dimenzija oblasti vrednosti operatora ne moze biti vea od
dimenzije oblasti definisanosti operatora.

U daljem tekstu neka su A, B € L(X,Y).

Definicija 2.2.7. Zbir operatora A i B, u oznaci A 4+ B, je operator C
odreden pomocu

Cu=(A+B)u=Au—+ Bu (Vu € X).

Definicija 2.2.8. Proizvod operatora A i skalara A iz polja K je operator
C odreden pomocu

Cu = (AN)u = \(Au) (Vu € X).
Interesantan slucaj je za A = —1. Odgovarajuéi operator —A nazivamo
suprotan operator operatoru A. Primetimo da je A+ (—A) = O nula-

operator. Naime, Ou =6 (Vu € X).

X v Z

Sl 2.2.1
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Definicija 2.2.9. Proizvod operatora A:Y — Z i B:X — Y je operator
C =AB: X — Z, definisan pomoc¢u

Cu=ABu=A(Bu)  (Vue X).

......

varajuce oblasti vrednosti operatora. Interesantno je pitanje o odnosu ranga
operatora C = AB i ranga operatora A, tj. B.

Kako je (videti sliku 2.2.1) Te = Typ C T4 C Z, imamo
dimTe =dimTyp < dim7T 4 < dim Z,

tj.
rang C = rang(AB) < rang A < dim Z.

Primetimo, takode, da je rang B = dim7Tg < dimY.

S druge strane, ako posmatramo operator A kao preslikavanje Tz u Z (tj.
na T 43) imamo, saglasno (2.2.4),

rang(AB) = dim T ap < dim T = rang .

Dakle, vazi sledeca teorema:

Teorema 2.2.3. Za operatore A:Y — Z i B: X —Y wvaZi
(2.2.5) rang(AB) < min(rang A, rang B).

Moze se dati i donje ogranicenje za rang(AB).

Teorema 2.2.4. Neka su X,Y,Z konacéno-dimenzionalni prostori. Za op-
eratore A:Y — Z i B: X —Y wvaZi

(2.2.6) rang A +rang B —dim Y < rang(AB).

Dokaz. Primena formule (2.2.2) na operator A:Y — Z daje
(2.2.7) rang A + def A = dimY,

gde je def A dimenzija jezgra operatora A, tj. dimenzija potprostora {v €

Y | Av = 6}.
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S druge strane, posmatrajuéi operator A kao preslikavanje Tg u Z (tj. na
T 4p) imamo

(2.2.8) rang(AB) + d = dim T = rang B,

gde je d dimenzija jezgra {v € T | Av = 0}. Imajuéi u vidu da je Tg C Y,
zakljucujemo da je d < def A, §to zajedno sa (2.2.7) i (2.2.8) daje (2.2.6). O

Nejednakost (2.2.6) je poznata kao Sylvesterova®® nejednakost.

Ako za svako u € X = Au € X, tada se moze definisati iterirani operator
A™ (n-ti stepen operatora A) kao

A" = A(A™Y) (neN),

pri éemu je A° = T identicki operator.

Za operatore A" 1 A™ (n,m € Ny) vazi jednakost
AnAm — An+m

U daljem tekstu izuci¢emo algebarsku strukturu skupa L(X,Y’) u odnosu
na prethodno uvedene operacije sabiranja operatora, mnozenja operatora
skalarom i mnozenja dva operatora.

Neka su X, Y, Z linearni prostori nad poljem skalara K. Nije tesko
pokazati da su operatori uvedeni definicijama 2.2.7, 2.2.8 i 2.2.9, takode,
linearni operatori.

Teorema 2.2.5. VazZe implikacije
(1) A, Be L(X,)Y) = A+BeL(X,Y),
(2) AcL(X,)Y), e K = MMeL(X,)Y),
3) Ae L(Y,Z), Be L(X,Y) = ABecL(X,Z).
Uvedena operacija sabiranje operatora obezbeduje da skup linearnih ope-

ratora koji preslikavaju X u Y ima strukturu Abelove grupe. Naime, vazi
slededi rezultat:

Teorema 2.2.6. Za svako A, B, C € L(X,Y) imamo:
(1) A+ (B+C)=(A+B)+C,
(2) A+O0=0+A=A,

33)  James Joseph Sylvester (1814-1897), engleski matematicar.
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(3) Za svaki operator A € L(X,Y) postoji jedinstven njemu suprotan
operator —A € L(X,Y) takav da je

A+ (-A)=(-A)+A=0,
(4) A+B=B+A.
Dakle, struktura (L(X,Y),+) je Abelova grupa. Neutralni element je

nula-operator O.

Takode, bez dokaza navodimo i sledeé¢e tvrdenje:

Teorema 2.2.7. Za svako A, B € L(X,Y) i svako \, p € K vazi
(1) ApA) = (Au)A,
(2) A+ p)A= A+ pA,
(3) (A+B) A+ B,
(4) 14

Definicijom 2.2.8 uvedeno je mnozenje operatora skalarom. Na osnovu
teorema 2.2.6 i 2.2.7 zaklju¢ujemo da vazi sledeée tvrdenje:

Teorema 2.2.8. Skup L(X,Y), snabdeven operacijom sabiranja kao un-
utrasnjom kompozicijom i mnoZenjem operatora skalarom kao spoljasnjom
kompozicijom, obrazuje linearni prostor nad poljem skalara K.

Imajuéi u vidu definiciju 2.2.9, u vezi sa mnozenjem dva operatora, moze
se dokazati slede¢a teorema:

Teorema 2.2.9. Neka su X, Y, Z, W linearni prostori nad poljem K. Tada
vazi:
(1) A(BC) = (AB)C za svako A€ L(Z,W), Be L(Y,Z),C € L(X,Y),
(2) A(B+C)=AB+ AC za svako A€ L(Y,Z), B,C e L(X,Y),
(3) (A+B)C =AC+ BC za svako A, Be€ L(Y,Z), C € L(X,Y).

Dokaz. Dokaz asocijativnosti mnozenja sleduje iz ¢injenice da za svako
u € X imamo:

(A(BC))u = A(BCu) = A(B(Cu)),
((AB)C)u = AB(Cu) = A(B(Cu)).
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Za dokaz distributivnosti mnozenja operatora prema sabiranju operatora
podimo, opet, od proizvoljnog vektora u € X. Tada imamo redom

(AB+C))u=A((B+C)u) = A(Bu+ Cu) = A(Bu) + A(Cu)
= (AB)u + (AC)u = (AB + AC)u,

odakle sleduje jednakost (2). Dokaz poslednje jednakosti izvodi se na slican
nac¢in. [

Za skup linearnih operatora koji preslikavaju X u X, u oznaci L(X, X),
na osnovu prethodnog zaklju¢ujemo da vazi slede¢i rezultat:

Teorema 2.2.10. (L(X,X),+,-), gde je + sabiranje operatora, a - mnoze-
nje operatora, ima algebarsku strukturu prstena.

U skupu linearnih operatora koji preslikavaju X u X, za koje obicno
kazemo da deluju u X, moguce je odrediti neki podskup operatora koji ima
strukturu grupe u odnosu na operaciju mnozenja operatora. Da bi se odredio
takav podskup potrebno je uvesti pojam regularnog operatora.

Definicija 2.2.10. Za linearni operator A: X — X kazemo da je regularan
ili da je nesingularan ako se njegovo jezgro sastoji samo od nula-vektora 6.

Za operator koji nije regularan kazemo da je singularan ili da je neregu-
laran operator.

Primer 2.2.2. Skalarni operator A, uveden u primeru 2.2.1, je regularan ope-
rator za svako a # 0. Na primer, identicki (jedini¢ni) operator Z je regularan
(a = 1), ali je nula-operator O singularan (. =0). A

Regularni operatori poseduju vise interesantnih osobina:

1° Defekt regularnog operatora A: X — X jednak je nuli, odakle je
rang(A) = dim X ;

2° Tyh =X

3° Za svako g € X postoji jedinstveno u € X takvo da je Au = g
(jedinstvenost originala);

4° Proizvod konacnog broja regularnih operatora je regularan operator.

Osobina 3° je izuzetno vazna. Da bismo je dokazali pretpostavimo da za
neko g € X postoje dva vektora u, v’ € X takva da je
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Tada je A(u —u') = 6. Kako se, s druge strane, jezgro regularnog ope-
ratora A sastoji samo od nula-vektora, zaklju¢ujemo da je u — v’ = 0, tj.
u = u'. Napomenimo da se Cesto za definiciju regularnog operatora uzima
osobina 3°.

Osobine 2° i 3° kazuju da je regularan operator A bijekcija prostora X
na X.

Ranije smo videli da za proizvod operatora generalno vazi asocijativni
zakon, §to znaci da i na podskupu regularnih operatora koji preslikavaju X
na X ovaj zakon vazi.

Vidimo, takode, da vazi
(VA: X — X) AT =TA= A,

gde je Z identicki operator u X, za koji smo ve¢ videli da je regularan
operator.

Da bi skup svih regularnih operatora koji deluju u X ¢inio grupu u odnosu
na mnozenje operatora, dovoljno je jo§ pokazati da za svaki regularan ope-
rator A postoji regularan operator A~!, takav da je

AA = ATA=1T.

Saglasno osobinama 2° i 3° da svakom vektoru g € X odgovara jedan i
samo jedan vektor u € X, moze se za svaki regularan operator A definisati
inverzan operator A~!.

Definicija 2.2.11. Neka je A: X — X regularan operator. Za preslikavanje
A1, za koje vazi

AN Au) = u (Vu € X),
kazemo da je inverzan operator od A.

Teorema 2.2.11. Neka je A: X — X regqularan linearni operator. Tada je
inverzan operator A~ takode, reqularan linearni operator.

Dokaz. Neka su Au; = g1 i Aus = g2, tj. A7'g1 = w1 1 A7 go = uo,
i neka su ¢y i ¢y proizvoljni skalari iz polja K. S obzirom da je A linearan
operator, imamo

Ail(Clgl + ngg) = Ail(ClAul + CQ.AUQ)
= A_lA(Cl’LLl + CQ’LLQ)
= Cciru1 + Cc2u2

= clA_lgl + CQA_lgg.
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Dokazimo da je i A~! regularan operator.

Za svako g € ker A~ imamo
A lg=0.
Primenom operatora A na levu i desnu stranu poslednje jednakosti dobijamo
A(A™1g) = A9,

tj. g = 0, jer je A9 = 0. Dakle, jezgro operatora A~! sastoji se samo od
nula-vektora, tj. operator A~! je regularan operator. [

Dakle, skup svih regularnih operatora ¢ini grupu u odnosu na mnozenje
operatora. Ova grupa nije komutativna. Medutim, moguce je izabrati jedan
podskup Sy, regularnih operatora tako da (S, -) ima strukturu komutativne

grupe.

2.3. Matrica linearnog operatora na
konacno-dimenzionalnim prostorima

Neka su X i Y kona¢no-dimenzionalni vektorski prostori, dim X = n,
dimY = m, i neka je u prostoru X zadata baza B, = {e1,es,... ,e,}. Neka
je, dalje, A: X — Y linearan operator.

U prostoru X uoc¢imo proizvoljan vektor u. Tada se on moze na jedinstven
nacin prikazati kao linearna kombinacija vektora baze B, tj.

(2.3.1) U =x161 + Taes + -+ Tpep.
Primenom operatora A na (2.3.1) dobijamo

Au = A(xy1e1 + xoeg + -+ xpey)
= A(zie1) + A(z2e2) + - -+ + A(znen)
= 331./461 + 332./462 + -+ anen.

Lako je uociti da je linearan operator A potpuno odreden ako su poznate
slike bazisnih vektora v; = Ae; (j =1,2,... ,n). Tada je, naime,

Au = 101 + Tov9 + -+ + TpUp.
U prostoru Y uoc¢imo bazu

Bf = {f17f27"' afm}
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i razlozimo vektore Ae; (i = 1,2,... ,n) po vektorima baze By. Tada imamo

Aey = ay fi +ag1fo+ -+ am1 fm,

Aex = ayafi + asafo + - + ama fm,
(2.3.2)

Ae,, = alnfl + a2nf2 + -+ amnfm-

Na osnovu (2.3.2) formirajmo matricu

ail a2 e A1n

a1 G22 QA2n
A= Agpe =

Am1 Am2 Amn

Definicija 2.3.1. Za Ay, kazemo da je matrica operatora A:X — Y u
odnosu na baze B, i By, tim redom.

Napomenimo da broj vrsta u matrici operatora odgovara dimenziji pros-
tora Y, a broj kolona dimenziji prostora X. Kolone matrice A su, u stvari,
koordinate vektora Ae; (j = 1,2,...,n) u odnosu na izabranu bazu Bj.
Dakle, da bismo odredili element a;; potrebno je primeniti operator A na
vektor e;, i u slici Ae; uzeti i-tu koordinatu®¥, §to éemo oznaciti sa

(2.3.3) Qij = {Aej}z

Posmatrajmo sada proizvoljne vektore v € X i v € Y, ¢ije su koordinatne
reprezentacije, u bazama B, i By, date redom sa

u=2x1€1 + Tog + -+ Tpen,
v=yifi+y2fot -+ Ymfm.

Neka je
(2.3.4) v = Au,
tj.

Zyzfz = A(Z -Z'jej) = Zaszej.
i=1 j=1 j=1

34)  Matrica operatora je nad istim poljem skalara K kao i prostori X i Y.
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Koriséenjem (2.3.2) imamo

S oyifi=> <Z aijfi) ;
i=1 j=1 i=1

odakle, promenom redosleda sumiranja na desnoj strani, dobijamo

m

Z yifi = Z <Z az‘jxj)fz‘-
i=1 J=1

1
i=1

Kako je sistem vektora By linearno nezavisan, dobijamo vezu izmedu
koordinata vektora u i v

n
yzzzaz]x] (i:1727"'7m)7
j=1

tj.
Y1 = 01171 + a12%2 + - - + A1pTh,

Y2 = G21T1 + A22%2 + - - - + A2p Ty,
(2.3.5)

Ym = G121 + AmaT2 + -+ + QmpTn.

Dakle, kod preslikavanja vektora u u vektor v pomoc¢u linearnog operatora
A, pri fiksiranim bazama u prostorima X i Y, veze izmedu koordinata ovih
vektora date su sistemom jednacina (2.3.5). Koeficijenti ovog sistema jed-
nacina su ocigledno elementi matrice operatora. Prema tome, pri fiksiranim
bazama u X i Y, postoji uzajamno jednozna¢na korespondencija izmedu
operatorske jednacine (2.3.4) i sistema jednacina (2.3.5). Drugim re¢ima,
operatorski pristup i matri¢ni pristup35) su potpuno ravnopravni i dovoljno
je tretirati samo jedan od njih. Naime, uvek se iz (2.3.4) moze preéi na
(2.3.5) i, obrnuto, iz sistema jednacina (2.3.5) na oblik (2.3.4). Po pravilu,
matri¢ni pristup je jednostavniji za rad.

Promenom bazisa u prostorima X 1Y doé¢i ée do promene matrice ope-
ratora. Ovaj problem biée tretiran kasnije. Razmoti¢emo sada nekoliko
primera koji daju konstrukciju matrica nekih operatora.

35) Koristi koordinatne reprezentacije vektora i matricu operatora.
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Primer 2.3.1. Kod nula-operatora O: X — Y (videti primer 2.2.1) imamo

(Vi,j)  ai; ={0¢;}; = {6} =0.
Dakle, ako je dim X = n i dimY = m, matrica nula-operatora O je nula-matrica
tipamXxn. A

Primer 2.3.2. Kod identickog operatora Z7: X — X imamo

aij = {Tejhi = e = {

Sto znaci da je matrica ovog operatora jedini¢na matrica I, ¢iji red odgovara di-

1, akojei=yj,
0, ako jei # j,

menziji prostora X. A
Primer 2.3.3. Dijagonalnoj matrici

dy
do

dn

odgovara linearni operator D: X — X, ¢ije je delovanje takvo da i-tu koordinatu
vektora u € X mnozi sa d;. A

Primer 2.3.4. U primeru 1.1.3 razmatrali smo vektorski prostor svih polinoma
stepena ne viseg od n, u oznaci Py. Dimenzija prostora Pp je n+1. Prirodna baza
ovog prostora je {1,t, t2, ... ,t"}. Definisimo sada linearni operator D: Py, — Pp_1
pomocu slika bazisnih elemenata

DtF =kt~ (k=0,1,...,n).

Ovo je, u stvari, operator diferenciranja, koji jedan polinom iz prostora Pp (di-
menzije n + 1) preslikava na neki polinom u prostoru P,,—1 (dimenzije n). Nas
zadatak je da odredimo matricu D = [dij]nx(n+1) ovog operatora.

Kako je e; =1 G=1,...,n+1)i
: i—2 .
Dej=(j— 1t " =(j—1)ej_1,
imamo, za 1 =1,... ,n,
i, akojej—1=rt,
dii = De V. = {(i—1es 1), —

b= e = G-k ={ oI 70

Uzimajudi i u prostoru P,_1 prirodnu bazu, za matricu operatora D dobijamo

010 ... 0
0 0 2 0

0 00 n
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2.4. Operacije sa matricama

U odeljku 2.2 uveli smo operacije sa linearnim operatorima tako da moze-
mo odrediti:

1° zbir dva operatora;
2° proizvod operatora skalarom;
3° proizvod dva operatora.

U prethodnom odeljku pokazali smo da je, pri fiksiranim bazisima u pros-
torima X i Y, linearni operator A jednozna¢no odreden svojom matricom
A = [aijlmxn, gde sum = dimY, n = dim X, a elementi matrice dati sa
(2.3.3).

Imajuéi u vidu ove ¢injenice, moguce je uvesti i odgovarajuée operacije
sa matricama, uspostavljajuéi na taj nac¢in dva ekvivalentna pristupa u tre-
tiranju problema: operatorski i matriéni pristup.

1° Razmotrimo najpre sabiranje dve matrice A i B. Ideja za uvodenje
zbira C' = A + B sastoji se u tome da matrice A i B budu, u stvari, matrice
dva linearna operatora A i B i da zbir C bude matrica operatora C = A+ B.
Kako je zbir operatora uveden za operatore u prostoru L(X,Y’), to proizilazi
da matrice A i B moraju biti istog tipa, recimo m X n, gde su m = dimY
i n=dmlX.

Dakle, neka su A = [aijjlmxn 1 B = [bijlmxn. Na osnovu (2.3.3) i
definicije 2.2.7 za elemente matrice C' = [¢j;]mxn imamo

Cij = {Cej}i = {Aej + Bej}i,

tj.
cij = {Aej}i +{Bej}i = aij + bij.
Ovo sugerise sledecu definiciju za sabiranje matrica:
Definicija 2.4.1. Zbir matrica A = [a;jlmxn 1 B = [bijlmxn je matrica

C= [Cij]me gde je

cij:aij—i—bij. (221,,m,]:1,,n)

Primer 2.4.1. Neka su

3 -5 3 . 2 0 4
A‘[o 4—7] ' B_[1—23]'
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Tada je
1 =5 7
C-A—i—B—[l 9 _4]. A

2° Razmotrimo sada proizvod matrice skalarom. Neka je A = [a;j]mxn
matrica operatora A: X — Y. Sa C = [¢;;]mxn 0znacimo matricu operatora
C = MA. Tada, na osnovu (2.3.3) i definicije 2.2.8, imamo

Cij = {Cej}i = {)\ACJ}Z = )\{AGJ}Z = )\CLZ‘j.

Definicija 2.4.2. Proizvod matrice A = [a;j]mxn 1 skalara A je matrica
C= [Cij]me gde je

cij:)\aij. (121,,m,j:1,,n)

Primer 2.4.2. Za matricu A iz prethodnog primera imamo

9 -—-15 9 -3 5 =3
34 = 0 12 -21 ] _A_[ 0 —4 7| 04=0. A
Za matricu (—1)A = — A kazemo da je suprotna matrica matrici A. Zbir

A i —A daje nula matricu. KoriSéenjem suprotne matrice moze se uvesti
oduzimanje matrica istog tipa na sledeé¢i nacin:

Definicija 2.4.3. Razlika matrica A = [a;j]mxn 1 B = [bijlmxn je matrica
C= [Cij]me gde je

cij:aij—bij. (221,,m,]:1,,n)
Dakle, vazi
A—-B=A+(—-B).
3° Razmotrimo sada najslozeniji slu¢aj — proizvod dve matrice A i B,

koji treba da odgovara proizvodu operatora A:Y — Z i B: X — Y. Neka su
prostori X, Y, Z sa dimenzijama n, m, p i bazama

{617627"'767’L}7 {fluf?u"'7fm}7 {917927"'791)}7

respektivno, i neka je proizvod C = AB: X — Z dat definicijom 2.2.9.
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Najpre treba ustanoviti dimenzije odgovaraju¢ih matrica A, B, C. Na
osnovu definicije 2.3.1, ove matrice su redom tipa p X m, m X n, p X n.
Dakle, imamo:

A= [aij]pxmy B = [bij]mxna C= [Cij]pxn-
U skladu sa (2.3.3) za elemente matrice C' imamo
cij = {Cej}i = {A(Be;) -

Na osnovu (2.3.2), za operatore A i B imamo

P
Afk:Za,,kg,, (k=1,2,...,m)

v=1

Bej=> beife  (1=12,...,n),
k=1

odakle sleduje

cij = {AZ bkjfk} = {Z bijfk} :
k=1 ( k=1

.
Cij = Z b {Afx}, -
=1

Najzad, kako je {Afk} = a;x, dobijamo

i

m
Cij = E aikbkj.
k=1

Ovaj rezultat sugeriSe slede¢u definiciju za mnozenje matrica:
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Definicija 2.4.4. Proizvod matrica A = [a;j]pxm 1 B = [bij]mxn je matrica
C = [¢ijlpxn, Ciji su elementi dati sa

cp = awby;  (i=1,2,...,p;j=1,2,...,n).
k=1

Dakle, mozemo zakljuéiti:

1° Proizvod matrica C = AB defininisan je samo ako je broj kolona u
matrici A jednak broju vrsta u matrici B;

2° Broj vrsta u matrici C jednak je broju vrsta u matrici A;
3° Broj kolona u matrici C' jednak je broju kolona u matrici B,

Sto je predstavljeno i na sledecoj Semi:

|

‘pxm‘ . ‘mxn‘ == pXn
i I
A . B = C

Ako izdvojimo iz matrice A elemente i-te vrste i formiramo vektor-vrstu
[ain a2 ... Gim],
a iz matrice B elemente j-te kolone i formiramo vektor-kolonu
blj
bgj
b

tada se element c¢;; moze izraziti kao proizvod

blj
b2j
Cij:[ail a2 ... aim]' . )

b j

Sto, u stvari, predstavlja skalarni proizvod (videti primer 1.5.2) i-te vrste
matrice A i j-te kolone matrice B.
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Primer 2.4.3. Neka su

1 3 . 2 1 —1]
A_[o 4] ' B_[13—2_

Proizvod AB je matrica tipa 2 x 3. Dakle,

0-244-1 0-144-3 0-(=1)+4-(=2)|  [4 12 8] A

AB:[1.2+3-1 1-1+3-3 1-(—1)+3-(—2)} 5 10 -7

Ako uvedemo vektore x i y kao koordinatne reprezentacije vektora u € X
iv €Y ubazama B, i By, respektivno (videti prethodni odeljak),

T 't
T2 Y2

T = 1 Yy = . ,
T Ym

sistem jednacina (2.3.5) moze se predstaviti u matricnom obliku
(2.4.1) y = Az,

gde je A = Aj. matrica operatora A: X — Y. Formula (2.4.1) je analogon
operatorskoj formuli (2.3.4).

Osobine koje vaze za operacije kod operatora vaze i za odgovarajuée ope-
racije sa matricama. Tako, na primer, osobina asocijativnosti vazi i kod
sabiranja i kod mnozenja matrica. Dakle, jednakosti

A+(B+C)=(A+B)+C i A(BC)=(AB)C

vaze, naravno, pod uslovom da naznacene operacije imaju smisla.

Operacija sabiranja je komutativna, tj. A + B = B + A. Medutim,
mnozenje dve matrice nije komutativno. Pre svega, ako postoji proizvod
AB, ne mora postojati proizvod BA. Cak i u slu¢ajevima kada postoje AB
i BA (na primer, kada su matrice istog reda), u opstem slucaju je

AB # BA.

Da bismo se uverili u to, posmatrajmo jednostavan primer

S S
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Tada je

0 0 3 3
w000 ma[ 2 2]

Dakle, AB # BA. Iz ovog primera se moze izvuéi jos jedan vazan za-
kljucak:
AB=0 » A=0 VvV B=0.
Imajuéi ovako definisane operacije sa matricama, skup matrica se moze

posmatrati kao neka algebarska struktura. Tako, na primer, sledeéi rezultat
predstavlja analogon teoremi 2.2.6:

Teorema 2.4.1. Neka je M,, , skup svih matrica tipa m x n. Struktura
(M, +) je Abelova grupa.

Sliéno se, kao analogon teoremi 2.2.8, moze formulisati sledece tvrdenje:

Teorema 2.4.2. Skup matrica My, , snabdeven operacijom sabiranja mat-
rica 1 operacijom mmnozenja matrice skalarom, obrazuje vektorski prostor nad
poljem skalara K.

Postavlja se pitanje Sta se moze uzeti kao baza u ovom prostoru, kao i to
kolika je dimenzija ovog prostora. Nije tesko uociti da se kao baza u prostoru
M, », moze, na primer, uzeti skup matrica

{qu ‘ EP4 — [epq

ij]mxn ’

p=1,...,m; qzl,...,n},

¢iji su elementi, koriséenjem Kroneckerove delte, dati pomocu e? ;’ = 0ipljq-

Ocigledno, dim M,,, = mn. Kako je prostor M,, , analogon prostoru

L(X,Y),tojeidimL(X,Y)=mn, gde sun=dimX i m=dimY.
Najzad, kao analogon teoremi 2.2.10 imamo sledeéi rezultat:

Teorema 2.4.3. Neka je M, skup svih kvadratnih matrica reda n, snab-
deven operacijom sabiranja + 1 operacijom mnoZenja matrica, u 0znaci -
Tada je struktura (My,,+,-) prsten sa jedinicom.

2.5. Transponovana matrica

Definicija 2.5.1. Ako u matrici
a11 a12 . QA1n
az1  a22 a2n
A= [aij]mxn =

Am1  Gm2 Qmn
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zamenimo vrste kolonama i obrnuto, dobijamo matricu

ail asy e Am1
a2 a2 am2
T _ _
AN = [aji]nxm - . 9
Q1n  G2n Amn

koja se zove transponovana matrica matrice A.

Primer 2.5.1. Ako je A = [_; _i _H , njena transponovana matrica je
1 -2
AT=1-3 7]. &
-1 2

an
dobija se matrica-vrsta
a = [al as ... an]. A

Primer 2.5.3. Skalarni proizvod vektora x i y, gde su

:I:T:[xl To ... xn] i yT:[yl Y2 ... yn],

moze se predstaviti u obliku (videti primer 1.5.2)

(x,y) = Z Tk =y .
Ako se radi o kompleksnim vektorima, tada je
(x,y) = Z gk =Y T,
gde y* oznacava vektor koji se dobija transponovanjem vektora vy i konjugovanjem

njegovih koordinata. A

Za operaciju transponovanje vaze osobine iskazane slede¢im teoremama:
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Teorema 2.5.1. 1° (AT)T = A; 2° \A)T =x4T (A e€C).

Teorema 2.5.2. Ako su A i B matrice istog tipa tada je

(A+ B)T = AT + BT,

Teorema 2.5.3. Za matrice A i B, za koje je definisan proizvod AB, defi-
nisan je i proizvod BT AT i vaZi jednakost

(2.5.1) (AB)" = BT AT,

Dokaz. Neka su A = [aij|lmxn 1 B = [bijlnxp. Tada je element na mestu
(4,7) u matrici AB = C = [¢j;]mxp jednak

n
Cijzzaikbkj (1§Z§m71§]§p)
k=1

Element c¢;; nalazi se u j-toj vrsti i i-toj koloni matrice (AB)7, koja je tipa
P X m.

S druge strane, proizvod matrica BT i AT, tj.

bir bar ... bpa ai; a ... Qml
b12 b22 b a a a
T T n2 12 Q22 m2
B A" = . ,
blp b2p bnp A1n  A2n Qmn

takode je tipa p x m, pri ¢emu na mestu (j,7) imamo element

n n
bijain + -+ bpjain = E brjai, = E ikbj,
k=1 k=1

sto je, u stvari, element ¢;;. [

Matematickom indukcijom moze se dokazati slede¢i opstiji rezultat:

Teorema 2.5.4. Za m matrica Ay, ..., A, za koje je definisan proizvod
A+ A,,, vaZi jednakost

(A AT = AT ... AT,
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Ako su elementi matrice a;; kompleksni brojevi, tada se moze definisati
tzv. konjugovano-transponovana matrica, u oznaci A*, pomocu

a1 ao1 ... Qmi
S a1z  G22 Gm?2
A" = [aji]nxm =
G1n  Qon Amn
Primer 2.5.4. Ako je
1—3 2
A=| -3 742,
-1 244

konjugovano-transponovana matrica je

C[14i -3 -1

*
A= —2i T7T—-2t 2—1 A

Teoreme 2.5.1 — 2.5.4 ostaju u vaznosti ako se transponovanje zameni sa
konjugovanim-transponovanjem. Na primer, analogon jednakosti (2.5.1) je
(AB)* = B*A*. Naravno, kod matrica nad poljem R vazi A* = AT,

Primer 2.5.5. Neka je u prostoru matrica M 2 zadata baza (videti teoremu
2.4.1)

_J{1r o0 0 1 0 0 0 O _ fp11 12 21 1222
o=l o) [o o) [ 3] (5 3y = oy,

Odredi¢emo: (a) matricu operatora transponovanja 7: Mz o — Mb 2; (b) mat-
ricu operatora F: Mg o — Mp 2, definisanog pomocu

FX = AX + XB,

gde su A, B € M3 2 konstantne matrice.
(a) Kako su

TEll _ Ell TE12 _ E21 TE21 _ E12 TEQQ _ EQQ

na osnovu (2.3.3), za matricu operatora transponovanja u datoj bazi B, dobijamo

O O O
o = O O
O O = O
— o O O
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(b) Neka su
A— |:a11 CL12} . B— |:b11 512} '
az1 a2 bo1  bog
Kako su
FEY — AR L gl — [a11 +b11 bi2 ]
| a2 0]’
FE2 _ A2 4 pl2p — (b1 a11 + boo |
| 0 a1 |’
_ 0
FEX — A2 | g2l — a12 ,
la22 +b11 b12 |
- . -
FE?2 — AR2 | g22p 12 ,
| b21 a2 + bog |
tj.
FEM = (a11+b11) B+ b1 B+ an B,
FE? = bo1 M 4 (a11+b22) B + an E*,
FE* = a1 B + (aza+b11)E* + b1o E*,
FE? = a1 B4 bo1 B2 + (aga+bao) E*2,

za matricu operatora F u bazi B dobijamo

a1 + b1 ba1 ai2 0
P b1z ai1 + b2 0 a2 A
a21 0 a2 + b11 ba1
0 a1 b12 a92 + bao

Napomena 2.5.1. Koriséenjem Kroneckerovog proizvoda matrica (videti defi-
niciju 2.12.2), matrica F' moze se predstaviti u kondenzovanom obliku

F=A®I+1®BT,

gde je I jedini¢na matrica drugog reda.
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2.6. Neke klase matrica

U ovom odeljku izuc¢i¢emo nekoliko vaznih klasa kvadratnih matrica.
Definicija 2.6.1. Kvadratna matrica A je simetriéna ako je AT = A.
Definicija 2.6.2. Kvadratna matrica A je koso-simetricna ako je AT = —A.

Kod simetriénih matrica imamo da je a;; = a;;, a kod koso-simetri¢nih
a;; = —aj;. 1z poslednje jednakosti sleduje da su kod koso-simetri¢nih mat-
rica elementi na glavnoj dijagonali jednaki nuli, tj. da je a;; = 0.

Za kvadratne matrice nad poljem C mogu se uvesti klase hermitskih i
koso-hermitskih matrica pomocu slede¢ih definicija:
Definicija 2.6.3. Kvadratna matrica A je hermitska ako je A* = A.
Definicija 2.6.4. Kvadratna matrica A je koso-hermitska ako je A* = —A.

Definicija 2.6.5. Ako za kvadratnu matricu A vazi A*A = I, gde je [
jedini¢na matrica, matrica A se naziva unitarna matrica.

Definicija 2.6.6. Ako za kvadratnu matricu A vazi ATA = I, gde je I

jedini¢na matrica, matrica A se naziva ortogonalna matrica.
Neka je Vj, skup svih kompleksnih vektora®®) x = [z, x5 ... xn]T.
Koriséenjem skalarnog proizvoda dva vektora

T .
x=[11 T2 ... Ty] 1 y=I[y1 y2 - Un

definisanog pomoc¢u

n
(@,y) =y'@ =Y xx,
k=1

uslov za hermitsku matricu (A = A*) moze se predstaviti u ekvivalentnom
obliku

(Ve,y € V) (Az,y) = (x, Ay).

Sliéno, uslov za koso-hermitsku matricu (A = —A*) moze se predstaviti
u obliku

Ve, y € V) (Az,y) + (z, Ay) = 0.

36) Moze se uzeti da je Vi, = C™.
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Definicija 2.6.7. Nekajec=1[c; ¢2 ... ¢, ]T fiksni vektor u V;,. Pres-
likavanje L : V,; — C definisano pomocu

L(x) = (x,¢) =c'a = chxk
k=1

naziva se linearna funkcionela ili linearna forma.

Ako je A = [a;j]nxn, Primetimo da je

ai; a2 ... Qin X1
o _ a1 Q23 as L2
Az, y) =[00 G2 - nl-| . NE e
an1 an2 Qnn L,
tj.
(2.6.1) (Az,y) =D > aiz;Gi.
i=1 j=1
Neka je
(2.6.2) B(x,y) = (Az,y).

Definicija 2.6.8. Preslikavanje B : V2 — C definisano pomo¢u jednakosti
(2.6.1) — (2.6.2) naziva se bilinearna funkcionela ili bilinearna forma.

Posebno su interesantne bilinearne forme kod kojih je kvadratna matrica
A = [a;j]nxn hermitska.

Definicija 2.6.9. Preslikavanje F : V,, — C definisano pomoc¢u
(2.6.3) F(x) = (Az, @),

gde je matrica A hermitska, naziva se kvadratna funkcionela ili kvadratna
forma.

U skladu sa (2.6.1) i (2.6.3), kvadratna forma ima reprezentaciju

i=1 j=1
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Teorema 2.6.1. Kvadratna forma ima samo realne vrednosti.

Dokaz. Konjugovanjem (2.6.4) dobijamo

n n

m = (Z Zailejﬂ_}i) = Z aijszii = Z Zaijjjl'i-

i=1 j=1 i=1 j=1 i=1 j=1

Kako je za hermitsku matricu @;; = aj;, zamenom indeksa ¢ i j u prethod-

noj formuli, zaklju¢ujemo da je F(x) = F(x), tj. da kvadratna forma F(x)
ima realnu vrednost. [

Na osnovu ovog tvrdenja, definicija 2.6.9 moze se precizirati u smislu da
je kvadratna funkcionela preslikavanje sa V,, na R.

Definicija 2.6.10. Hermitska matrica A nagziva se pozitivno definitna ako
je za svako x # o ispunjen uslov

(2.6.5) (Az,x) = " Ax = Z Zaijwj@ > 0.

i=1 j=1
Na osnovu (2.6.5) zaklju¢ujemo da je za pozitivno definitne matrice potre-
ban uslov a;; >0 (i =1,... ,n).

Definicija 2.6.11. Simetri¢na pozitivno definitna matrica naziva se nor-
malna matrica.

Definicija 2.6.12. Za matricu [a;;]7 kazemo da je pozitivna (nenegativna)

ako je a;; > 0 (a;; > 0) za svako 7,7 € {1,2,... ,n}.
Definicija 2.6.13. Za matricu [a;;]] kazemo da je dijagonalno dominantna
ako je
laii| > lai]
J#i
za svako i € {1,2,... ,n}.

2.7. Stepenovanje kvadratne matrice

Definicija 2.7.1. Neka je A kvadratna matrica. Stepen matrice A definise
se pomocu

AV=1, A=A, A" =AA"' (n=23,...)

Jednostavno se dokazuje sledeée tvrdenje:
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Teorema 2.7.1. Ako su k i m nenegativni celi brojevi, vaZe formule

S obzirom na stepenovanje, moguée je uvesti jos dve specijalne klase
kvadratnih matrica:

Definicija 2.7.2. Ako je A™ = O za neko m € N, tada za matricu A
kazemo da je nilpotentna. Najmanji broj k € N za koji je A¥ = O naziva se
stepen nilpotentnosti.

Definicija 2.7.3. Ako je A? = A za matricu A kazemo da je idempotentna.
Definicija 2.7.4. Ako je A2 = I za matricu A kazemo da je involutivna.

2 3
0 2

5 [2 3] [2 3] 4 12] [2%2 3.2.2!

eenanp 3 25 15 03

3_ 4 4212 3| |4 12| _ |8 36| _

w=aw=[0 5] =[5 %)=
Moze se naslutiti da je

2" 3p2n—!
2.7.1 A" = .
(271) o

Primer 2.7.1. Neka je A = [ } Tada je

Da bismo dokazali (2.7.1) koristi¢emo metod indukcije.
Tvrdenje je ta¢no za n = 1.

Pretpostavimo da formula (2.7.1) vazi za n = k, tj. da je

Ak [2’“ 3192’?—1}

: ok (ke N).

Tada imamo

kil _ 4 ak_ [2 3] [2F 3k2k!
A _AA_[O 2} [o ok |”

tj.

okt 3(k 4 1)2k A
0 2k+1 :
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Napomena 2.7.1. Kada su svi elementi na glavnoj dijagonali matrice A medu-
sobno jednaki, za nalaZenje stepena A™ moze se koristiti binomna formula. Metod
je posebno efikasan ako je matrica A trougaona. Za matricu A iz primera 2.7.1
imamo

A" =@2I+B)" =2"1+ (7;)2”1B+ (Z>2”2B2+... ,

gde je B = [0 3]. Kako je B? = O, dobijamo

0 O
n__ on nNy\on—1p 2m 3n2"_1
A" =2 I+<1>2 B_[O 2n }

Primetimo da je matrica B nilpotentna sa stepenom nilpotentnosti dva. A

Napomena 2.7.2. U opstem slucaju, binomna formula

n
C no_ n n—k pk
C+B)"=> (k)c B
k=0
vazi samo ako matrice C'i B komutiraju.
-1 0
2 3

o, 4 [-1 0] [-1 0]_J1 0
e e I R B
5, .2_[-1 0] [t 0] _[-1 o0
e R B v}

4 _ 4 43_|-1 0] |-1T of_{|1 O
A_AA_[ 2 3} [14 27]_{40 81]'

Moze se naslutiti da je

Primer 2.7.2. Neka je A = [ } . Tada redom imamo

= Lo )
(n). &

Napomena 2.7.3. Pokazac¢emo kako se za proizvoljnu kvadratnu matricu dru-

pri ¢emu je tesko identifikovati izraz za as1

gog redad”) A = [Z Z} moze naéi n-ti stepen
2.7.2 qn — |an(n) alz(n)] '
( ) [GQI(”) azz(n)

37) Metod je opsti i vazi za matrice proizvoljnog reda, ali se komplikuje sa porastom
reda matrice.
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Primetimo da je

(2.7.3) a11(0) = a22(0) =1,  a12(0) = a21(0) =0
i neka je
(2.7.4) a11(l) =a, ai2(l)=0b, az(l)=c, a2(l)=d

Kako je A1 = A. A" na osnovu (2.7.2) imamo

i i ] B B R R Al

odakle sleduje

a11(n+1) = aai1(n) + bag1(n), a1(n+ 1) =caii(n)+ dagy(n),
a12(n + 1) = aalg(n) + bagg(n), azz(n + 1) = calz(n) + dagg(n).

Ovaj sistem jednacina, uz uslove (2.7.3) i (2.7.4), definise elemente matrice
A™. Kako su prve dve jednaéine sistema, evidentno, nezavisne od poslednje dve
jednacine, to ¢emo ih posebno razmatrati.

Sabiranjem prve dve jednacine, uz prethodno mnozenje prve jednacine sa d, a
druge sa —b, dobijamo

(2.7.5) dai1(n+1) — baz1(n+ 1) = (ad — be)ar(n).
S druge strane, poveéavanjem indeksa n za jedinicu u prvoj jednacini, nalazimo
(2.7.6) a11(n +2) = aa11(n + 1) + bagi (n + 1).
Najzad, eliminacijom ag;(n + 1) iz (2.7.5) i (2.7.6), dobijamo
a11(n+2) — (a+daii(n+1) + (ad — be)ayi (n) = 0.

Dakle, dobili smo tzv. diferencnu jednacinu oblika?®)
(2.7.7) z(n+2) —2az(n+1) + Bz(n) =0,
gdesu2a=a+dif=ad—bc

Nije tesko videti da éemo i za ostale elemente matrice A™ imati istu jednaéinu
(2.7.7). Naravno, resenja ¢e se razlikovati s obzirom na pocetne uslove (2.7.3) i
(2.7.4).

38)  Jednatine ovog oblika nazivaju se diferencne jednacine. Ovde se radi o tzv.
homogenoj linearnoj diferencnoj jednacéini drugog reda sa konstantnim koeficijentima.
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Pokazactemo sada kako se na jedan formalan nac¢in moze naéi reSenje jednacine
(2.7.7).
Pretpostavimo reSenje jednacine (2.7.7) u obliku n — z(n) = A". Tada imamo
da je
A2 9ot 4 gAT = 0.

Kako trivijalno resenje A = 0 nije od interesa, zaklju¢ujemo da ée A" biti reSenje
jednacine (2.7.7) ako je

(2.7.8) A% —2a)\+3=0.

Za kvadratnu jednacinu (2.7.8) kazemo da je karakteristicna jednacina diferencne
jednacine (2.7.7).

Neka su A1 i A2 koreni karakteristicne jednacine (2.7.8). Razlikovademo dva
slucaja:

SLUCGAJ A1 # Aa. Ovaj slucaj se pojavljuje kada je o # 3. Tada su AP i A}
resenja jednacine (2.7.7). Takode je i njihova linearna kombinacija,

(2.7.9) z(n) = C1AT + Ca2)3,

resenje jednacine (2.7.7), pri ¢emu su C; i Ca proizvoljne konstante.

Moze se pokazati da reSenje (2.7.9) sadrzi sva reSenja jednacine (2.7.7) kada je
o? # B. Zato se reSenje (2.7.9) naziva opste resenje diferencne jednacine (2.7.7).
Napomenimo da je za nalazenje opsteg reSenja dovoljno poznavati dva linearno
nezavisna resenja jednacine (2.7.7), $to su, u naSem sluc¢aju, upravo resenja A} i
A%. Linearna kombinacija dva takva reSenja daje opsSte resenje jednacine (2.7.7).

Koreni karakteristicne jednacine (2.7.8) mogu biti i konjugovano-kompleksni
brojevi, na primer, A\; = geie ido= Qe_ie. Tada je

Z(n) = Cl>\711 + CQ)\S = Qn (Clein(? + CQe_ino)
= 0" ((C1 + C2) cosnb +i(C1 — C2) sinnb),
tj.
z(n) = o" (D1 cosnf + Da sinnf),

gde su D1 i Dy proizvoljne konstante.

SLUCAJ A1 = A2. Ovaj slucaj nastupa kada je o? = B. Pored resenja A\, koje
je evidentno, mogudce je pokazati da je i nA] resenje diferencne jednacine (2.7.7).
Zaista, zamenom z(n) = nA}, leva strana u (2.7.7), u oznaci L[z(n)], postaje

LnAY] = (n+2)A"2 — 2a(n + DA 4 gnAT
= nL\T]+ 22" (A — ).
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Kako je L[AT] =01 A1 = a, zakljuéujemo da je L[nAT] = 0.

Dakle, u ovom slucaju, opste reSenje je
z(n) = C1AT + Con)T = )\711(01 + Can),

gde su C7 i Cq proizvoljne konstante.
Koriséenjem opsteg resenja jednacine (2.7.7) i poetnih uslova (2.7.3) i (2.7.4),
nalazimo elemente matrice A™.

Primer 2.7.3. Za matricu A iz primera 2.7.2 karakteristi¢na jednacina (2.7.7)
postaje
M _2)x-3=0,

Cija su reSenja A1 = 31 A2 = —1. Opste reSenje odgovarajuce diferencne jednacine
z(n+2)—2z(n+1)—3z(n) =0

je dato sa

(2.7.10) z(n) = C13" + Co(—1)",

gde su C7 i Cy proizvoljne konstante.

Da bismo, na primer, odredili ag;(n), primetimo najpre da je a21(0) = 0 i
a21(1) = 2. Stavljajuéi redom n = 0in = 1 u (2.7.10), za z(n) = az1(n),
dobijamo

C1+C2=0a21(0)=0 i 3C1 — C2 = a21(1) =2,

odakle sleduje Ch =1/2, Cy = —1/2.
Prema tome,

1
az1(n) = B) (3" — (—1)") .
Sli¢no se mogu nadi i ostali elementi matrice A™. Tako imamo da je

(=" 0

A= e -y e

A

2.8. Determinanta matrice

Neka je M, skup svih kvadratnih matrica reda n nad poljem C. Defi-
nisa¢emo i izuCiti jedno preslikavanje, u oznaci det, skupa M, u skup C.
Preslikavanje det : M,, — C definisaéemo postupno, najpre zan =1, n = 2
in=3.
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SLucal n = 1. Neka je A = [a1;1] kvadratna matrica reda jedan. Presli-
ka¢emo ovu matricu u kompleksan broj a1, pisuci

det A = ‘CL11’ = aiy.

ail @12
a21  a22
kompleksan broj aii1a20 — ai2a21, simbolizujuéi to sa

SLUCAJ n = 2. Matricu drugog reda A = [ } preslikacemo u

a1l a2
a21 Q22

det A = = aii1ag2 — a120921.

SLUCAJ n = 3. Kvadratnoj matrici
a1 G122 a13
A= laxn axp ax
az1 az2 0ass
pridruzi¢éemo kompleksan broj det A, odreden sa
aix a12 Q@13
detA = |21 G292 az3
asz1 a3z2 a33
= a110220G33 — (11023032 — 412021033
+ a12a23a31 + A13G21032 — A13022031.
Kao §to mozemo primetiti, u svim slu¢ajevima, u definiciji det A imamo

n! sabiraka i to svaki sa po n faktora, koji predstavljaju elemente matrice.
Na primer, pri n = 3 imamo 3! = 6 sabiraka i to svaki sa po tri faktora.

Primetimo, dalje, da svaki sabirak sadrzi jedan i samo jedan element iz
svake vrste i svake kolone matrice. Prvi indeksi elemenata u svakom sabirku
poredani su na istovetan nacin u tzv. normalnom redosledu. Na primer,

za n=1: (1);
za n=2: (1,2);
za n=3: (1,2,3).

Drugi indeksi elemenata u svakom sabirku ¢ine po jednu permutaciju
osnovnog skupa. Tako imamo,

za n=1: (1);
za n=2: (1,2), (2,1);
mon=3:  (1,2,3), (1,32, (21,3), 2.3,1), (3.1,2), (3,2,1).
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Najzad, primetimo da su neki sabirci kompleksnog broja det A sa pozi-
tivnim, a neki sa negativnim predznakom. Isto tako, moze se uociti da sabirci
kod kojih drugi indeksi elemenata obrazuju permutaciju parne (neparne)
klase imaju pozitivan (negativan) predznak, tj. predznak sabirka je (—1)7,
gde je j broj inverzija u permutaciji drugih indeksa elemenata u sabirku u
odnosu na osnovnu permutaciju.

Primer 2.8.1. Za matricu

2 1
=154
imamo
detA:‘2 1‘:2~4—1-3:5. A
3 4
Primer 2.8.2. Ako je
3 2 1
A=|-1 0 3|,
1-5-2
imamo
3 2 1
detA=|-1 0 3|,
1-5-2
tj.

det A=3-0-(=2)—3-3-(=5)—2-(=1)-(-2)
+2:3-1+1-(=1)-(=5)—1-0-1=62. A
Prosirujuéi prethodni koncept moguce je definisati preslikavanje det A za
matrice proizvoljnog reda.
Neka je matrica A € M,, data sa

ail a12 e A1n

az1  a22 A2n
A=

an1 An2 Ann

Preslikavanje A — det A definisa¢emo pomocéu

ajq a1 ... A1n
a1 Q22 a2n .
det A= | . =Y (1 ayj,a25, -+ an,,
ap1 G2 Gnn
gde se sumiranje izvodi preko svih permutacija P, = (j1,J2,.-. ,jn) Skupa
{1,2,... ,n}, dok je j broj inverzija u permutaciji P, u odnosu na osnovnu

permutaciju P, = (1,2,...,n).
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Definicija 2.8.1. Broj D = det A zovemo determinanta matrice A.

Determinanta D ima red, koji je jednak redu kvadratne matrice A. Sim-
bolicki je predstavljamo slicno matrici, navodeéi elemente matrice izmedu
dve vertikalne crte, pri ¢emu su elementi, vrste, kolone, dijagonale, ... mat-
rice A sada elementi, vrste, kolone, dijagonale, ... determinante det A.

Analizom zbira

(2.8.1) D (=1ayaz, - an,

zaklju¢ujemo sledece:

1° Broj sabiraka u (2.8.1) je n! jer je to ukupan broj permutacija skupa
indeksa {1,2,... ,n};

2° Svaki sabirak u (2.8.1) predstavlja proizvod od n elemenata matrice
A, pri ¢emu se iz svake vrste i svake kolone matrice A pojavljuje jedan i
samo jedan element;

3° Sabircima sa parnim (neparnim) permutacijama P, = (j1,72,.-- ,jn)
odgovara pozitivan (negativan) predznak;
4° Svaki element matrice A javlja se kao ¢inilac u (n — 1)! sabiraka.

Napomenimo da se kao prvi indeksi elemenata u svim sabircima u (2.8.1)
ne mora uzeti osnovna permutacija P = (1,2,...,n). Naime, moze se
fiksirati bilo koja permutacija, na primer P, = (i1,%2,... ,i,). Ako je njen
broj inverzija u odnosu na P; jednak i, tada se zbir (2.8.1) moze izraziti u
obliku

(2.8.2) Z(_l)iJrjailh Qigga """ Qipjins

gde se sumiranje opet izvodi preko svih permutacija P, = (j1,J2,--- ,Jn)
skupa {1,2,... ,n} i gde je j broj inverzija u permutaciji P, u odnosu na
osnovnu permutaciju P, = (1,2,... ,n).

Dakle, u zbiru (2.8.2) permutacija P, = (i1,%2,... ,i,) je fiksna. Poz-
navajuéi osobine permutacija, nije tesko uociti da su zbirovi (2.8.1) i (2.8.2)
identi¢ni. Naime, preuredenjem elemenata u svakom sabirku

(2.8.3) Wiy jy Gigjo *** Qi i,
u smislu da prvi indeksi elemenata budu redom 1,2,...,n, tj. da se od

permutacije P, dode do permutacije P, niSta se nece promeniti u vrednosti
sabirka (2.8.3), ali ¢e drugi indeksi elemenata u sabirku obrazovati novu



MATRICE I DETERMINANTE 159

permutaciju P, = (j1,75,... ,75), koja ¢e se od one u (2.8.3) razlikovati
upravo za ¢ inverzija. Drugim rec¢ima, broj inverzija u permutaciji P,/, u
odnosu na osnovnu permutaciju Pj, jednak je j/ = j + i¢. Dakle, (2.8.2)

postaje
.7
> (—1) ayja95, - ang,,

§to je ekvivalentno sa (2.8.1).

Predznak (—1)"*7 svakog sabirka (2.8.3) zavisi samo od broja inverzija i
i j u permutacijama P, i P, respektivno.

Primer 2.8.3. Neka je n = 3. Izaberimo permutaciju P3 = (2,3,1), ¢iji je
broj inverzija i = 2. Na osnovu (2.8.2) imamo

a1l Q12 a3

det A = = (-1)? — —

et A=|az1 a2 a3|=(-1) (a21a32a13 (21033012 — 022031013
a3l a32 ass

+ ag2a33ail + az3asiaiz — 023a32a11)~

Preuredenjem svakog sabirka u smislu da prvi indeksi budu uredeni po velicini,
dobijamo

det A = (13021632 — (12021633 — @13022031 + A11022a033 + 126230431 — 411023032,

Sto je ekvivalentno sa ranije uvedenom definicijom (videti slucéaj n =3). A

Na osnovu prethodnog moze se zakljuciti da zbir (2.8.2) predstavlja det A
i u slucaju kada fiksiramo permutaciju (ji1, jo, - - . , jn), & Sumiranje sprovede-
mo preko svih permutacija P, = (i1,12,... ,i,) skupa {1,2,... ,n}.

Prema tome, vazi opsti rezultat:

Teorema 2.8.1. Neka je matrica A € M, data sa

ail a2 e A1n

a21 Q22 QA2n
A=

Gp1  An2 Gnn

Tada se det A moze izraziti v obliku
det A =Y (=) ai,j,ainjy -+ i j,.,

gde se sumirange izvodi preko svih permutacija prvih (drugih) indeksa eleme-
nata, dok su drugi (prvi) indeksi elemenata fiksirani.
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2.9. Osobine determinanata
U ovom odeljku izuc¢i¢emo neke osobine determinanata.

Teorema 2.9.1. det AT = det A.

Dokaz. Neka je A = [a;j]nxn. Kako je AT = [a;i]lnxn, po definiciji, imamo
det AT = Z(—l)jajll%g crQgn,

odakle, na osnovu teoreme 2.8.1, sleduje det AT =det 4. O

Na osnovu teoreme 2.9.1, zaklju¢ujemo da sve osobine determinanata koje
se odnose na njene vrste, vaze i ako se u tim iskazima rec¢ vrsta zameni rec¢ju
kolona. Prema tome, u iskazima koji tretiraju osobine determinanata vazi
dualizam: vrsta — kolona. Zbog toga ¢emo, u daljem tekstu, sve osobine
determinanata dokazivati u formulacijama koje se odnose na vrste, znajudci
da se te iste osobine mogu formulisati i dokazati i za kolone.

Teorema 2.9.2. Ako se svi elementi jedne vrste matrice A pomnoZe nekim
brojem X i dobijenu matricu obelezimo sa B, tada je det B = \det A.

Dokaz. Neka je A = [a;j]nxn 1 neka je matrica B dobijena iz matrice A
mnozenjem njene i-te vrste skalarom A. Tada, na osnovu definicije determi-
nante, imamo

det B =" (=1)ayj,azj, -+ (\aij,) -+~ anj,

=AY (1) a1, a05, - @iy - ang,
=AdetA. O
Teorema 2.9.3. Neka su elementi i-te vrste matrice A = [a;j]nxn dati w
obliku zbira
aij = aj; + ajj (i fiksno; j=1,2,...,n).

Ako su A’ i A” matrice koje se dobijaju iz A tako $to se u i-toj vrsti elementi

aij zamene sa a;; i aj;, respektivno, tada je
det A =det A’ +det A”.

J

Dokaz. Na osnovu definicije determinante, imamo
det A= (=1)ay, --- (a;, +af},) -+~ anj,

=Y (—Vay, -l an, + Y (1) ay, - af, - an;,
=det A" +detA”. O
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Teorema 2.9.4. Ako su elementi jedne vrste matrice A jednaki nuli, tada
je det A = 0.

Dokaz. Tvrdenje teoreme sleduje na osnovu zaklju¢ka navedenog pod 2°
u analizi zbira (2.8.1). O

Teorema 2.9.5. Ako su u matrici A elementi jedne vrste jednaki odgo-
varajucim elementima neke druge vrste, tada je det A = 0.

Dokaz. Neka su i-ta i k-ta vrsta u matrici A jednake, tj. neka je
(2.9.1) Aip = App (p=1,2,...,n).

Uoc¢imo proizvoljan sabirak determinante det A
(292) (—1)ja1j1 A2j, * ** Qg =« * Ay * Ak, -

Takode, uoc¢imo sabirak koji se razlikuje od ovog samo po jednoj transpoziciji
indeksa j; < jr. Takav sabirak je

(2.9.3) —(=1) a1j,2j, -+~ aijy - g, G,

Njegov predznak je suprotan predznaku sabirka (2.9.2) s obzirom da je trans-
pozicijom promenjena parnost u permutaciji indeksa.

S obzirom na (2.9.1), sabirak (2.9.3) se svodi na
—(=1)Y a1, azj, -+~ axjy, - Qij, - Ak,

Sto u zbiru sa (2.9.2) daje nulu. Za ovakva dva sabirka reé¢i éemo da su
odgovarajuca.

Kako za svaki uoceni sabirak postoji njemu odgovarajuéi sabirak u pret-
hodnom smislu, zakljuéujemo da je det A =0. [

Sledeée tvrdenje je posledica teorema 2.9.2 1 2.9.5.

Teorema 2.9.6. Ako su u matrici A elementi jedne vrste proporcionalni
odgovarajuéim elementima neke druge vrste, tada je det A = 0.

Takode, na osnovu teorema 2.9.2, 2.9.3 1 2.9.6 vaze i sledeéi rezultati:

Teorema 2.9.7. Determinanta matrice ne menja vrednost ako se elemen-
tima jedne vrste dodaju odgovarajuéi elementi neke druge vrste, prethodno
pomnozZeni istim skalarom.
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Teorema 2.9.8. Ako je u matrici A jedna vrsta linearna kombinacija os-

talih vrsta, tada je det A = 0.

Teorema 2.9.9. Ako odgovarajuéi elementi dve vrste matrice A promene
svoja mesta i dobijenu matricu obelezimo sa B, tada vazi jednakost

(2.9.4)

det B = —det A.

Dokaz. Neka odgovarajuci elementi u i-toj i k-toj vrsti matrice A promene

mesta. Tada je

[a11 aq2 A1p ] [a11 a1z 1n ]
a1 G52 Qin g1 A2 Akn
A= , B =
ar1 a2 Qfn a1 G2 Qin
L Qn1 an2 Apn J L Qn1 an2 Apn

Da bismo dokazali (2.9.4), koristi¢emo se teoremom 2.9.7.

Podimo od det A. Njena vrednost se ne menja ako elementima i-te vrste
dodamo odgovarajuée elemente k-te vrste. Tako imamo

ai a2 a1in
;1 + a1 G2 + ag2 Qin + Ggn
det A = .
ak1 997) Qfn
an1l an2 Ann

Ako, sada, elementima k-te vrste dodamo odgovarajuce elemente novofor-
mirane i-te vrste, prethodno pomnozene faktorom —1, dobijamo

a1 a12 Q1n
a;1 +ax1 a2+ age Aip + Qkp
det A = .
—Q51 —a;2 —Qin
an1 An2 Ann
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Najzad, dodavanjem k-te vrste i-toj vrsti i izvlacenjem faktora —1 iz k-te

vrste, dobijamo
det A= —detB. O

Teorema 2.9.10. Neka su date kvadratne matrice A = [aijlnxn ¢ B =
bijlnxn- Tada je

(2.9.5) det(AB) = (det A)(det B).
Dokaz. Neka je C' = AB = [¢;j]nxn, gde je
Cij :Zaikbkj (i,j:1,2.... ,n).
k=1

Podimo od det C, tj. od

n n n
Y akbrr Y aikbe >~ A1kbn
k=1 k=1 k=1
n n n
, > askbrr Y askbro > orbrn
Z(_l)]cljl v+ Cnj, = | k=1 k=1 k=1 s
n : n n
> ankbr1 Y bz >~ Ankbin
k=1 k=1 k=1
i potrazimo izraz za svaki sabirak cyj, ... cp;, ove determinante. U tom cilju,
stavimo: ¢1; =0 (tj. a1; =0) za j # j1;...; ¢y =0 (). an; =0) za j # jn.
Tada je

det C = Z(_l)jcljl - Cnjp

aljlbjll aljl bj12 e aljl bj1n bj11 bj12 e bj1n
a2j,bj,1  a25,b5,2 a2;,bj,m bj,1 bjy2 bjyn

= =y . )
anj,bj,1 anj,bj,2 anj,bj,n bj,1 bj,2 bjn

gde je Qj = aj, azj, - -+ anj, -
Ako su neki od brojeva ji,ja,...,J, jednaki, tada je determinanta na
desnoj strani poslednje jednakosti jednaka nuli, s obzirom da ima bar dve
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jednake vrste. Ako su, medutim, svi brojevi ji, jo,... ,j, medu sobom ra-
zIic¢iti, tada je desna strana ove jednakosti

15, Q255 ** * Anj, (_1)j (det B)?

gde je j broj inverzija u permutaciji (ji,j2,-.. ,Jn) U odnosu na osnovnu
permutaciju (1,2,... ,n).

Prema tome,
det C' = (=1) a1, a2, -+ anj, (det B) = (det A)(det B). O

Kako je determinanta matrice jednaka determinanti njene transponovane
matrice, na osnovu (2.9.5) zaklju¢ujemo da je

det C' = det(AB) = det(ABT) = det(A” B) = det(A” BT),

Sto znaci da kao matricu C' = [¢;;]7 mozemo uzeti bilo koju od sledece cetiri
matrice: AB, ABT, ATB, AT BT. Drugim re¢ima, proizvod dve determi-
nante moze se predstaviti kao determinanta |c;;|7, uzimajuéi za elemente c;;
(i,7 =1,...,n) bilo koji od sledeca cetiri izraza:

n n n n
Cij = g aikbrj, Ccij = E aikbjr, cij = E akibrj, Cij = g ar;ibjr.
k=1 k=1 k=1 k=1

2.10. Razlaganje determinante

Prilikom izracunavanja determinante treceg reda, mozemo postupiti tako
§to ¢emo izdvojiti iz svih sabiraka elemente samo jedne vrste, ili samo jedne
kolone. Izaberimo, na primer, prvu vrstu. Tako imamo

ai; aiz2 Aais
D =detA= a21 Q22 Q23
az1 az2 as3

= 011(022033 - 6123&32) - a12(a2la33 - 6123&31) + a13(a21<l32 - a22&31)-
Ako izraze u zagradama protumacimo kao determinante drugog reda, imamo

a21  G22
as;  as2

a21 Q23
a31 as3

a2 Q23

D = a1y
az2 a33

+ a3
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.
(2.10.1) D = a11 D11 — a12D12 + a13Dq3,

gde smo sa D;; oznacili determinante, koje se dobijaju iz determinante D
izostavljanjem i-te vrste i j-te kolone. U naSem slucaju imamo da je i = 1.
Za determinantu D;; kazemo da je minor ili subdeterminanta elementa a;;
date determinante. Za formulu (2.10.1) kazemo da je razlaganje ili razvoj
determinante po elementima prve vrste.

Moguce je dati razvoj determinante D i po elementima bilo koje vrste, t;j.
bilo koje kolone. Tako imamo razvoje

D = —a21 D21 + aza Das — a3 Da3
az1 D31 — aza D3z + azz D33

= a11D11 — az1 D21 +az1 D3y

= —a12D12 + a22D22 — az2 D32

= a13D13 — a23D23 + a3z Dss.

Na osnovu dobijenih razlaganja determinante treceg reda, zaklju¢ujemo
da uz neke elemente u razvoju stoji predznak 4+, a uz neke predznak —.
Primetimo da uz element a;; uvek stoji (—1)"*J. Dakle, ovaj predznak je
iskljucivo odreden pozicijom elementa a;; u determinanti, pa se zato i naziva
predznak mesta (i, ).

Sli¢no, moze se razmatrati i slucaj determinante n-tog reda. Razvijajudi
takvu determinantu po elementima bilo koje vrste, tj. bilo koje kolone, do-
bijamo linearnu kombinaciju od n determinanata (n — 1)-og reda.

Definicija 2.10.1. Ako se u determinanti n-tog reda

ai; a2 ... Qin
(2.10.2) D—deta=|"" " o
anl  Gn2 QAnn
izostave elementi i-te vrste i j-te kolone (i,7 = 1,2,...,n), za dobijenu

determinantu (n — 1)-og reda, u oznaci D;;, kazemo da je minor ili subde-
terminanta elementa a;;.

Za proizvod predznaka mesta (,j) i minora elementa a;;, u oznaci A,;,
kazemo da je kofaktor elementa a;;.
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Dakle,
Aij = (_1)Z+]Dij (27] = 1727"' >n)‘

Da bismo razvili determinantu (2.10.2), na primer, po elementima prve
vrste, podimo od definicione formule

(2103) D =detA= Z(—l)jaljlagjz c o Qngy,
gde se sumiranje izvodi preko svih permutacija P, = (j1, jo,... ,Jn) skupa
{1,2,... ,n}, dok je j broj inverzija u permutaciji P, u odnosu na osnovnu

permutaciju P, = (1,2,...,n).

Da bismo odredili koeficijent uz a;; u izrazu (2.10.3), posmatrajmo sve
one permutacije P, koje poc¢inju sa 1, tj. one kod kojih je j; = 1. Tada je
koeficijent uz ay1, upravo, zbir

(2104) Z(—l)kazj2a3j3 R 27
Sumiranje se izvodi preko svih permutacija (j2,J3,... ,Jjn) Osnovnog skupa
{2,3,... ,n}, a k je odgovarajuci broj inverzija u permutaciji (j2, j3, - - - ,jn)-

Naravno, po definiciji determinante, zbir (2.10.4) predstavlja determinantu

Q22 G23 ... Q2p

a3z 33 a3n
Dy =

an2 an3 Ann

Dakle, koeficijent uz element aq; je minor Dyy = (—1)'T1Dy; = Ay,

Odredimo sada koeficijent uz element aq5. Taj slucaj se svodi na pret-
hodni. Naime, permutacijom prve i druge kolone u (2.10.2), dolazimo do
determinante koja je po znaku suprotna determinanti D. Dakle,

a2 ai; a3 ... Qin

Q22 A21 A23 A2n
(2.10.5) D=—

an2 an1l an3 Ann

Na osnovu prethodnog, izostavljanjem prve vrste i prve kolone u determi-
nanti na desnoj strani u (2.10.5), dobijamo koeficijent uz a2 u razvoju ove
determinante, Sto je, u stvari, minor

a1 a23 . a2n
Dig =

Gn1  An3 Gnn
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Dakle, koeficijent uz a2 u razvoju determinate (2.10.2) je
—Dip = (-1)""?Dyy = Ay

U opstem sluc¢aju, za odredivanje koeficijenta uz element aq; potrebno je
k-tu kolonu u determinanti D redom permutovati sa (k — 1)-om, (k — 2)-
gom, ..., i, najzad, sa prvom kolonom, dovodeé¢i na taj nacin element aqg
na poziciju (1,1). Kako se, pri ovome, ¢ini k — 1 permutacija kolona, to je,
saglasno prethodnom, koeficijent uz ai; u razvoju determinante D jednak
(_1)k71D1]C — (—1)1+kD1k-

Prema tome, determinantu D mozemo razviti na sledeéi nacin
D =ay1 D1y — a1eDiz + -+ + (=1) " Fay, Dyg + - + (=1)""ay,, D1y,
ili, koriséenjem kofaktora,
D =a11A11 + aipAi2 + -+ apn Ay

Naravno, kao i u slu¢aju determinante tre¢eg reda, mogucée je opStu de-
terminantu n-tog reda razloziti po elementima bilo koje vrste, tj. bilo koje
kolone. Tako, u stvari, imamo Laplaceove®® formule, date slede¢om teore-
mom:

Teorema 2.10.1. Determinanta D, odredena sa (2.10.2), moZe se pomocu
kofaktora njenih elemenata razloZiti na sledece nacine:

(2.10.6) D=> andAsx (i=12,...,n),
k=1

(2.10.7) D= arjAr;  (j=1,2,...,n).
k=1

Napomena 2.10.1. Determinanta treéeg reda moze se izracunati koriséenjem
tzv. Sarrusovog40) pravila koje se sastoji u proSirenju determinante, dopisivanjem
prve dve kolone, i uzimanju svih proizvoda po silaznim dijagonalama sa pozitivnim

39) Pierre Simon de Laplace (1749-1827), veliki francuski matematicar.
40)  Pierre Frédérique Sarrus (1798-1861), francuski matematicar.
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predznakom i svih proizvoda po uzlaznim dijagonalama sa negativnim predznakom.
Dakle,

ailp ai2 a13| a1 a12
a1 G222 G23| G21 @22 = (a11a22a33 + ai2a23a31 + a13a21a32)
azi1 a3z2 a33| a31r a32

- (a31a22a13 + azza23a1il + a33a21a12)-

Primer 2.10.1. Pri reSavanju mnogih problema javlja se potreba za izracuna-
vanjem determinante

1 xo x% B
1z 3 xt
2 n . .
VnEVn(a}'O,xl,.,.7IEn): 1 T2 T2 Z2 ’ x7,7éx] (27&.7)7
1 zn 22 Ty

koja je poznata kao Vandermondeova®") determinanta. Red ove determinante je
n + 1. Pokazaéemo sada da je

(2.10.8) V=[] (z5—=),

0<i<j<n

gde se mnozenje obavlja po svim indeksima %, j, za koje je 0 < i < j < n.

Ako elementima (k + 1)-ve kolone determinante V;, dodamo odgovarajude ele-

mente k-te kolone, prethodno pomnozene sa —xqg, redom za k = n,n —1,...,1,
dobijamo
1 0 0 0
1 =1 —=z0 =] —zox1 z — xoxqffl
2 n—1
Vv, = 1 z9—20 25— x072 Ty — TOTy
1 Zn—1z0 22— ToTn z? — ozt

Razvijajuéi Vi, po elementima prve vrste, determinanta se svodi na slede¢u
determinantu n-tog reda

r1—x9 (x1—x0)r1 ... (r1—m0)x]”
xo —x0 (T2 — TO)T2 (wg — o)z~

Vn == . 5
Tn — 0 (fEn - 1’0)1’11 (l‘n - 1’0)$271

41)  Alexandre Théophile Vandermonde (1735-1796), francuski matematicar.
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odakle, izvlacenjem zajednickih faktora iz prve, druge, ..., n-te vrste, dobijamo
1 ... x?il
T2 xg_l

Vo = (21 — x0) (w2 — z0) - - - (zn — x0) : ,

tj.
Va(zo, 21, ... ,2n) = (x1 — xo) (w2 — x0) - - - (xn — o) Va1 (21, T2, . .. ,Tn).
Ovim smo dobili rekurzivnu formulu, ¢ijom primenom nalazimo redom

Vn—l(x17x27 cee an) = (IZ'Q - xl) o (xn - xl)V’I’L—Q(x27 s an)7

Vi(@p—1,2n) = (xn — Tp—1).

Iz dobijenih jednakosti neposredno sleduje (2.10.8). A
Primer 2.10.2. Neka je

skzwlf—l—xé—l—n-—l—xﬁ (k> 0),

gde su z; (1=1,2,...,n) dati brojevi.

Odredi¢emo determinantu n-tog reda

S0 S1 e Sn—1
S1 S92 Sn
D =
Spn—1 Sn S2n—2
Neka je V,—1 = V,—1(x1,22,... ,2n) Vandermondeova determinanta n-tog

reda razmatrana u prethodnom primeru. Na osnovu teoreme 2.9.10 i komentara
koji sledi ovu teoremu, imamo

1 R | 1 oay .oa)!
o Tn 1 a9 ah~t

2
Vn—l = : ’ . ’
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tj.
S0 51 e Sn—1
9 S1 S92 Sn
Vi,=| . =D.
Sn—1 Sn S2n—2

Najzad, koris¢enjem rezultata iz prethodnog primera dobijamo42)

D= H (xj — :J:i)Q. A

1<i<j<n

U vezi sa Laplaceovim formulama moguée je postaviti jedan opstiji prob-
lem. Naime, ako u razvoju (2.10.6) umesto kofaktora A;j, koji odgovaraju
elementima i-te vrste, uzmemo recimo kofaktore A;j, koji odgovaraju el-
ementima j-te vrste, Sta ¢e biti sa ovim zbirom? Sli¢no pitanje moze se
postaviti i za formulu (2.10.7). Odgovor na ova pitanja daje sledeca teo-
rema:

Teorema 2.10.2. Za svako t,5 = 1,... ,n vaZe identiteti:
(2.10.9) Z aikAjk = Ddij,
k=1
n
(2.10.10) > apiAg; = Ddij
k=1

gde je 6;; Kroneckerova delta.
Dokaz. Dokazad¢emo samo formulu (2.10.9).
Za j =i formula (2.10.9) postaje (2.10.6).

Pretpostavimo sada da je j # i. Ako determinantu D razvijemo po
elementima j-te vrste, imamo

(2.10.11) > ajrAj=D.
k=1
S druge strane, ako stavimo a;j; = a;; (k = 1,... ,n), odgovarajuca deter-

minanta jednaka je nuli jer su dve vrste identi¢ne, tako da (2.10.11) implicira
(2.10.9).

Formula (2.10.10) dokazuje se analogno. [

42) Velicina D predstavlja tzv. diskriminantu moniénog polinoma, o emu ée biti reci
u Sestoj glavi.
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2.11. Adjungovana i inverzna matrica
Neka M,, oznacava skup svih kvadratnih matrica reda n.

Definicija 2.11.1. Neka je A;; kofaktor elementa a;; matrice

a1 ai2 e QA1n
az1  A22 QA2n
A= [aij]nxn =
ap1  Gp2 Gnn
Tada se matrica
All A21 e Anl
. . Az Aso Apa
ad.] A= adJ [aij]nxn = .

Aln A2n Ann

nagziva adjungovana matrica matrice A.

Primetimo da se kofaktori, kao elementi matrice adj A, pojavljuju u tzv.
transponovanom obliku, tj. A;; se nalazi u j-toj vrsti i i-toj koloni, dakle,
na poziciji koja odgovara elementu a;; u transponovanoj matrici AT,

Teorema 2.11.1. Za matrice A i adj A vazi jednakost
(2.11.1) A-(adjA)=(adjA)- A= (det A)T.

Dokaz. Neka je C = [¢ijlnxn = A - (adj A). Tada se elementi matrice C

n
Cij = E aixAjk,
k=1

na osnovu (2.10.9), mogu izraziti u obliku ¢;; = (det A)d;;, gde je d;; Kro-
neckerova delta. Dakle, C' = (det A)I. Sli¢no se, koriséenjem (2.10.10),
dokazuje da je (adj A)A = (det A)I. O

Teorema 2.11.2. Za matricu A € M,, vaZi jednakost

(2.11.2) det(adj A) = (det A)" 1.

Dokaz. Primenom teoreme 2.9.10 na (2.11.1) dobijamo
(det A) det(adj A) = (det A)".
Ako je det A # 0, na osnovu prethodne jednakosti, dobijamo (2.11.2). Medu-
tim, ova formula ostaje u vaznosti i u slucaju kada je det A =0. [

Za determinantu adjungovane matrice koristi se i termin adjungovana
determinanta.
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Definicija 2.11.2. Neka A € M,,. Za matricu X € M, kazemo da je
inverzna matrica matrice A ako je

(2.11.3) AX =XA=1.

Kada postoji matrica X koja zadovoljava (2.11.3), primenom teoreme
2.9.10, zaklju¢ujemo da mora biti (det A)(det X) = detI = 1, tj. da se
potreban uslov za egzistenciju inverzne matrice svodi na uslov det A # 0.
Naravno, tada je det X = 1/det A. Jednostavno se pokazuje da je ovaj uslov,
det A # 0, istovremeno i dovoljan uslov za egzistenciju inverzne matrice X,
za koju éemo, nadalje, koristiti oznaku A~1.

Teorema 2.11.3. Ako je det A # 0, tada inverzna matrica A~ postoji,
jedinstvena je i moze se predstaviti u obliku

_ 1 .
A lzdetAadJA.

Dokaz. Pretpostavimo da je det A # 0. Deljenjem jednakosti (2.11.1) sa
det A, dobijamo

1 . 1 .
A(detAad‘]A> = <detAad‘]A>A_I’

odakle, poredenjem sa (2.11.3), zaklju¢ujemo da je matrica

1
X = i A
det A adj

inverzna matrica za A.

Za dokaz jedinstvenosti inverzne matrice pretpostavimo da postoje dve
inverzne matrice X i Y, tj. pretpostavimo da je

AX=XA=1 i AY =YA=1.

Mnozenjem prve jednakosti sa Y sa leve strane, a druge sa X sa desne strane,
dobijamo
YAX =YI=Y i YAX =1X = X,

odakle sleduje da je X =Y. O
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Primer 2.11.1. Neka je

1 -3 -1
A= |-2 7 2
3 2 —4

Kako je

detA=1-7-(-4)+(-3)-2-3+(-1)-(-2)-2
—(=1)-7-3—=(=3)-(=2)-(-4) —1-2-2=—1#0,

zaklju¢ujemo da postoji inverzna matrica AL
Odredi¢emo najpre adjungovanu matricu adj A, pri ¢emu je pogodno poéi od
transponovane matrice

1 -2 3
AT=1-3 7 2
-1 2 —4
Tada redom nalazimo
(72 -3 2
A =D = B _4] = —32, A21——D21——[_1 _ ] —14,
-3 7 -2 3
A31—D31—__1 2]—1, A12——D12——[ 9 _4}——27
13 1 -2
Ag2 = D23 = 1 _4}——1, A32——D32——[_1 2]—0,
[—2 3 3
A1z = D13 = i 7 2:| = —25, A23——D23_—|:_3 2:| = —11,
1 -2
A == D = =
33 33 [_3 7]
Prema tome,
-32 —-14 1
adjA=| -2 -1 0
-25 —11 1
Najzad, dobijamo
1 32 14 -1
1 adjA=]2 1 0]|. A

det A 25 11 -1
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Definicija 2.11.3. Ako za matricu A € M,, postoji inverzna matrica kaze-
mo da je matrica A regularna ili nesingularna matrica.

U protivnom, za matricu A kazemo da je singularna ili neregularna.

Napomena 2.11.1. Ako je A matrica operatora A: X — X (dimX = n) u
odnosu na neku fiksiranu bazu B, tada je matrica inverznog operatora A_l, ukoliko
postoji, upravo, matrica A~ Kao sto je poznato samo regularni operatori imaju
inverzni operator. Dakle, matrice regularnih operatora su regularne matrice.

Primer 2.11.2. Neka je My (z,a) skup kvadratnih matrica n-tog reda oblika

T+« x x x

x T+« x x

A=A(z,a) = T T T+« T
x x x T+«

Za odredivanje determinante matrice A postupimo na sledeéi naéin:

1° Elementima druge, treée, ..., n-te vrste determinante, redom dodajemo
odgovarajuce elemente prve vrste, prethodno pomnozene sa —1. Tada dobijamo

r+a x T ... X
—« a 0 0
detA=| —@ 0 « 0
-« 0 O «

2° Elementima prve kolone dodajmo redom odgovarajuée elemente druge, treée,
..., n-te kolone determinante. Tako dobijamo trougaonu determinantu

nc+aoa r T ... X
0 a 0 0

det A = 0 0 0| =a" Y(nz+a).
0 0 O «

Dakle, matrica A je regularna ako je @« # 0 i nx + a # 0. U tom slucaju,
inverzna matrica postoji. Pokazac¢emo da je A1 istog oblika kao i matrica A, tj.
da je A(x,oz)fl = A(y, ), gde su y i B parametri koje ¢emo odrediti u funkciji
parametara x i a.

Ako sa U oznaCimo matricu n-tog reda, ¢iji su svi elementi jednaki jedinici,
tada se matrica A moze jednostavno izraziti u obliku A = zU + al.
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Pretpostavimo da je A7l = yU + BI. Tada imamo
AATY = (2U + D) (yU + BI)
= ny2 + ayU + Ba2U + a1
= (naxy + ay + Bz)U + afI
jer je U? = nU.
Kako je AATL = I, na osnovu prethodnog, mora biti
nxy+ay+ Bx =0 i af =1,

odakle sleduje
T

VE T amta) B =
Dakle, A(x,oz)f1 =A(y,0). A
Za regularne matrice moze se definisati stepen matrice A* i za negativno
celo k. Naime, ako je k prirodan broj, mozemo uzeti da je

L
-

Ak = (ALY,
ili, $to je isto,

AR = (AF)7L
Teorema 2.11.4. Za reqularnu matricu A vazi
(2.11.4) (A" = ")~

Dokaz. Kako je A regularna matrica, to je i AT, takode, regularna mat-
rica. Transponovanjem jednakosti AA~! = I dobijamo

(Aa T =T aT =1,
odakle sleduje (2.11.4). O
Teorema 2.11.5. Za regularne matrice A i B vaZi jednakost
(2.11.5) (AB)"'=B~tA™t
Dokaz. Kako je
(AB)BT'A™ ) =A(BB ')A '=AIAT = AAT =1

(BT'A™YAB)=B"' (A 'A)B=B"'IB=B"'B=1,
zaklju¢ujemo da jednakost (2.11.5) vazi. O
Matematickom indukcijom moze se dokazati da vazi sledec¢e tvrdenje:
Teorema 2.11.6. Za reqularne matrice A1, ..., A,, vaZi jednakost
(Ap---Ap) Pt =A . AT
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2.12. Blok matrice i operacije sa njima

Definicija 2.12.1. Ako se matrica A tipa m X n mrezom horizontalnih i
vertikalnih pravih razlozi na vise matrica, kaze se da je matrica razbijena na
blokove.

Blokovi matrice A su matrice A;; tipa m; X nj, gde su

q
E m; =m i E nj =n.
. =

Operacije sa matricama razbijenim na blokove su formalno iste sa ope-
racijama kod obi¢nih matrica. Naime, vaze sledeéi rezultati:

Teorema 2.12.1. Neka su matrice A i B razbijene na blokove, tj. neka je

All A12 oo Alq B11 B12 oo qu
A A'21 Az AQq i B B'21 Bao qu 7
Apl Ap2 qu Bpl Bp2 qu

gde su A;j i Bi; matrice istog tipa. Tada je

DV R VZ SO V7
A= )\14.121 Ao AAazq A EK)
)\Apl Ao DV
Z A+ By A+ B ... A+ By,
A+ Bo Aoy + Byy Az + B Agq + Bay
Ap + By Aps + Bpo Apg + By
Teorema 2.12.2. Neka su
Ay A o0 Ay Bi1 Bis ... Bis

Ao Ao1 Ao Ay Bo1 DB Bs,

Apl Ap? qu Bql Bq2 qu
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i neka su blokovi takvi da je broj kolona bloka A;; jednak broju vrsta bloka
B (i=1,...,p;j=1,...,¢; k=1,...,s). Tada je

Cii Ci2 ... Cis

C C Cos
AB — ?1 22 2 ’

Cpi Cpo Chps

q
gdeje CZ]C: ZAz]B]k (221, » Ds k}:l, ,S).
j=1

Primer 2.12.1. Neka su

5 2 0 0 1 -2 -1 0 0
21 00 -2 5 2 0 0
A= 0 0 8 3|’ b= 0 0 0 2 -3
0 0 5 2 0 0 0 -5 8

Ako stavimo

5 2 8 3 1 -2 -1 [ 2 -3
A11—[2 1]71422—[5 2}7311—[_2 5 2]7322—[_5 8]’
imamo

AB — [Aan o ] _

0O Az Baa
Kako je
5 2 1 -2 -1 1 0 -1
A”Bll_[2 1}'[—2 5 2}_[0 1 0}
i
3 2 -3 1 0
L N P

dobijamo

1 0 -1 | 0 0

o 1 0 | o0 o0

AB=|—— —— _—— — __ __|. A
o 0 0 | 1 o0
o 0o 0 | o0 1

Neposrednim mnozenjem moze se dokazati sledeéi rezultat:
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Teorema 2.12.3. Neka je

A A
A=
[Am A22]

reqularna matrica, gde su A1y 1 Agss kvadratne matrice. Ako je matrica Asg

reqularna, tada je
A~ — [Xn X12]
Xo1 Xoo |’

gde su
X11 = (A11 — A12A2721A21)71, X12 = _X11A12A;217
Xo1 = — Az An X1, Xop = Agy (I = A1 X12).

Primer 2.12.2. Za matricu

0 0 1 —1
0 3 1 4
A_276—1
1 2 2 -1

odredi¢emo A~ !. Neka su

0 0 1 -1 2 7 6 —1
A11—|:0 3],1412—[1 4],1421—[1 2]71422—[2 _1]~

Na osnovu teoreme 2.12.3, imamo redom:

_ 1]-1 3
X11 = (A1 — A2 Az Asy) ' = 6 [_7 _3} ;
_ 1| -7 20
Xip = —X11 41245, = 6 [ 5 _10} )
_ 119 3
Xo1 = —A221A21X11 =35 [3 3] ,
11-3 6
KXoz = Ay (I - AnnX12) = ¢ [_3 6}
Dakle,
1 3 | -7 20
A T - R0
A=l = - = -] s
9 3 | -3 6
3 3 | -3 6
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Definicija 2.12.2. Neka su A i B pravougaone matrice dimenzija m X n i
p X ¢, respektivno. Za matricu

allB algB v alnB

ang (IQQB agnB
C=A®B= ,

amlB amgB amnB

tipa mp X ngq, kazemo da je Kroneckerov proizvod matrica A i B.

Moze se pokazati da za proizvoljne matrice A, B, C, D, za koje naznacene
operacije imaju smisla, i svako A € K, vaze sledeée jednakosti:

(1) (M)® B=A® (AB) = A(A® B);
2) (A+B)®@C=AcC+BC;
3) A®(B+C)=A@B+A®C;
(4) (AB)® (CD) = (A C)(B® D).

Neka je A kvadratna matrica reda n podeljena na blokove na slede¢i nacin

All A12 A Alp
A A A
(2.12.1) A= |00 77 2p (p > 2),
Apl Ap2 App
tako da su dijagonalni blokovi A;;, Ags, ..., A,, kvadratne matrice.

Definicija 2.12.3. Ako su svi vandijagonalni blokovi A;; = O (i # j),
za matricu A, datu sa (2.12.1), kazemo da je kvazidijagonalna matrica i
oznatavamo je sa

(2.12.2) A=A +Ap+ - +A4,.

Dijagonalni blokovi matrice A, koji se pojavljuju u formuli (2.12.2), ¢esto
se oznacavaju izostavljanjem drugog indeksa. Tako, formula (2.12.2) postaje
(2.12.3) A=A +A+ - + A,

Primer 2.12.3. Matrica

OO O OO
OO oo~ Oo
SO OO NO O
OO = O OO
O~ N O OO
= Ww oo oo
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je kvazidijagonalna i moze se predstaviti u obliku
10 1 2 0
A:[O 1]4}[2]4} 01 3. A
0 0 1

Na kraju ovog odeljka naveséemo dve teoreme koje se odnose na operacije
sa kvazidijagonalnim matricama.

Teorema 2.12.4. Ako je )\ skalar i k prirodan broj, za kvazidijagonalnu
matricu A, oblika
A=A +A+ - + A,

gde su matrice A; (i =1,...,p) istoga reda, vazZe jednakosti
M =XMA;1 XA+ - +AA,,
AT = AT+ AT+ - + AL,
A= A EAL T A
AP =AY+ AS 4 AL
Teorema 2.12.5. Za kvazidijagonalne matrice
A=A+ A+ -+ A4, i B=B;+Bs+ -+ + By,
gde su matrice A; i B; (i =1,...,p) istoga reda, vaZe jednakosti

A+B=(A1+B1)+ (A2 +By)+ --- + (4, + By)

AB = A1By + A3By & -+ + A,B,.

3. ZADACI ZA VEZBU

3.1. Neka su u prostoru R* dati vektori

z, = (1,1,2,1), @5 = (1,-1,0,1), @3 = (0,0,—1,1), @4 = (1,2,2,0),
Y1 = (17 1727 1)7 Y2 = (_171707_1)7 Y3 = (0707_27_2)7 Yg = (1727270)
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Dokazati da svaki od skupova vektora

B, = {x1, %2, T3, T4} i By ={y1,Y2,Y3, Y}

¢ini vektorsku bazu prostora R*, a zatim izraziti vektor u = (1,1,1,1) po-
mocu vektora svake od ovih baza.

3.2. Neka je M skup svih kvadratnih matrica oblika

1 0 x
M,= |-z 1 —2%/2 (x € R).
0 0 1

Ako je operacija - mnozenje matrica, ispitati strukturu (M, -).

3.3. Neka je M, kvadratna matrica reda n oblika

a
M, =" ¢ (a € R).
a a a

Ako je M = {M, | a € R,a # 0}, ispitati strukturu (M, -), gde je -
mnozenje matrica.
3.4. Ako je M skup svih matrica oblika

M(a,a) = (>0, aeR),

o O Q
O = O
— 9 O

ispitati strukturu (M, ). Koje osobine ima preslikavanje f: M — C, defin-
isano pomocu A
f(M(a, o)) = ae’®.

3.5. Dokazati: Ako je A unitarna matrica, tada su i matrice A7, A i A*
unitarne matrice.

3.6. Proveriti jednakosti

2r 44 40 55
20 64 21 40
13 -20 —-13 24
46 45 55 84

Sl Ot =1
S NS N
Tl w1 w
NS I CIRN |
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3.7. Proveriti jednakosti

3 6 5 6 4 24 11 13 17 19
5 9 7 8 6 51 13 32 40 46
6 12 13 9 7|=05, 61 11 14 50 56| = 100.
4 6 6 5 4 62 20 7 13 52
2 5 4 5 3 80 24 45 57 70

3.8. Dokazati jednakost

1 2 3 n
1 z+1 3 n

Dxz)=|1 2 z+1 nol=@-1)x-2)-(x—n+1).
1 2 3 z+1

Uputstvo. Konstatovati prvo da vaze jednakosti D(k) =0 (k=1,2,...,n—1).

3.9. Proveriti jednakost

l+z 1 1 1
. 1 1—=z 1 1 2.2
D(@.2)=1 1 142 1 |7 %7
1 1 1 1-2z

Uputstvo. Zakljuciti prvo da vaze jednakosti:

D(—z,z) = D(z, z), D(z,—z) = D(z, z), D(0,z) = D(z,0) =0,

2 2

kao i da je D(z,z) deljivo i sa z° i sa 22.

3.10. Dokazati jednakosti

1 2 3 ... n
z 1 2 n—1
1° r x 1 n—2|= (—1)”((3: -1)" - :L""),
r xr T 1
z+1 T x T
T T+ 2 x x
T oz T
90 x x T+ 3 T |=nl(1 I
‘ n(+x+2+3+ +=)
T T x r+n
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3.11. Odrediti vrednosti determinanata

1 a a2 a4 1 2 3 4

a‘ a’ a 1 a a° a

1 b b vt 1 v v bt 1 b b vt

A= 1 ¢ & & B = 1 2 S & C= 1 ¢ & &
1 d d® d* 1 &? & d* 1 d a3 d*

Uputstvo. Svaku od determinanata A, B, C uporediti sa Vandermondeovom determi-

nantom

2 3 4

1 a a° a° a
1 b b b b
Vs(a,b,c,d,z) =1 ¢ 2 3 A
1 d d> & a*
1z 22 23 ot
3.12. Dokazati jednakost
A0 - 0 a
0 A 0 a9
Dn(Xa1,az,...,an) = | ! S N O s . S
a1 ag an A
Uputstvo. Dokazati prvo da vazi rekurentna jednakost
DnJrl()\y a1,a2,..., an+1) = AD’I’L(>‘7 az,ag, ..., anJrl) - Anila% (77, Z 1)
3.13. Proveriti jednakost
a1b1 a1b2 a1b3 e (Ilbn
aiby azby  asbs azbyp n—1
Dy (a,b) = | 1b3  azbs  azbs asbn | = ayb,, Z(ai+1bi — aibit1).
. i=1
ai bn CLan a3bn anp bn

Uputstvo. Dokazati da vazi rekurentna jednakost
bn,

Dn(avb) = b1
" —

(anbn_l —an_lbn)Dn_l(a,b) (n=2,3,...).

3.14. Ako je D, (a,b) determinanta reda n zadata sa

0 a a a
b 0 «a a
b b 0 7

D, (a,b) = a
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odrediti njenu vrednost.
an—l _ bn—l
Rezultat. Dy (a,b) = (—1)""1ab ;
@ —

3.15. Odrediti sve kvadratne matrice A, reda dva, za koje je A% = A.

Rezultat. Trazene matrice su

0 0 1 0 0 0
[OO’iOI]’i[al’i , £

1 « 1 0
00:|’:|:|:a0

0 «
0 1:| (a € R).

matrica.

Rezultat. Trazene matrice su:
10 -1 0 . a b 2 B
0 1:| , |: 0 1:| i |:c a:| (a® +bc=1).

0
1

3.17. Ako je A= [ _(1)], odrediti A™ (n € N).

3.18. Neka je
-1 a a
A= 1 -1 0 (a € C).
-1 0 -1
1° Odrediti (A + I)3.
2° Izracunati A" (n € N).

3.19. Odrediti sve matrice M koje su komutativne sa matricom

A=

O O W
S W =
w = o

a zatim odrediti matrice M", gde je n prirodan broj.

3.20. Neka je u prostoru matrica M; o zadata baza

(e ) B 18] B )
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Odrediti matricu operatora F: M o — Ms 5, definisanog pomocu

1 2 -2 3
fX—[O 3}X+X[_1 1].

Napomena. Videti primer 2.5.5.

3.21. Neka je (S,+,-) prostor realnih polinoma P stepena ne vecéeg od tri
i neka je B = {1, x,22, 23} njegova baza.

Odrediti matricu operatora A: S — S definisanu pomocéu
AP = (z—2)P'(z) (Pes),

a zatim naéi rang A.

3.22. Neka je (P,+,-) prostor realnih polinoma P stepena ne veéeg od tri
i neka je operator A: R* — P definisan pomoéu

A(wl,x2,$3,$4) =T — 22+ (LZ'Q — xg)t + (JZg — 334)t2 + (JZ4 — a:l)t?’.
1° Dokazati da je operator A linearni operator.
2° QOdrediti matricu operatora 4 ako je baza u prostoru originala za-
data sa
B, = {uy,us,us,us} = {(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)},
a u prostoru slika

B, = {’Ul,’UQ,Ug,’U4} = {1, 14+, t—l—tQ, t2 +t3}.

3.23. Neka je M, (z, ) skup kvadratnih matrica n-tog reda oblika

T+« x r ... x

x r+a x x
A= .

x x x r + «

1° Odrediti det A;

2° Ako postoji A~! dokazati da A=t € M, (y, 3), gde su y i 3 parametri
koje treba odrediti u funkciji parametara z i a.
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3.24. Neka su matrice A i B zadate sa A = [1 1} i B= —57) _g] .

0 1

1° Dokazati da su A i B sli¢ne matrice.
2° QOdrediti matrice A9 i B100,

1
3° Ako je C = %(B100 — A9 odrediti matrice C% i C~4.
3.25. Odrediti sve kvadratne matrice A drugog reda za koje je A? = 0.
. ab a?
Rezultat. A=+ 2 —ab:| .
. -1 1 . :
3.26. Neka je A = [ 1 _1]. Odrediti matricu A" (n € N).

Rezultat. A2" =2n], A2n+l —ong,

3.27. Ako je
10 0 1 0 0
a=lo ] e=5a) =)

proveriti jednakosti
BC-CB=2A, AB — BA =28B, CA— AC =2C.

3.28. Pokazati da skup matrica oblika

A:a[(l) ﬂ+b[_} _ﬂ (a,b € C)

ima strukturu prstena sa jedinicom, a zatim odrediti A™.

Rezultat. A" = a"] +na™ b |:1 1:| .

a

3.29. Ako je A= b

2] (a,b € C), proveriti jednakost

ATL

:%[(Z—i—b)”—k(a:b)” (a+b)"—§a:b)”} (neN).

(

a b

3.30. Dokazati da skup matrica oblika A = [0 c] (a,b,c € C) ima struk-

turu prstena.
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3.31. Neka je A kvadratna matrica reda dva. Ako je
M(z) = al + bA (z=a+bi, a,beR),
odrediti matricu A, znajuci da je
M(z2") = M(2)M(2') (2,2' € C).

p

Rezultat. A = |:%(1+p2)

q
p] (p,ae R, ¢#0).

4.32. Proveriti tvrdenja: U odnosu na operacije sabiranje i mnozenje mat-
rica, skup matrica oblika
a b
A=
R

1° Ima strukturu polja izomorfnog polju C ako je a,b € R,

2° Ima strukturu komutativnog prstena sa jedinicom ako je a,b € C.

3.33. Dokazati da skup matrica oblika

_ x Yy
M_[—Qy x+2y} (z,y €R)

ima strukturu polja.
3 4

zatim pokazati da skup svih tih matrica ¢ini komutativni prsten u odnosu
na sabiranje i mnozenje matrica.

3.34. Odrediti sve matrice M koje komutuju sa matricom A = [1 2], a

a 2b

3 aran| @0

Rezultat. M = |:

3.35. Date su matrice

Ako je n prirodan broj, odrediti matrice A™ i B™.

Rezultat. A™ =

2n+173n on _ 3gn A 1 5722n+1 22n+172
2.37 —gntl g.gn_gn| ! T2 |5-5.220 5.92 2]
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3.36. Neka je (X,,,+,-) linearni prostor prosto-periodi¢nih oscilacija nad
poljem R i neka je D operator definisan pomocu

D(Acos(wt + ¢)) = —wAsin(wt + ).

1° Dokazati da je D automorfizam prostora (X,,,+, ).

2° Odrediti matricu opearatora D u bazi B = {coswt, —sinwt}.

3° Ako je f izomorfizam prostora (X,,+,-) i (C,+,-), odrediti f(B).

4° Dokazati da je preslikavanje Dc = fDf~! automorfizam prostora
(C,+,-).

5° Odrediti matricu operatora D¢ u bazi Be = {1, i}, a zatim odrediti

f~H(Be).

3.37. Neka je (X, +,-) prostor prosto-periodi¢nih oscilacija nad poljem R
i neka je Z operator za koji je

Z(Acos(wt + ¢)) = % sin(wt + ).

1° Dokazati da je Z automorfizam prostora (X,,,+,- ).
2° Odrediti matricu operatora Z u bazi B = {coswt, —sinwt}.

3° Ako je f izomorfizam prostora (X,,+,-) i (C,+,-), odrediti f(B).
4° Ako je Ic = fDf~!, dokazati da je Zc¢ automorfizam prostora
(C,+, ) nad poljem R.
5° Odrediti matricu operatora Z¢ u bazi Be = {1, i}.
3.38. Neka je (X, +, ) prostor prosto-periodi¢nih oscilacija nad poljem R,
neka su D i Z operatori za koje je

D(Acos(wt + ¢)) = —wAsin(wt +¢), Z(Acos(wt+ ¢)) = % sin(wt + ¢)

i neka je f izomorfizam vektorskih prostora (X, +,-) i (C,+,-).
1° Ako je Dc = fDf~'iIc = fIf~ !, dokazati da vaze jednakosti

ID=DI=7 i IcDc =Dclc =Ic,

gde su 7 i Z¢ identicki automorfizmi prostora (X, +,-) i (C,+,-),
respektivno.

2° Odrediti: DY, D', T71 125"



IIT GLAVA
Sistemi linearnih jednacina

1. METODI RESAVANJA

1.1. Cramerove formule
Posmatrajmo sistem linearnih jednacina

a1171 + a2 + - + a1y, = by,

2121 + Q22T2 + - -+ + A2, Ty = ba,
(1.1.1)

An1T1 + Ap2Z2 + - + AppTp = bn
Ako je by = by = -+ = b, = 0, za sistem jednacina (1.1.1) se kaze da je
homogen sistem.

Definicija 1.1.1. Uredena n-torka (§1,&2, ... ,&,) je reSenje sistema jedna-
¢ina (1.1.1) ako se svaka jednacina ovog sistema za z = &, (k=1,2,... ,n)
svodi na identitet.

Napomenimo da homogeni sistem jednacina uvek ima tzv. trivijalno re-
Senje &, =0 (k=1,2,... ,n).

Sistem jednacina (1.1.1) mozZe se predstaviti matriéno u obliku
(1.1.2) Ax = b,

gde su A, b, x, redom

aix a2 ... Qip b1 T

asy a2 a2, by T
(1.13) A= - L ob=| |, ==

an1 an2 Apn bn e

U upotrebi je sledeéa terminologija: matrica A je matrica sistema jed-
nacina, b je vektor slobodnih clanova, a x je vektor nepoznatih ili vektor
resenja.
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Pod pretpostavkom da je

aiq a12 e A1n
a21  G22 a2

(1.1.4) D=detA=| . "l o0,
an1l an2 Ann

pokazacemo kako se moze odrediti resenje sistema jednacina (1.1.1).

Kako je, u ovom slucaju, matrica A regularna, mnozenjem matri¢nog
oblika sistema jednacina (1.1.2) inverznom matricom A~! sa leve strane,
dobijamo

A Az = A~ ',
tj.
App A .o Ap b1
. 1 | Az A Apa ba
w—<5adJA>b—5 : . :
Aln A2n Ann b”
Odgovarajuci elementi vektora @ su
1 n
(1.1.5) =7 ;biAik (k=1,2,... ,n).

Sada od determinante (1.1.4) formirajmo determinantu Dy, tako $to ¢emo
k-tu kolonu zameniti vektorom b,

air ... A1k-1 by alk+1 - Qin
as1 agp—1 by agpi1 a2y,

D=1 . (k=1,2,...,n).
Gnl Gn,k—1 bn Qn,k+1 Gnn

Kako se suma na desnoj strani u (1.1.5) moze interpretirati kao razvoj
determinante Dj po elementima k-te kolone, zaklju¢ujemo da je

D
(1.1.6) Ty = f’“

Formule (1.1.6) poznate su kao Cramerove®® formule. U stvari, ove for-
mule je izveo Leibnitz** jos 1678. godine, a Cramer ih je nasao tek 1750.
godine.

43)  Gabriel Cramer (1704-1752), svajcarski matematicar.
44) Qottfried Wilhelm Leibnitz (1646-1716), veliki nemacki matematicar.
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Prema tome, ako je D = det A # 0, sistem jednacina (1.1.1) ima jedin-
stveno resenje dato Cramerovim formulama (1.1.6).

U slucaju kada je D = 0, a bar jedna od determinanata Dy razlic¢ita od
nule, sistem jednacina (1.1.1) je nemogué (protivurecan). Medutim, ako je
D=01iD;=0,zasvako k =1,2,...,n, na osnovu Cramerovih formula ne
mozemo niSta konkretno zakljuéiti o resivosti datog sistema jednacina. Taj
slucaj bice razmatran kasnije.

Na osnovu Cramerovih formula moze se izvesti zakljucak da homogeni
sistem jednacina, za koji je D # 0, ima samo trivijalno reSenje zp = 0
(k=1,2,... ,n).

Primer 1.1.1. Neka je dat sistem jednacina

4%1 — 2:132 — I3 = 1,
2x1 4+ 2x9 + 3 =5,
8xr1 — mxo+x3 =05,

Kako je
4 -2 -1
D=2 2 1] =18,
8 —1 1
sistem ima jedinstveno reSenje
ST Y R
1 = —— = — = — = 5
D 18 5 1 1 18
SO N D
2= —— = — = — = y
D 18 8 5 1 18
4 -2 1
D3 1 —18
T3 =—=—|2 2 S5|=——=-1. A
D 18 8 —1 5 18

Napomena 1.1.1. Cramerove formule imaju viSe teorijski, nego prakti¢ni
znacaj. One zahtevaju izracunavanje n + 1 determinanata n-tog reda. Ako bismo
vrednost determinante n-tog reda izracunavali po definiciji, potrebno je izvrsiti
Sn = n! — 1 sabiranja (ili oduzimanja) i M, = (n — 1)n! mnozenja, $to ukupno
iznosi Pn, = Sp+Myp = n-n!. Pod pretpostavkom da je za obavljanje jedne racunske
operacije potrebno 10 us, $to je slu¢aj kod veéine racunara, to bi za izracunavanje
vrednosti jedne determinante tridesetog reda bilo potrebno oko

30-30!-10-107F

o= 1021 :
3600 24 368 2.5-10"" godina.
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Uopsteno govoreéi ovakav postupak je prakticno neprimenljiv veé za determinante
reda n > 4.

1.2. LR faktorizacija kvadratne matrice

Kod resavanja sistema linearnih jednacina cesto se javlja problem pred-
stavljanja kvadratne matrice u obliku proizvoda dve trougaone matrice.
Ovaj odeljak je posveéen ovom problemu.

Teorema 1.2.1. Ako su sve determinante

aiq aif
Ak: (k;:l,...,n—l)

ak1 Okk
razlicite od nule, matrica A = [a;j]nxn MmoZe se predstaviti u obliku
(1.2.1) A=1LR,

gde je L donja © R gornja trougaona matrica.

Dokaz. Trougaone matrice L i R reda n imaju oblike:

(122) L= [lij]nxn (l” =0 za 1 < j),

(123) R = [Tz‘j]nxn (Tij =0 za > j)

Dokazimo najpre tvrdenje za n = 2, tj. dokazimo da postoje matrice

lii1 0 . 11 T2
L — R e s
[lm lzz} ' [ 0 7"22}

obe drugog reda, takve da je

T P N [ e R

lor 1o T22 az; G22

Naravno, jednakost (1.2.4) vazi ako i samo ako je

(1.2.5) liirin = a1, lare = a2, loiri = ag1,  lairie + learas = age.
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Kako je iz uslova teoreme aq; # 0, zakljué¢ujemo da su ly1 i 717 razliciti
od nule. Tada, na osnovu (1.2.5), dobijamo

s = ail lon — az1 G2 Q12711
11 = — 21 = —, 7‘12—l—— )
T11 T11 11 aii

a11G22 — 412021

laoroo = o — lg1712 =
a1

Prema tome, ako je 711 # 0 i rog # 0, faktorizacija (1.2.4) je moguca. Na
primer, ako je 111 = roo = 1, imamo faktorizaciju

CE P S |

a1  G22 a21 (a11a22—a12a21)/a11

Sli¢éno, ako je l11 = los = 1, vazi

a1 a2 1 0 ail a12
= . a 0).
[021 022} [am/an 1} [ 0 (anaz — a12021)/a11} (a1 #0)

Za dokaz opsteg slucaja koristi¢emo metod matematicke indukcije.

Pretpostavimo da je faktorizacija (1.2.1) moguca za matricu Ay reda n =
k (k > 2), tj. da postoje trougaone matrice Ly i Ry takve da je Ay = LRy,
a zatim ispitajmo slucaj kada je n = k + 1.

Razbijmo najpre matricu A1 na blokove na sledeéi nacin:

A Ak u
k+1 = T
CRENCTISpas]
gde su vektori w i v dati sa
T T
u = [al,k+1 ak,k+1] ) v = [ak+1,1 ak+1,k] .

Slicno ucinimo i sa odgovarajué¢im matricama Lpyq 1 Rg+1. Naime,
stavimo

L o
Lk+1:[ L }

Ry, ] ]
' [l kt1) ’

R =
o [OT [Tk+1,k+1]

gde su

el = ey k) Y5 = rigsr oo e, of =[0... 0].
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Pokazimo sada da je mogucée odrediti matrice Lyyq i Riy1 tako da je
Apy1 = L1 Rpq1. Kako je

L o R
Ly 1Rgi1 = [ k } : [ x Y }
e ' [lpy1,k41] o' [rrt1k41]

_ [ Ly Ry, Ly ] 7
TRy Ty + st ki17k41 k41

zahtevana faktorizacija je moguca ako vaze jednakosti

(1.2.6) LkRk = Ak, ka =u, :IZTRk = ’UT

(1.2.7) 'Y + (Lot k1o 1k1] = [0k 1041

Naravno, prva jednakost u (1.2.6) predstavlja induktivnu hipotezu. Dokaz
bi bio kompletan ako bismo iz preostalih jednacina u (1.2.6) i (1.2.7) uspeli
da odredimo vektore x i y, kao i elemente Iy 1 k41 1 "hr1 k41

Kako je, po pretpostavci, det Ax # 0, iz jednakosti
det Ak = det(LkRk) = (det Lk)(det Rk)

zaklju¢ujemo da su det Ly i det Ry razlicite od nule, tj. da su matrice Ly i
Ry, regularne. Prema tome, na jedinstven nacin mogu se odrediti « i y:

_ -1 T _ ,Tp-1
y=1L, u, T =v R .

Najzad, ako se za jedan od brojeva ljy1 k41 ili 7441 k41 usvoji izvesna
vrednost razli¢ita od nule, na osnovu (1.2.7) lako je odrediti onu drugu od
njih. O

Predstavljanje kvadratne matrice A u obliku proizvoda jedne donje i jedne
gornje trougaone matrice naziva se LR faktorizacija matrice A.

S obzirom na (1.2.2) i (1.2.3) i imajuéi u vidu da je

min(i,j)

aj= Y lurk;  (j=1,...,n),
k=1
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elementi matrica L i R mogu se lako odrediti rekurzivnim postupkom ukoliko
se unapred zadaju elementi r;; (£ 0) ili I;; (#0) (i =1,... ,n).

Tako, na primer, neka su dati brojevi r;; (# 0) (i = 1,... ,n). Tada se
elementi trougaonih matrica mogu odrediti slede¢im postupkom:

Najpre se za ¢ = 1 izra¢unaju elementi

s = ail
11 — )
711
alj
Ty = _l
11 .
a1 (j=2,...,n),
ljl = —
11
a zatim redom za i = 2,... ,n elementi:

1 i1

Ly = | @i — > likrri ),
27 k=1
i—1

1
Tij = E(aij - Zh‘kﬁgj)

k=1

G=i+1,...,n)
1 i—1

lji=— (aji - thﬁm‘)
Tii 1

Sliéno, mogli bismo iskazati i rekurzivni postupak za odredivanje eleme-

nata matrica L i R ako su unapred dati brojevi l;; (#0) (i =1,... ,n).
U primenama, najéesée se uzimar,; =1 (i =1,... ,n)ilipakl; =1 (i =
1,...,n).

Primer 1.2.1. Razlozimo matricu

1 4 1 3
0 -1 2 -1
A= 3 14 4 1
1 2 2 9

u obliku (1.2.1), tako da matrica R ima jedini¢nu dijagonalu.
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Kakojer;; =1 (:=1,...,4), na osnovu izloZenog rekurzivnog postupka imamo
redom:

(1) hi=1,
rio =4, lo1 =0, m3=1,131=3, r.a =3, rq1 = 1;
(2) lag = —1,

ro3 = —2, l32 =2, ro4 = 1, ly2 = —2;
(3) I3z =25,
r34 = —2, ly3 = —3;

Dakle, dobili smo

1 0 00 14 1 3
0 -1 00 0 1 -2 1
=13 2 50" ®5lo 0 1 -2
1 -2 -3 2 0 0 O 1
Polazeéi od l;; = 1 (1 = 1,...,4) mozemo faktorizovati matricu A tako da

jedini¢nu dijagonalu ima matrica L. Tada imamo redom

(1) r11 = 1,
rig =4, lo1 =0, ri3 =1, 31 =3, 14 =3, ra1 = 1;
(2) rog = —1,

r23 =2, I32 = =2, r24 = —1, laa = 2;
3)  rs=5,
34 = —10, l43 = —3/5;
(4) r44 = 2,
tj.
1 0 0 0 1 4 1 3
0 1 0 0 0o -1 2 -1
L= 3 =2 1 0f’ R= 0 0 5 —-10
1 2 -3/5 1 0 0 0 2

Dakle, u oba slucaja imamo A = LR. A

Na kraju ovog odeljka pokazac¢emo kako se LR faktorizacija matrice moze
iskoristiti za reSavanje sistema linearnih jednacina (1.1.1), tj.

(1.2.8) Az = b,
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gde su A, b, x dati pomoc¢u (1.1.3).

Ako je moguéa faktorizacija matrice A u obliku A = LR, tada se sistem
jednacina (1.2.8) moze napisati u obliku

(1.2.9) LRx =b.

Ako stavimo Rx = y, sistem jednacina (1.2.9) postaje Ly = b. Drugim
re¢ima, (1.2.9) moze se redukovati na dva sistema sa trougaonim matricama

Ly =0>b, Rx =y,
koji se mogu resiti sukcesivno, najpre sistem sa matricom L, a zatim sistem
sa matricom R.
1.3. Gaussov metod eliminacije
Neka je dat sistem linearnih jednacina

1121 + a12T2 + - -+ + a1p Ty = by,

2121 + Q22T2 + - - + A2, Ty = ba,
(1.3.1)

An1T1 + Ap2Z2 + -+ + AppTp = bna
koji ima jedinstveno resenje. Sistem se moze predstaviti matri¢no u obliku
(1.3.2) Az = b,

gde su A, b,  dati pomoc¢u (1.1.3).

Osnovni metod za resavanje sistema linearnih jednacina je Gaussov*® me-
tod eliminacije, koji ima vise varijanata. U sustini, Gaussov metod se zasniva
na redukciji sistema (1.3.2), primenom tzv. elementarnih transformacija, na
trougaoni sistem jednacina

(1.3.3) Rx =c,
gde su
T11 12 e T1n C1
22 T2n C2
R= . , €=
Tnn Cn

45)  Carl Friedrich Gauss (1777-1855), veliki nemacki matematicar.
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Elementarne transformacije moraju biti takve da sistem jednacina (1.3.3)
ima ista reSenja kao i polazni sistem (1.3.2). Za takve sisteme jednacina
kazemo da su ekvivalentni sistemi.

Sistem jednacina (1.3.3) reSava se sukcesivno polazeéi od poslednje jed-
nacine. Naime,

xn:C_7 ‘ler_<cl_ Zrlkxk> (z:n—l,...,l).

T
nn k=i+1

Napomenimo da su koeficijenti r;; # 0 jer po pretpostavci sistem (1.3.2), tj.
(1.3.3), ima jedinstveno resenje.

Pokaza¢emo sada kako se sistem (1.3.1) moze redukovati na ekvivalentan
sistem sa trougaonom matricom.

Pod pretpostavkom da je a1 # 0, izra¢unavamo najpre tzv. eliminacione
faktore

a zatim, mnoZenjem prve jednacine u sistemu (1.3.1) sa m;; i oduzimanjem
od i-te jednacine, dobijamo sistem od n — 1 jednacina

a%)xg +---+ agi)xn = bg),

(1.3.4)
(17(122)$2 +--+ a/,(/LQYZZI"TL = bg)v
gde su
CLg) = aij — milalj, b§2) = bl — milbl (Z,] = 2, e ,n).

Pod pretpostavkom da je a%) # 0, primenjujudi isti postupak na (1.3.4),
sa My = agg)/a%) (t=3,...,n), dobijamo sistem od n — 2 jednacine

oDyt -t 0Py = bD,

a7(133):173 + -+ ag’ga:n = be),



METODI RESAVANJA 199
gde su
3 2 2 3 2 2 .
EJ) Ej)—mg (3), bg):bg)—migbg) (1,7 =3,...,n).
Nastavljajuéi ovaj postupak, posle n — 1 koraka, dolazimo do jednacine

a™x, = b,

Najzad, ako iz svakog od dobijenih sistema uzmemo njegovu prvu jedna-
¢inu, dobijamo trougaoni sistem jednacina

aﬁl)xl —i—a( )xQ +a( )xg bt (1) _ b(l)
ag2)x2 + a( )xg + - gi)xn b(z)
aég)xg + - gi)xn b(?’)

aMa, = b,

1, =y,

'1/] ?
Ovim smo sistem (1.3.2) sveli na trougaoni oblik (1.3.3).

pri cemu smo, radi jednoobraznosti, stavili a;; = a;

Navedena trougaona redukcija ili, kako se cesto kaze, Gaussova elimi-
nacija ili Gaussov algoritam, svodi se na izra¢unavanje koeficijenata

(k)

Mg = (k), agﬁl) = agf) - mzka,(;;), bﬁ’“*” = bgk) - mikb](f:)v
O
za i, =k+1,....,n i k=1,2,... ,n—1. Primetimo da su elementi
matrice R i vektora c dati sa
r,j:agj), ci:bgi) (i=1,... ,n;j=14,...,n).

Da bi navedena trougaona redukcija egzistirala, potrebno je obezbediti

uslov a,(gk) # 0. Elementi a( ) su poznati kao glavni elementi ili stoZerski
elementi. Pod pretpostavkom da je matrica A sistema (1.3.2) regularna,

uslove akk) # 0 moguce je obezbediti permutacijom jednacina u sistemu.

Primer 1.3.1. Primenimo Gaussov metod eliminacije na sistem jednacina koji
je posmatran u primeru 1.1.1.
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Kako su mo; = 1/2 1 mg; = 2, posle prvog eliminacionog koraka dobijamo

3zo + §x _9
2 2 3= 2’
3xo + 3x3 =3.
S obzirom da je mso = 1, posle drugog eliminacionog koraka imamo

S3p=_3
273 T Ty

Dakle, dobili smo trougaoni sistem jednacina

4:131—2:1’2— r3 = 1,
3 9
3$2+§SB3— >

3= 3

27 T T2

Najzad, polazeéi od treée jednacine, dobijamo resenja

r3 = —1

$2=%<§—%'(—1)>=2,

rp==(14+2-24+(-1))=1. A

Trougaona redukcija obezbeduje jednostavno izracunavanje determinante
sistema. Naime, vazi

det A = agll) ag) e afﬁf.

Napomena 1.3.1. Za reSavanje sistema od n jednacina sa n nepoznatih, uku-
pan broj racunskih operacija u Gaussovom metodu iznosi

N(n) = % (4n3 +9n? — 7n) .

Za dovoljno veliko n imamo N(n) = 2n3/3. Na primer, za reSavanje sistema od

n = 30 jednacina potrebno je 0.18 s ako se jedna racunska operacija obavlja za
10 ps.

Sa numerickog stanovista, u toku eliminacionog procesa treba vrsiti permutacije
jednacina u cilju dobijanja maksimalnog po modulu glavnog elementa u svakom
eliminacionom koraku. O drugim detaljima Gaussovog metoda, kao i o drugim
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metodima za reSavanje sistema jednacina, moze se naé¢i u knjizi: G. V. MILO-
VANOVIC, Numeri¢ka analiza, I deo (treée izdanje), Naucna knjiga, Beograd, 1991.

Gaussov metod moze biti primenjen i na reSavanje sistema
apry + a2 + - + a1 xy, = by,

a2171 + ag2T2 + - - + a2, Ty = ba,
(1.3.5)

Am1%1 + Qa2 + -+ QnTp = by,

kod koga je broj jednacina veéi od broja nepoznatih, tj. m > n. U tom slu-
¢aju, primenom Gaussovog metoda dobijamo ekvivalentni sistem jednacina

agll)azl + a%)xg + a%)xg +---+ a&)xn = bgl),
a%)xg + a%)xg +---+ aéi)xn = bgz),

CL:(;):;)LZ'?, +---+ agi)xn = b:(;’),

(1.3.6)

aq(l”n)xn = bfl”),

ajn =05

Dakle, sistem (1.3.5) imace resenje ako se iz poslednjih m—n+1 jednacina
u sistemu (1.3.6) dobija ista vrednost za z,, tj. ako je

b bi
tal) alh

1.4. Primene na inverziju matrice

Gaussov metod eliminacije moze se uspe$no primeniti na inverziju mat-
rica.

Neka je A = [a;j]nxn regularna matrica i neka je
T11 T12 e T1in

x x x
X = ,21 22 an =[xy @2 ... x,]

Tpl Tn2 Tnn
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njena inverzna matrica. Vektori a1, s, ..., , su redom prva, druga, ...,
n-ta kolona matrice X. DefinisSimo vektore ey, es, ..., e, pomocu
es=[10 ... 0", ea=[0 1 ... 0]",...,en=100 0 ... 1]".

S obzirom na jednakost
AX =[Ax; Axs ... Az,|=I=]e1 e ... e,],

problem odredivanja inverzne matrice moze se svesti na reSavanje n sistema
linearnih jednacina

Za resSavanje sistema (1.4.1) pogodno je koristiti Gaussov metod elimi-
nacije, s obzirom da se matrica A pojavljuje kao matrica svih sistema,
pa njenu trougaonu redukciju treba izvrsiti samo jednom. Pri ovome, sve
transformacije koje su potrebne za trougaonu redukciju matrice A treba

primeniti i na jedini¢nu matricu I = [e; ey ... e,]|. Na taj nacin
matrica A transformiSe se u trougaonu matricu R, a matrica I u matricu
C=[cg ¢ ... e¢,] Najzad, ostaje da se rese trougaoni sistemi jedna-
¢ina Rx; =c¢; (1=1,... ,n).

Prema tome, primena Gaussovog metoda moze se iskazati kao transfor-
macija matrice [A 1] u matricu [R C].

2. EKVIVALENTNI SISTEMI VEKTORA I MATRICA

2.1. Ekvivalentni sistemi vektora

Neka su u linearnom prostoru X nad poljem K data dva konacna skupa
(sistema) vektora U = {uy,us,...} 1 U = {u],uh,...} takvi da se lineali
nad njima poklapaju, tj.

(2.1.1) L(U) = LU") =Y.

Ocigledno, svaki vektor iz Y (C X) moze biti predstavljen kao linearna kom-
binacija vektora iz sistema U ili vektora iz sistema U’.
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Definicija 2.1.1. Za dva sistema vektora U i U’ kazemo da su medu sobom
ekvivalentni sistemi ako svaki vektor iz sistema U moze da se izrazi kao
linearna kombinacija vektora iz sistema U’ i obrnuto.

Na osnovu prethodnog, sistemi U i U’ su ekvivalentni ako i samo ako vazi
(2.1.1). Ekvivalentnost sistema je, ocigledno, jedna relacija ekvivalencije,
pri ¢emu osobina tranzitivnosti ove relacije proizilazi neposredno iz osobine
linearne kombinacije vektora. Naime, linearna kombinacija vektora iz jednog
sistema moze biti predstavljena kao linearna kombinacija vektora iz drugog
ekvivalentnog sistema.

Neka je S skup svih sistema vektora u prostoru X. S obzirom na uvedenu
relaciju ekvivalencije, skup S se moze razbiti na klase ekvivalencije. Ako su
U i U’ dva proizvoljna sistema vektora iz jedne klase ekvivalencije, tada se,
evidentno, lineali nad U i U’ poklapaju. Interesantno pitanje koje se moze
postaviti odnosi se na broj vektora u ekvivalentnim sistemima. U vezi s tim,
bitnu ulogu igra linearna nezavisnost vektora u sistemu.

Teorema 2.1.1. Neka je U = {uy,uz,... ,uy} sistem linearno nezavisnih
vektora. Ako se svaki vektor iz U moZe izraziti kao linearna kombinacija
vektora iz sistema U' = {u}, uf, ... ,ul}, tada je m < n.

Dokaz. Pre svega uoc¢imo da u sistemu U ne postoji nula-vektor i pret-
postavimo, suprotno tvrdenju teoreme, da je m > n. Takode, radi pregled-
nijeg oznacavanja stavimo U’ = U,

Pridruzimo sistemu U vektor u; i posmatrajmo novi sistem vektora
(2.1.2) {ug,uy,ub, ... ul},

koji je ekvivalentan sistemu U™,

Kako se, prema uslovu teoreme, vektor uq moze izraziti kao linearna kom-
binacija vektora is sistema U, tj. kako je

n

!

up = E A1it,
im1

zaklju¢ujemo da je sistem vektora (2.1.2) linearno zavisan. Ovo, pak, znaci
da se, prenumeracijom, neki od vektora sistema U, na primer vektor ul,
moze izraziti kao linearna kombinacija preostalih n vektora iz sistema (2.1.2).
Ako sada isklju¢imo ovaj vektor iz (2.1.2), dobijamo novi sistem vektora

(2.1.2) U? = {uy,ub,... u}.
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Ranije pomenuta osobina linearne kombinacije omogucava da se svaki
vektor sistema U moze da izrazi kao linearna kombinacija sistema U, §to
znaci da se, u uslovu teoreme, U (1) moze zameniti sa U®?).

Nastavljajuéi ovakav postupak izmene sistema U®) (k = 1,2,...), uvo-
denjem novih vektora iz sistema U, proizilazi da se vektorima iz U mogu
zameniti svi vektori polaznog sistema U’ = U, svodeéi ga tako na sistem

U = fuy,ug, ... un}

Medutim, ovo bi znacilo da se svaki vektor iz U moze izraziti kao linearna
kombinacija vektora iz jednog njegovog podsistema U(*+1) (c U), sto pro-
tivureci ¢injenici da je U sistem linearno nezavisnih vektora. Dakle, ne moze
bitim >n. O

Posmatrajmo sada dva ekvivalentna sistema linearno nezavisnih vektora.
Na osnovu prethodne teoreme svaki od ovih sistema sadrzi ne vise vektora
od drugog, Sto znaci da se ekvivalentni sistemi linearno nezavisnih vektora
sastoje od istog broja vektora.

S druge strane, ako imamo sistem U linearno zavisnih vektora, pri ¢emu
svi vektori nisu istovremeno jednaki nula-vektoru, tada u U postoji ekviva-
lentni podsistem linearno nezavisnih vektora. Za ovaj podsistem kazemo da
je baza sistema vektora U. Naravno, svaki sistem vektora moze imati vise
baza, ali se sve one sastoje od istog broja vektora. Sve baze ekvivalentnih
sistema su istovremeno ekvivalentni sistemi.

Definicija 2.1.2. Broj vektora baze jednog sistema U naziva se rang si-
stema U i oznacava se sa rang U.

Drugim re¢ima, rangU je maksimalan broj linearno nezavisnih vektora
sistema U.

Primer 2.1.1. Neka je u prostoru R* dat sistem vektora U = {ui,... ,usa},
gde su

ur = (47 _27 _35 _1)7 U2 = (_75 35 573)5 uz = (17 15 05 _4)7 Uq = (_25 05 173)

Kako su, na primer, ug i ugq linearno nezavisni vektori i u; = —2u3z — 3uy,
ug = 3us + Huy, zakljuCujemo da je rangU = 2. Sistem U je ekvivalentan sa
njegovim podsistemom B = {us,u4}, koji predstavlja bazu. Naravno, ovo nije
jedina baza sistema U. Na primer, baza je i sistem vektora {uj,us}. Jedan
praktican nacin za odredivanje ranga sistema vektora bice dat kasnije. A
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2.2. Zavisnost matrice operatora od baze

U odeljku 2.3 uveli smo matricu linearnog operatora A: X — Y na konac-
no-dimenzionalnim prostorima i, pri tom, naglasili da matrica operatora
zavisi od izabranih baza u prostorima X i Y. U ovom odeljku prouci¢emo
tu zavisnost.

Razmotri¢emo najpre promenu koordinata proizvoljnog vektora u pros-

toru X dimenzije n pri promeni baze B, = {ej,...,e,} u bazu B. =
/ /

{el,... el }.
Kako se novi bazisni vektori €} (j = 1,... ,n) mogu razviti po vektorima

baze B, imamo

6/1 = pi11€1 +p21€2 + -+ Pni€n,

€5 = p12e1 + pasea + -+ + Dnaen,
(2.2.1)

e;q = Pin€1 +p2n62 + .- +pnnen

Na osnovu (2.2.1) mozemo formirati matricu

P11 P12 ... DPin

P21 P22 DPan
(2.2.2) P = . ,

Pn1  DPn2 Pnn

koju nazivamo matrica transformacije koordinata pri prelasku sa baze B, na
bazu B, .

Uocimo sada proizvoljan vektor u € X i razlozimo ga po vektorima jedne
i druge baze. Tada imamo

(2.2.3) u = Zmiei = Zx;e;
i=1 j=1

Kako je e} = ;pijei (j=1,...,n), (2.2.3) postaje

n n n n n
> e =305 (o) = 30Dt e
i=1 Jj=1

j=1 =1 i=1
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odakle, na osnovu teoreme 1.1.1, dobijamo
n
:Eizzpijl‘; (Zzl,,n)
j=1
Prema tome, ako su odgovarajuce koordinatne reprezentacije vektora u € X

u bazama B, i B, date sa

x=[r1...2,)" i !

odgovarajué¢a matri¢na formula za transformaciju koordinata datog vektora
postaje

(2.2.4) x = Px/,
gde je matrica P data sa (2.2.2). Dakle, ova transformacija je odredena

kvadratnom matricom P. Sasvim je jasno da matrica P mora biti regularna
tako da iz (2.2.4) sleduje

(2.2.5) x' =P 'z
Slicno, u prostoru Y dimenzije m uoc¢imo dve baze By = {f1,..., fm} i
By = {f{,...,f],}. Neka je odgovaraju¢a matrica transformacije koordi-

nata @ = [¢ijlmxm. Tada se transformacija koordinata vektora v € Y, pri
prelasku sa baze By na bazu By, saglasno formuli (2.2.4), moze predstaviti
u obliku

(2.2.6) y=Qy,

gde su

]T : !

iy =yl

y=1[y1...yn
Razmotrimo sada promenu matrice operatora A: X — Y pri promeni
bazisa.

Saglasno definiciji 2.3.1, sa A = Ay, oznac¢imo matricu operatora A: X —
Y u odnosu na baze B, i By. Ako promenimo baze u prostorima X i Y tako
da su one B i By, tada odgovaraju¢u matricu istog operatora .4 oznacimo
sa A’ = Af/e/ .
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Teorema 2.2.1. Neka su date baze B, i Ber u prostoru X i baze By i By
u prostoru Y. Ako su P i @ odgovarajuée matrice transformacija koordinata
pri prelasku sa baze B, na B i sa baze By na bazu By, tada za matrice
operatora A = Aj. 1 A" = Aprer vaZi jednakost

(2.2.7) A =Q AP

Dokaz. Posmatrajmo parove baza (B, By) i (Bes, By/). Tada za matri¢éni
analogon jednakosti v = Au (u € X, v € Y) imamo dve jednakosti

(2.2.8) y=Arx =Ax,
(229) ’y/ = Af/e/ac’ =Ax.

Na osnovu jednakosti (2.2.5), (2.2.6) i (2.2.9) dobijamo
y=Qy = QApa’ = QApuP ',
odakle, poredenjem sa (2.2.8), nalazimo da je
(2.2.10) Afe = QAp o P71

Kako su matrice P i @) regularne, A = As. 1 A" = A/, jednakost (2.2.10)
svodi se na (2.2.7). O

Na osnovu prethodne teoreme zaklju¢ujemo da jednom linearnom ope-
ratoru A: X — Y odgovara skup njegovih matrica Ay., definisanih preko
svih moguéih parova baza (B., Bf) u prostorima X i Y.

Neka je M,, ,, prostor matrica tipa m x n i neka je M, = M,, ,.

Definicija 2.2.1. Za dve matrice A, B € M,, , kazemo da su ekvivalentne,
u oznaci A = B, ako postoje regularne kvadratne matrice S € M,, iT € M,
takve da je

(2.2.11) B = SAT.

Nije tesko uociti da je ekvivalentnost matrica jedna relacija ekvivalencije.
Zaista, relacija = je refleksivna, tj. A = A, jer jednakost A = SAT vazi, na
primer, ako su S i T jedini¢ne matrice reda m i n respektivno. Za dokaz
osobine simetri¢nosti primetimo da iz A = B, tj. iz ¢injenice da postoje
regularne matrice S i T takve da je B = SAT, sleduje A = S™'BT!, sto
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znaci da je B = A. Najzad, iz A= BiB=x=C,tj.izB=SAT'iC =
S"BT", gde su S',T',S"”,T" regularne matrice, sleduje C = S"”"S’"AT"T' =
SAT, tj. A= C,gdesu S =5"5"1T =T"T regularne matrice, §to znaci
da je relacija = tranzitivna. Skup M,, , se, prema tome, moze razbiti na
klase ekvivalentnih matrica.

Na osnovu (2.2.7) zakljué¢ujemo da su matrice A i A, koje odgovaraju
istom operatoru A: X — Y, ekvivalentne. Takode, vazi i obrnuto, tj. ek-
vivalentnim matricama odgovara samo jedan operator, o ¢emu ¢e biti reéi
u slede¢em odeljku. Dakle, svakom linearnom operatoru A: X — Y odgo-
vara jedna klasa ekvivalentnih matrica. Moze se postaviti pitanje za koji
par baza (B., By) matrica operatora A: X — Y ima najprostiju strukturu.
Drugim re¢ima, koja je to matrica sa najprostijom strukturom u jednoj klasi
ekvivalentnih matrica? Odgovor na ovo pitanje bi¢e dat kasnije.

Na kraju ovog odeljka pomenimo i slu¢aj kada operator A deluje u pros-
toru X, tj. kada je Y = X. Tada operatoru A: X — X odgovara kvadratna
matrica A € M,,. U tom sluc¢aju, transformacione matrice P i () se poklapaju
pa se kao analogon ekvivalentnosti moze uvesti pojam sli¢nosti matrica:

Definicija 2.2.2. Za dve kvadratne matrice A, B € M, kazemo da su sli¢ne
matrice, u oznaci A ~ B, ako postoji regularna kvadratna matrica P € M,
takva da je

(2.2.12) B=P AP
Za matricu P kazemo da je matrica transformacije sli¢nosti.

Relacija slicnost matrica je jedna relacija ekvivalencije u skupu matrica
M,,. U Kklasi sli¢nih matrica, problem konstrukcije matrice najprostije struk-
ture je znatno tezi nego u klasi ekvivalentnih matrica. Ovaj problem bice
razmatran u Sestoj glavi, uvodenjem tzv. spektralne teorije matrica.

2.3. Rang matrice

Neka je data matrica A = [a;j]mxn € Mm n. Izaberimo p vrsta i ¢ kolona

ove matrice, sa indeksima i1,%2,... ,%, 1 j1,J2,... ,Jq respektivno, pri cemu
je
1<y <ig <o <ip <m, 1<ji<ja<--<Jjg<m.
Definicija 2.3.1. Za matricu tipa p X ¢ datu pomocu
ailjl aile tt aiqu
J10d2sevdq Qjnji  Giggy QAisgg
7:137:27”'77;;0 -

aipjl aiij aiqu
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kazemo da je submatrica matrice A = [a;j]mxn-

Nije tesko videti da za jednu matricu tipa m x n postoji ukupno (m) (n)
p

submatrica tipa p X q. U daljem razmatranju za nas ¢e biti od interesa samo

kvadratne submatrice. Shodno prethodnom, za posmatranu matricu tipa

m x n postoji ukupno (") (") submatrica reda p, gde je p < min(m,n).
p’p

Definicija 2.3.2. Najvisi red r regularne submatrice date matrice A =
[@ij]mxn naziva se rang matrice A i oznacava se sa r = rang A. Rang nula
matrice je 0.

Drugim re¢ima matrica A ima rang r ako medu njenim kvadratnim sub-
matricama reda r postoji bar jedna koja je regularna, dok su sve kvadratne
submatrice viSeg reda od r, ukoliko postoje, singularne. Za determinante
kvadratnih submatrica kazemo da su minori. Svaki minor reda r (= rang A),
koji je razlicit od nule, naziva se bazisni minor, a vrste i kolone matrice
A na kojima je on definisan nazivaju se bazisne wrste i bazisne kolone.
Napomenimo da mogu da postoje viSe bazisnih minora.

Na osnovu prethodnog, svaka regularna matrica A € M,, ima rang n, dok
za proizvoljnu matricu A € M,, ,, vazi nejednakost rang A < min(m,n).

Primer 2.3.1. Data je matrica

Rang ove matrice ne moze biti veéi od tri jer je min(m,n) = min(3,4) = 3. Ukupan

broj submatrica treceg reda jednak je (3) (4) =41itosu:
3/ 13
1 2 -1 1 2 3 1 -1 3 2 -1 3
0 1 41|, 0 1 21, 0 4 21, 1 4 2
-1 -1 5 -1 -1 -1 -1 5 —1 -1 5 —1

Determinante svih ovih submatrica su jednake nuli jer, dodavanjem elemenata
treée vrste odgovarajuéim elementima prve vrste, prva vrsta u svim ovim deter-
minantama postaje identi¢na drugoj vrsti. Dakle, sve submatrice treeg reda su
singularne.

Kako je minor drugog reda ‘ [1) f ‘ =1 # 0, zakljuCujemo da je on bazisan i da je
rang A = 2. Kao bazisne vrste i kolone, koje odgovaraju ovom bazisnom minoru,

pojavljuju se prva i druga vrsta i prva i druga kolona matrice A. Naravno, postoje
i drugi bazisni minori drugog reda. A

Iz osobina determinanata neposredno sleduje:
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Teorema 2.3.1. Za proizvoljnu matricu A vaZi rang A = rang AT

Dokaz. Transponovanjem kvadratnih submatrica matrice A dobijamo sve
kvadratne submatrice za A”. Kako se transponovanjem matrice ne menja
njena determinanata (videti teoremu 2.9.1), zakljucujemo da tvrdenje teo-
reme vazi. [J

U odeljku 2.2 uveli smo definiciju ranga linearnog operatora. Sledeéa
teorema daje vezu izmedu ranga operatora i ranga njegove matrice.

Teorema 2.3.2. Rang matrice operatora A: X — Y jednak je rangu ope-
ratora A.

Dokaz. Kao i u dokazu teoreme 2.2.2, razlozicemo X na direktnu sumu
X = Nyg+ My, gde je Ny jezgro operatora A i M4 bilo koji njemu kom-
plementaran potprostor. Potprostori M4 i T4 su izomorfni (videti dokaz
teoreme 2.2.2 i odeljak 1.2), pri ¢emu je A jedan izomorfizam.

Neka je dim M 4 = dim T4 = rang A = r.

Uocimo jednu bazu u M 4: {e1,... ,e.}. Kako je {Aey,..., Ae,.} sistem
linearno nezavisnih vektora (videti teoremu 1.2.1), to on predstavlja bazu u
T 4. Ozna¢imo redom vektore ove baze sa f1,..., fr, tj.

(231) ./461‘ :fj (] = 1,... ,r).
S druge strane, na osnovu formule (2.2.2), za potprostor N 4 vazi
dimNy = defA=n—rangAd=n—r.

Izaberimo bazu u N4, tj. n — r linearno nezavisnih vektora, oznacavajuci ih
redom sa €,41,...,€n.

Ocigledno, B, = {e1,... ,€r,€r41,... ,€,} je jedna baza u X. Primetimo
da je
(2.3.2) Aej =0 (j=r+1,...,n).

Najzad, bazu potprostora T4 dopunimo linearno nezavisnim vektorima
fr41,-.., fm dobaze prostora Y, tako da je By = {f1,... , fr, fr41,--- s fm }-
Odredimo matricu operatora 4 u bazama B, i Bjy. Koris¢enjem stan-

dardne formule (2.3.3), na osnovu (2.3.1) i (2.3.2), za svako ¢ = 1,... ,m,
imamo )
6ij (]zl,...,r),

aij:{Aej}i:{o G=r+1,...,n),
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gde je d;; Kroneckerova delta. Prema tome, matrica operatora A, izrazena
kao blok matrica, ima oblik

(2.3.3) Ape= |- — = 7

gde je I, jedini¢na matrica reda 7. Ostala tri bloka u matrici Ay, su nula
matrice odgovarajucih tipova. Ocigledno, matrica Ay, ima rang r.

Dakle, rang Af. =rang A =r. O
Ubuduce, matricu Af. oznacava¢emo sa I,.

Na osnovu prethodne teoreme i teorema 2.2.3 i 2.2.4 moze se dokazati
slededi rezultat:

Teorema 2.3.3. Neka A € M,,,, i neka su S € M,, ¢ T € M, proizvoljne
regularne matrice. Tada je

(2.3.4) rang(SAT) = rang A.

Dokaz. Neka su dati prostori X i Y sa dimenzijama n i m respektivno.
Posmatrajmo, najpre, dva operatora A: X — Y i S:Y — Y, &ije su
matrice redom A i S. Na osnovu nejednakosti (2.2.5) i (2.2.6), zaklju¢ujemo
da je
rang S + rang A — dimY < rang(S.A) < min(rang S,rang A).

Saglasno teoremi 2.3.2, ove nejednakosti vaze i za odgovaraju¢e matrice ope-
ratora, tako da imamo

(2.3.5) rang S + rang A — dimY < rang(SA) < min(rang S, rang A).

Kako je, po pretpostavci teoreme, matrica S regularna, Sto znaci da je
rang S = m, iz (2.3.5) sleduje

rang A < rang(SA) < min(m, rang A),
tj. rang(SA) = rang A, s obzirom da je

min(m,rang A) = rang A < min(m,n).
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Dakle, mnozenje jedne matrice proizvoljnom regularnom matricom s leve
strane ne menja njen rang.

Sli¢éno, razmatranjem operatora A: X — Y 1 7: X — X, Cije su matrice

redom A i T, dolazimo do nejednakosti
rang A + rang 7 — dim X < rang(A7) < min(rang A, rang7 ),
odakle sleduje
rang A < rang(AT) < min(rang A,n)

jer je rangT = n. Kako je min(rang A,n) = rang A, zakljuéujemo da je
rang(AT) = rang A, $to zna¢i da se mnoZenjem matrice A proizvoljnom
regularnom matricom s desne strane ne menja njen rang.

Prema tome, imamo
rang(SAT) = rang(S(AT)) = rang(AT) = rang A,
tj. (2.3.4). O

2.4. Elementarne transformacije i ekvivalentne matrice
Neka je data matrica A = [a;j]mxn € M n-
Definicija 2.4.1. Pod elementarnim transformacijama nad vrstama (kolo-
nama) matrice A podrazumevamo:
1° mnozenje r-te vrste (kolone) matrice A skalarom A razli¢itim od nule;

2° dodavanje elemenata s-te vrste (kolone), uz prethodno mnozenje
proizvoljnim skalarom A, odgovarajuéim elementima r-te vrste (ko-
lone);

3° zamenu r-te i s-te vrste (kolone).

Navedene elementarne transformacije mogu se interpretirati i kao mnoze-
nje matrice A nekom regularnom matricom, koju éemo zvati transformaciona
matrica. Pokaza¢emo to u sluc¢aju elementarnih transformacija nad vrstama
matrice A.

Ako definiSemo kvadratnu matricu A, (\) reda m pomocu

1 -

Ar(A) = A — r-ta vrsta,
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6. A\ = [05])", ede je
55;):0 (i#4), 60 =1 (i#r), 67 =x#£0,

tada se elementarna transformacija 1° iz definicije 2.4.1 moze iskazati kao

proizvod

[ aiq a2 ... A1y | [ a11 a2 - A1n
G21  G22 A2n a21 a22 A2n
ANA=AN) | =
a1 Qr2 Qrn Aarl )\ar2 )\arn
LAm1  Am2 Qmn, L Am1 Am?2 Qmn

Za elementarnu transformaciju 2° defini§imo matricu

1
1
E.s(\) = A 1 — r-ta vrsta,
1
L 1 -
7
s-ta kolona
tj. Ers(A) = [eg’s)];ﬂ, gde je
L, =7,
(r,s) . .
e, = A, i=r,j=s,
0, u ostalim slucajevima.
Tada je
a1 a2 ... Qip | i ai S a1y T
Gs1 Q52 Qsn as1 Qsn
E.s(\) = :
Qr1 Ar2 Qrp ar1 + )\asl Qprn + )\asn
LAm1 Am2 Amn J L Gm1 Qmn J
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Transformacija 3° moze se shvatiti kao sukcesivno mnozenje matrice A
sa Fg.(—1), Eps(1), Egr(—1), Ag(—1), tj.

Ay(=1)Egr(=1)E, (1) Egy (—1)A = Py A,

gde je transformaciona matrica P,; data sa

-1 -
1
0 1 «— s-ta vrsta
1
Prs =
1
1 0 «— 7r-ta vrsta
1
L 1.
s-ta kolona r-ta kolona
Dakle,
[ ail ai12 e A1n ] [ ail a2 e A1n ]
As1 As2 Asn ar1 ar2 Arp
P, =
Qr1 Qr2 Qyp Qs Q52 Qgsp
L Am1 Am2 Amn J L Am1 Am2 Amn |

Napomenimo da su u Gaussovom algoritmu koris¢éene elementarne trans-
formacije nad vrstama matrice, uklju¢ujuci i vektor slobodnih ¢lanova, sa
strategijom redukcije matrice sistema jednacina na trougaoni oblik.

Primer 2.4.1. Neka je

5 0

4 =2 4 1
-2 1

3 -1

O N =W
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ir=2, s=3. Redom imamo

1 0 -3 5 0 -3
1 4 -2 4 1 1
E32(—1) = 11 s E32(_1)A = -3 2 —6 0 1]’
1 2 1 3 -1 0
1 0 -3 5 0 -3
1 1 1 0 -2 1 2
E23(1) = 1 ) E23(1)E32(_1)A - -3 2 —6 0 1’
1 2 1 3 -1 0
0 -3 5 0 -3]
. 1 0 -2 1 2
E32(—1)E23(1)E32(—1)A = 4 9 4 -1 -1
2 1 3 -1 0 ]
i, najzad,
0 -3 5 0 —-37
1 0 -2 1 2
Agz(—1)E32(—1)E23(1)E32(—1)A = 4 -9 4 1 1 A
2 1 3 -1 0 |

Napomena 2.4.1. Za matricu Prs kazemo da je permutaciona matrica jer se
dobija iz jedini¢ne matrice razmesStanjem jedinica tako da se u svakoj vrsti i svakoj
koloni nalazi jedna i samo jedna jedinica.

U prethodnom primeru direktno imamo

100 0 0 -3 5 0 -3 0 -3 5 0 -3
00 10 4 -2 4 1 1 1 0 -2 1 2
Psd=10 1 0 o 1 0 -2 1 2| |4 =2 4 1 1
00 0 1 2 1 3 -1 0 2 1 3 -1 0

Odgovarajuée transformacije kolona izvode se mnozenjem matrice A s des-
ne strane regularnim matricama reda n.

Teorema 2.4.1. Primenom elementarnih transformacija nad vrstama ili
kolonama matrice ne menja se njen rang.

Dokaz. Kako je det A,.(A) = A # 0 i det E,4(A\) = 1, transformacione
matrice A, (A), E.s(\) i P.s su regularne, pa dokaz teoreme sleduje direktno
iz teoreme 2.3.3. [

Sledeca teorema daje potrebne i dovoljne uslove za ekvivalentnost matrica:
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Teorema 2.4.2. Neka su A,B € My, ,,. Tada je

A= B <= rangA =rangB.

Dokaz. Pretpostavimo da je A = B, tj. da vazi B = SAT, gdesu S 1T
regularne matrice. Tada, na osnovu teoreme 2.3.3, sleduje rang A = rang B.

Sada ostaje da se dokaze implikacija
(2.4.1) rang A =rang B = A= B.

Umesto toga, dokazac¢emo jedan opstiji rezultat, tj. da je svaka matrica
A € My, p, sa rangom r, ekvivalentna blok matrici £, koja je data pomocu
(2.3.3). Ocigledno, rang matrice E,. jednak je r.

Neka je data matrica A € My, ,, sa rangom r. Ona u bazama B, i By, u
prostorima X i Y respektivno, jednozna¢no odreduje neki linearni operator
A: X — Y, ¢iji je rang, na osnovu teoreme 2.3.2, jednak r. Medutim, u
prostorima X i Y moguce je, kao Sto smo videli u dokazu pomenute teoreme
2.3.2, izabrati nove baze B, i By, tako da matrica operatora A ima oblik
(2.3.3). Prema tome, matrice A i E, su ekvivalentne jer odgovaraju istom
operatoru A.

Na osnovu ovoga, za matrice A i B istog ranga vazi implikacija
rangA =rangB=1r = (A 2FE.NBZX Er).

Najzad, kako je = relacija ekvivalencije, iz prethodnog sleduje implikacija
(2.4.1). O

Na osnovu dokazane teoreme, zakljucujemo da klasi ekvivalentnih matrica
odgovara samo jedan operator. U toj klasi ekvivalencije, matrica F, ima
najprostiju strukturu. Svaka matrica A koja pripada toj klasi ekvivalencije
moze se svesti na oblik E,. za koji kazemo da je Hermiteova kanonicka forma
matrice A.

Na osnovu dokaza teorema 2.3.2 i 2.4.2, jednostavno se mogu konstruisati
baze B/ i By:, u prostorima X i Y respektivno, za koje se matrica operatora
A: X — Y svodi na matricu E,, pri ¢emu startujemo od proizvoljne baze
B. = {e1,... ,en} u prostoru X. Sa r ozna¢imo broj linearno nezavisnih
vektora u skupu {Aey, ..., Ae,}. Ne umanjujuéi opstost, pretpostavimo da
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je taj skup vektora {Ae,... ,Aer}46), a zatim izrazimo preostale vektore
{Ae;11,...,Ae,} kao linearne kombinacije ovih vektora:

T
(2.4.2) Aej = cpAer  (=r+1,...,n).

k=1

Tada se u X moze definisati nova baza B, = {e],... e} na slede¢i
nacin:
6;-26]' (j:1,...,T),

,
e =ej —chkek (j=r+1,...,n).
k=1
Na osnovu (2.4.2), imamo
A€9:A<€j—zcjkek>:9 (]ZT+177n)
k=1

Stavimo, dalje,

Ae; = Aej = f; (G=1,...,7),

gde su {f{,..., fl}, po pretpostavci, linearno nezavisni vektori. Dopunimo
ovaj skup vektora do baze u Y vektorima f/,,..., f;,. Dakle, sada imamo
novu bazu i u prostoru Y

By ={ft,+ 0 figas o5 fnd

Kao sto je poznato iz dokaza teoreme 2.3.2, matrica operatora A za novi
par baza (B, By/) je, upravo, matrica E,.

Za prakticno odredivanje ranga matrice A € M,,, veoma je pogodno
koris¢enje elementarnih transformacija slicno kao u Gaussovom algoritmu,
pri ¢emu se ovde izvrSavaju elementarne transformacije i nad vrstama i
nad kolonama matrice A, sa strategijom dovodenja matrice na Hermiteovu
kanonicku formu (2.3.3).

Ukoliko matrica A nije nula matrica (rang O,, , = 0), uvek je moguce,
razmenom vrsta ili kolona (transformacija 3°), dovesti na poziciju (1,1)

46)  Ovo se, jasno, moze ostvariti prenumeracijom bazisnih vektora.
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element matrice razli¢it od nule, koji ¢emo kao i u Gaussovom algoritmu
zvati glavni element. Taj element se moze svesti na jedinicu ako se nad
prvom vrstom (kolonom) izvrsi elementarna transformacija 1° — mnozenje
prve vrste (kolone) reciprotnom vrednoséu glavnog elementa. Zatim se, na
isti nacin kao u Gaussovom algoritmu, anuliraju elementi u prvoj koloni
koji se nalaze ispod ,dijagonale“. Sli¢no, primenom transformacije 2° nad
kolonama, anuliraju se svi elementi u prvoj vrsti desno od ,,dijagonale“, do-
davanjem elemenata prve kolone odgovarajuéim elementima ostalih kolona,
uz prethodno mnozenje pogodnim skalarima. Ovim postupkom, dobijamo
matricu

koja je ekvivalentna matrici A.
Primenom istog postupka na matriéni blok A;, tipa (m — 1) x (n — 1),
dobijamo

I, | Ozpn—2
A — | o . ____

Om—22 | Ay

Nastavljajuéi ovaj algoritam dolazimo do ekvivalentne matrice E,., iz koje
se jednostavno identifikuje rang date matrice A.

Primer 2.4.2. Posmatrajmo matricu A iz primera 2.4.1.

Kako je element na poziciji (1,1) jednak nuli, izvrsiéemo najpre razmenu, na
primer, prve i treée vrste, dobijajuéi tako ekvivalentnu matricu

1 0 -2 1 2
4 =2 4 1 1
0 -3 5 0 -3
2 1 3 -1 0

U cilju anuliranja elemenata u prvoj koloni ispod ,dijagonale“, doda¢emo ele-
mente prve vrste odgovarajuéim elementima druge i Cetvrte vrste, uz prethodno
mnozenje sa —4 i —2 respektivno. Tako dobijamo matricu

1 0 -2 1 2
0o -2 12 -3 -7
0 -3 5 0 -3
0 1 7T -3 —4

Da bismo anulirali i elemente u prvoj vrsti, sem, naravno, elementa na poziciji
(1,1), doda¢emo elemente prve kolone odgovarajuéim elementima trece, cetvrte i
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pete kolone, uz prethodno mnozenje sa 2, —1 i —2. Tada se prethodna matrica

svodi na matricu
0 0 0 0

-2 12 -3 -7
-3 5 0 =3|’
0 1 7T -3 -4

S O

A _

koja je ekvivalentna polaznoj matrici A.

Mnozenjem druge vrste u matrici AW sa —1 /2 dobijamo ekvivalentnu matricu
kod koje je element na poziciji (2,2) jednak jedinici:

0 0 0 0
1 —6 3/2 7/2
0 -3
1 7 -3 -4

cocor
[
w
Sl

Ponavljajuéi isti postupak na anuliranje elemenata u drugoj koloni i drugoj
vrsti (ispod i desno od ,dijagonale“) dobijamo ekvivalentnu matricu

0 0 0
0 0 0
-13  9/2  15/2

13 —9/2 —15/2

A2 _

o O o
S O = O

Mnozenjem trecée kolone sa —1/13 dobijamo jedinicu na poziciji (3, 3). Anulira-
njem elemenata trece kolone i trece vrste (ispod i desno od ,,dijagonale“) dobijamo
matricu Fs3, tj.

1 0000

@_(0 1 00 0f_

A 0010 0| "
0000 0

Dakle, rang A =rang E3 =3. A

Napomena 2.4.1. U prethodnom primeru mogli smo da izbegnemo rad sa ra-
zlomcima da smo posle prvog koraka izvrsili razmenu druge i ¢etvrte vrste, dovodeéi
tako jedinicu na poziciju (2,2). Anuliranjem elemenata u drugoj koloni i drugoj
vrsti (ispod i desno od ,dijagonale“) dobili bismo

100 0 0
@ _ 01 0 0 0
002 -9 —15]’
00 2 -9 —15

$to, nadalje, daje A® =~ AG) = g,
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2.5. Linearna zavisnost vrsta i kolona matrice

Neka su u linearnim prostorima X i Y date baze B, = {e1,ea,... ,e,}
i Bf = {fi,f2,..., fm}, respektivno, i neka je M,,,, prostor matrica tipa
m x n. Pretpostavimo da je K polje realnih brojeva*”). Tada je matricom

aiq ai2 e A1n

a1 22 G2p
A=

m1  Am2 Qmn

matrice A.

U prostoru X uo¢imo proizvoljan vektor u. Tada se on moze, na jedinstven
nacin, prikazati kao linearna kombinacija vektora baze B, tj.

U =x1€1 + Xo€ + - + Tpen.

Neka je v = Au =y1f1 + y2fo + -+ + Ym fin 1 neka su

T At

T2 . Y2
T = 1 Yy = .

Tn Ym

koordinatne reprezentacije za v € X i v € Y, respektivno. Ako sa V,
ozna¢imo prostor svih vektora oblika ® = [z1 zo ... :En]T, tj. Vi, =
Mn7148), transformacija y = Ax moze se razmatrati kao preslikavanje pros-
tora V,, u V,,.

Kako je Au = x1A4eq + x0des + - -+ + 2, Ae,, rang operatora A, kao
dimenzija potprostora T 4, predstavlja maksimalan broj linearno nezavisnih
vektora u skupu U = {Aey,... ,Ae,}, tj. rang A = rangU. Potprostoru
T4, u matriénom tretiranju problema, odgovara potprostor {Ax | € V,,},
u oznaci k(A). Kao sto je poznato (videti odeljak 2.3), kolone matrice A su
koordinate vektora Ae; (j =1,2,... ,n) u odnosu na bazu By, §to znaci da

47)  Sliéna razmatranja vaze i u slu¢aju polja kompleksnih brojeva.
48)  Prostor Vi se moze tretirati i kao R™.
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je k(A) (C V,,,) prostor kolona matrice A, tj. skup svih linearnih kombinacija
vektora

amj

Dakle,
B(A) ={a | a=3 Na; (\,... A €R)}.
j=1

Prema tome, rang operatora A, tj. rang matrice A, poklapa se sa brojem
linearno nezavisnih kolona matrice A.

Saglasno definiciji 2.2.6, za skup vektora x € V,, za koje je Ax = o,
kazemo da je jezgro matrice A. Oznaci¢emo ga sa N4 ili ker A. Na osnovu
teoreme 2.2.2, zaklju¢ujemo da je

(2.5.1) dimk(A) +dim Ny =n.
Sliéno prethodnom, moze se definisati i prostor vrsta matrice A, u oznaci
v(A), kao
U(A) = {a’ ‘ a= ZIU’ZG‘Z (:ulw sy Mm € R)}7
i=1

gde je ‘
alz[ail Q;2 ... am] (221,,777,)
Cesée se, medutim, umesto v(A) koristi prostor v*(A) koji se dobija iz v(A)
transponovanjem njegovih elemenata. Tako je, u stvari,
vt (A) = k(AT) = {ATy | y € Vin}
jer pri transponovanju matrice A njene vrste postaju kolone matrice AT
Ocigledno, v*(A) C V,,.

Kako je rang AT = rang A (videti teoremu 2.3.1), zakljuc¢ujemo da je broj
linearno nezavisnih vrsta matrice, takode, jednak rangu matrice A. Dakle,
vazi
(2.5.2) dimv*(A) = dimk(A) =rang A.

Jezgro matrice AT je skup vektora y € V,, za koje je ATy = o,,. Naravno,
sada je
(2.5.3) dimv*(A) + dim Nyr = m.

Na osnovu prethodnog moze se formulisati sledece tvrdenje:
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Teorema 2.5.1. Bazisne vrste (kolone) proizvoljnog bazisnog minora mat-
rice A obrazuju bazu vektora vrsta (kolona) matrice A.

Definicija 2.5.1. Neka matrica A = [a;;]mxn sadrzi 7 (r < m) nenula vrsta
i neka su one na polozaju prvih r vrsta u matrici. Ako je
0 (] < k‘l),
aj =4 1 (= ki),
proizvoljno  (j > k;),

gdejei <k;<mn i k;<kiy1 (i=1,...,r—1), tada za matricu A kazemo
da ima trapezoidalnu formu.

Ocigledno, za matricu u trapezoidalnoj formi prvih r vrsta su bazisne i
njen rang je jednak r.

Primer 2.5.1. Matrica

01 2 4 0 3
0 01 2 10
A=|0 0 0 0 1 5
0 00 0 0O
0 00 0 0O

ima trapezoidalnu formu. Njen rang je 3. A

Elementarnim transformacijama nad vrstama matrice, svaka matrica A se
moze dovesti na trapezoidalnu formu. Saglasno teoremi 2.5.1, nenula vrste
u trapezoidalnoj formi obrazuju bazu vektora vrsta matrice A.

Koriséenjem teoreme 2.5.1 moguce je problem nalazenja baze datog sis-
tema vektora U = {uy, ..., un}, u linearnom prostoru X dimenzije n, svesti
na problem nalazenja bazisnih vrsta jedne matrice tipa m x n, tj. nalazenja
njene trapezoidalne forme.

Ocigledno, ako je U skup linearno nezavisnih vektora, tada on sam pred-
stavlja jednu bazu. Medutim, u opStem slu¢aju, dati skup vektora U ne mora
biti linearno nezavisan. U cilju reSavanja postavljenog problema, izaberimo
u X bilo koju bazu B = {ey,... ,e,}, a zatim razlozimo vektore skupa U po
vektorima baze B. Tako dobijamo

Up = aj1€1 + a2z + -+ + A1p€n,

U = Ag1€1 + A22€2 + - -+ + G2nénp,
(2.5.4)

U = Am1€1 + Qm2e2 + - -+ + Gppln.
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Na osnovu (2.5.4) formirajmo matricu A tako da koordinate vektora

Uy, Uz, ... , Uy budu vrste u toj matrici. Dakle,
aix a2 ... Qip
A— az1  G22 QA2n
m1  Am2 Qmn

Kako, u ovom sluc¢aju, vrste matrice A predstavljaju koordinatne repre-
zentacije vektora iz datog skupa U, problem odredivanja baze skupa vektora
U svodi se na nalazenje baze vektora vrsta matrice A.

Primer 2.5.2. Posmatrajmo skup vektora U iz primera 2.1.1, gde su
ur = (47 _27 _35 _1)7 U2 = (_75 35 57 3)5 uz = (17 15 05 _4)7 Uqg = (_25 05 17 3)

Ako izaberemo prirodnu bazu u prostoru R4, tada odgovarajuc¢a matrica koor-
dinata ovih vektora postaje

4 -2 -3 -1
-7 3 5 3
1 1 0 —4
—2 0 1 3

A:

Primeni¢emo sada elementarne transformacije nad vrstama matrice A, sa strate-
gijom svodenja matrice na trapezoidalnu formu.

Najpre, razmenimo prvu i treéu vrstu, dovodeéi element 1 na poziciju (1,1), a
zatim anulirajmo elemente u prvoj koloni ispod dijagonale, dodavanjem elemenata
prve vrste odgovarajuéim elementima druge, treée i Cetvrte vrste, uz prethodno
mnozennje sa 7, —4 i 2, respektivno:

1 1 0 —4 1 1 0o -4
-7 3 5 3 0 10 5 —25
4 -2 -3 -1 0 -6 -3 15
-2 0 1 3 0 2 1 -5

A

1%

Sada, mnozenjem druge vrste sa 1/10, element na poziciji (2,2) postaje jednak
jedinici. Najzad, dodavanjem elemenata druge vrste odgovarajuéim elementima
trece i Cetvrte vrste, uz prethodno mnozenje sa 6 i —2, respektivno, dobijamo

11 0 —4
|0 1 1/2 —5/2
A=10 0 0 0
00 0 0
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Dakle, rang U = 2 i za bazu sistema U moze se uzeti skup vektora B = {v1,v2},
gde su
vy =u3z = (1, 1, 0,—4), vy = (0, 1, 1/2, =5/2).

Primetimo da je

ulp = (4, —2, —3, —1) = 41)1 — 61)2,
ug = (=7,3,5,3) = —Tv1 + 10v2,
ug =(1,1,0,—4) = V1,

Ug = (—2, 0,1,3) =—2v1+ 2vwg,

tako da su koordinatne reprezentacije ovih vektora u bazi B redom

B B B T e B

U prostoru X sa skalarnim proizvodom (-, -) moguce je, bez razlaganja po
bazisnim vektorima, ustanoviti da li je neki sistem vektora U = {uy,... ,um}
linearno zavisan ili linearno nezavisan.

Definicija 2.5.2. Za determinantu

(ulvul) (u17u2) (ulvum)
G(U) _ (u27u1) (u27u2) (u27um)
(Um,u1) (U, uz) (U s Um)
kazemo da je Gramova determinanta sistema vektora U = {uy,... ,Up}.
Teorema 2.5.2. Sistem vektora U = {uy, ... ,un} je linearno zavisan ako
i samo ako je G(U) = 0.
Dokaz. Pretpostavimo, najpre, da je sistem vektora U = {uy,... ,un}
linearno zavisan, tj. da postoje skalari A1, A, ... , Ay, koji istovremeno nisu

jednaki nuli, a da je pri tome
(2.5.5) )\1U1 + )\QUQ +---+ )\mum =0.
Skalarnim mnozenjem (2.5.5) sa u;, za svako j = 1,2,... ,m, dobijamo

()\1U1 + )\2u2 + -+ )\mum, Uj) = 0,



EKVIVALENTNI SISTEMI VEKTORA I MATRICA 225
.
Al(ulvuj) + >\2(u27uj) + o+ Am,(umnu]) =0 (] = 17 27 s ’m)7

odakle zaklju¢ujemo da su vrste u determinanti zavisne, pa je G(U) = 0.

Pretpostavimo sada obrnuto, tj. da je G(U) = 0. Tada je rang odgo-
varaju¢e matrice manji od m, §to zna¢i da su njene vrste linearno zavisne,
tj. postoje skalari Ay, Ao, ..., A, takvi da istovremeno nisu svi jednaki nuli
ida je

Al(ul,uj) + )\Q(UQ,Uj) + -+ )\m(um,uj) =0 (j =1,2,... ,m),
tj. da za svako j = 1,2,... ,m vazi jednakost
(Alul + )\QUQ + -+ )\mum, Uj) =0.

Mnozenjem poslednje jednakosti sa A; dobijamo*?)

(Alul + )\QUQ + -+ )\mum, )\juj) =0.
Najzad, sabiranjem ovih jednakosti za 7 = 1,2,... ,m, nalazimo da je
H)\lul + )\2u2 +---+ )\mum”Q - 07

tj. da je
AUt + Aoug + -+ ApUy, =0,

Sto znaci da su vektori sistema U linearno zavisni. [

Na kraju ovog odeljka vratimo se razmatranju potprostora k(A) i v*(A),
kao i potprostora N4 i N4, uz prisustvo skalarnog proizvoda. Napomenimo
da je

(2.5.6) kE(A) C Vi, v(A)CV,, NaCV,, NpyrCV,.

Neka je u prostoru V;,, definisan skalarni proizvod pomocu (videti odeljak
2.6, glava IT)

m
(z,w) =w’z = Z 2 W
k=1

49) U slucaju kompleksnog prostora treba mnoziti sa Xj.
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gde su

T .
z=[z1 22 ... ZzZn] i w=[w; ws ... Wy

Za proizvoljne vektore x € V,, i y € V,,, vazi
(2.5.7) (Az,y) = (2, ATy)
jer je
(Az,y) =y Az = (ATy) 2 = (z,ATy).
Primetimo da su skalarni proizvodi na levoj i desnoj strani jednakosti (2.5.7)
iz razli¢itih prostora, tj. iz V,, i V,,, respektivno.

Sledeca teorema pokazuje da se prostori V,, i V,,, mogu izraziti kao orto-
gonalne sume nekih od potprostora iz (2.5.6).

Teorema 2.5.3. Vaze jednakosti

(2.5.8) Vo= Na®v*(A), Vi =Nar @ k(A).

Dokaz. Neka je x proizvoljan vektor iz jezgra N4. Tada je Ax = oy,
odakle, na osnovu (2.5.7), zaklju¢ujemo da je

(vy € Vm) (fB,ATy) = (Oma y) = 07
§to znaci da je svaki vektor & € N4 ortogonalan na skup {ATy |y € V,,,},
tj. Na L v*(A). Slicno se dokazuje da je Nyr L k(A).

Najzad, na osnovu jednakosti (2.5.2) i (2.5.1), tj. (2.5.3), zaklju¢ujemo da
vaze ortogonalana razlaganja (2.5.8). [

2.6. Kronecker-Capellieva teorema

U treé¢em poglavlju razmatrani su neki metodi za reSavanje sistema line-
arnih jednacina. Koriséenjem pojma ranga matrice moguée je dati potrebne
i dovoljne uslove pod kojima jedan sistem linearnih jednacina sa pravougao-
nom matricom ima reSenje.

Posmatrajmo sistem jednacina
ap1ry + a2 + - + a1 xy, = by,

a2171 + ageT2 + - - + a2, Ty = ba,
(2.6.1)

Am1%1 + Qa2 + -+ QnTp = by,
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sa matricom sistema A i vektorom slobodnih ¢lanova b:

ai; a2 ... Qip b1

azi a2 a2n by
A prm— . ; b pr—

Am1 Am2 Amn b’ﬂ

Formirajmo matricu B, tipa m x (n+ 1), dodajuéi vektor b matrici A kao
(n + 1)-vu kolonu, tj.

ail a12 e A1n | b1

B— a?l a22 G2n | ba
|

Am1 Am2 Amn ‘ bm

Za matricu B kazemo da je prosirena matrica sistema (2.6.1).

Kao sto je poznato, svaka uredena n-torka (&1,&2, . .. ,&,) predstavlja rese-
nje sistema jednacina (2.6.1) ako se svaka jednacina ovog sistema za z; = &
(k=1,2,... ,n) svodi na identitet.

Definicija 2.6.1. Za sistem jednacina (2.6.1) kazemo da je saglasan ili da
je resiv ako ima bar jedno reSenje.

Teorema 2.6.1. Sistem jednacina (2.6.1) je saglasan ako i samo ako je

rang A = rang B.

Dokaz. Sa a1, ag,... ,a, ozna¢imo vektore-kolona matrice A. Kako se
rang matrice poklapa sa rangom sistema vektora-kolona, to je, prema tvrde-
nju teoreme, sistem jednacina (2.6.1) saglasan ako i samo ako je

(2.6.2) rang{al,az, . ,an} = rang{al,ag,... ,an,b}.

Pretpostavimo, najpre, da je sistem jednacina (2.6.1) saglasan, tj. da
postoje brojevi &1, &, ... ,&, takvi da je

&rar +&az + -+ &a, =0,

Dakle, vektor-kolona b je linearna kombinacija vektora aq,as,... ,a,. Ovo
znaci da je bilo koja baza sistema vektora-kolona matrice A, tj. baza prostora
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kolona, istovremeno i baza za sistem vektora {al,ag, . 7an,b}. Prema
tome, posmatrani sistemi vektora su ekvivalentni i vazi (2.6.2), tj. rang A =
rang B.

Obrnuto, neka je rang A = rang B, tj. neka vazi (2.6.2). Za sistem vektora
{al,ag,... ,an} izaberimo bazu koju éne neki ili svi®® njegovi vektori.
Pod uslovom (2.6.2), ona ¢e, takode, biti i baza za prosireni sistem vektora
{al, as,...,Q,, b}, §to znaci da se b moze izraziti kao linearna kombinacija
vektora baze. Samim tim, b se moze izraziti i kao linearna kombinacija svih
vektora-kolona a;, as, ..., a,. Dakle, sistem jednacina (2.6.1) je sagla-
san. [

Teorema 2.6.1 poznata je kao Kronecker-Capellieva®) teorema. 1z dokaza
ove teoreme proizilazi i slede¢a ekvivalentna formulacija:

Teorema 2.6.1'. Sistem jednacina (2.6.1) je saglasan ako i samo ako b €
k(A), gde je k(A) prostor kolona matrice A.

Neka je rang A = rang B = r. Tada medu vrstama matrice A, tj. matrice
B, postoji tacno r linearno nezavisnih vrsta, Sto znaci da se m — r jednacina
moze odbaciti ako je r < m. Ne umanjujuéi opstost, pretpostavimo da
je jedan bazisni minor matrice A definisan pomoc¢u prvih r vrsta i prvih r
kolona®?) matrice A. Ako je r < m, odbacivanjem poslednjih m—r jednacina
dobijamo sistem

a1121 + a12T2 + - + a1, = b1 — A1 pp1Trqp1 — 0 — AL Th,

2121 + Q22T + -+ + A2p Ty = by — A2 p 4 1Trq1 — - — A2, T,
(2.6.3)

Ap1T1 + Qp2Xo + <+ + Qpp Xy = br — Qrr41Tr41 — 0 = Qp ndn,
pretpostavljajuéi pri tome da je r < n. Za promenljive z,41, ..., x,, koje se
nalaze na desnoj strani u sistemu jednacina (2.6.3), kazemo da su slobodne
ili nezavisne promenljive, dok za x1, ... ,x, koristimo termin bazisne ili za-

visne promenljive. Ako je r = n, u sistemu jednacina ne postoje slobodne
promenljive.

Teorema 2.6.2. Da bi saglasan sistem linearnih jednacina imao jedinstveno
resenje potrebno je i dovoljno da rang matrice sistema bude jednak broju
nepoznatih.

50)  Ovo ¢e biti slucaj kada se radi o sistemu linearno nezavisnih vektora.
51)  Alfred Capelli (1855-1910), italijanski matematicar.
52)  Ovo se, inae, moze posti¢i razmenom vrsta i kolona u matrici A.
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Dokaz. Ako je r = rang A = n, na osnovu prethodnog, sistem jednacina
ima jedinstveno resenje dato Cramerovim formulama.

Obrnuto, ako sistem (2.6.3) ima jedinstveno resenje, tada on ne moze
imati slobodne promenljive, §to zna¢i da mora biti r =n. O

Kod homogenog sistema jednacina (by = by = -+ = b,,, = 0) ocigledno je
rang A = rang B, tako da je ovaj sistem saglasan. Zaista, homogeni sistem
uvek ima tzv. trivijalno resenje & = 0 (k = 1,2,... ,n). Moze se postaviti

pitanje pod kojim uslovima homogeni sistem jednacina ima i netrivijalno
resenje.

Teorema 2.6.3. Da bi homogeni sistem linearnih jednacina imao netrivi-
jalno resenje potrebno je i dovoljno da rang matrice sistema bude mangi od
broja nepoznatih.

Dokaz. Na osnovu teoreme 2.6.2, homogeni sistem jednacina ima jedin-
stveno (trivijalno) resenje ako i samo ako je r = rang A = n. Suprotno, za
postojanje netrivijalnog reSenja homogenog sistema jednacina potrebno je i
dovoljno da jer < n. O

Ako je matrica A kvadratna, tj. ako je broj promenljivih jednak broju
jednacina u homogenom sistemu, tada se potreban i dovoljan uslov za ne-
trivijalno resenje homogenog sistema svodi na det A = 0. Ako je, medutim,
det A # 0, homogeni sistem ima samo trivijalno reSenje.

Vratimo se sistemu (2.6.3), gde je n — r broj slobodnih promenljivih.

Bazisne promenljive z1, ..., x, mogu se, primenom Cramerovih formula,
jednoznacno izraziti pomocu slobodnih promenljivih x4, ..., 2, u obliku
Ty =7 — ﬁl,r—i—le—&-l - ﬁl,n$n7
T2 =72 — 52,r+19€r+1 — 52,n33m
Ty ="Yr — 5r,r+1xr+1 - Br,nxna

gde su

1 < 1< )
’YkzﬁzbzAzlm Bk,yzﬁzaquk (k:1727 ,T7j:7’+1, 7n)7
=1 i=1

D (# 0) determinanta (bazisni minor) reda r i A; kofaktori elemenata a;x za
odgovaraju¢u matricu reda r. Dakle, u ovom slu¢aju, slobodne promenljive
se biraju proizvoljno, pa sistem jednac¢ina ima beskonac¢no mnogo resenja.
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Primer 2.6.1. Neka je dat sistem linearnih jednacina

B+2N)z1+(1 +3X)z2 + Azz + (A — 1)zg =3,
3Ax1+(34+ 2Nz + Axg + (A — 1)y = 1,
3Az1+ 32 +3z3+ (A= 1Dy =1,
3\z1+ 3Ax2+Azs + (A= Dzyg =1,

gde je A proizvoljan realan parametar.

Podimo od prosirene matrice sistema

3420 143X A A—1 | 3
B_| 3 3420 X A-1 |1
3 30 3 A-1 | 1
3 30 A A-1 | 1

Dodavanjem elemenata treée vrste odgovarajuéim elementima prve, druge i etvrte
vrste, uz prethodno mnozenje sa —1, dobijamo ekvivalentnu matricu

3-A 1 A=3 0 | 2
|l 0o 3-x A-3 o0 |
Bi=1 3y 3\ 3 A—1

|
0 0 Ax-=3 0 |

o = O

Sada, dodavanjem elemenata Cetvrte vrste odgovarajuéim elementima prve i druge
vrste, uz prethodno mnozenje sa —1, dobijamo matricu

3-X 1 0 0o | 2
By—| 0 3-A 0 0o | 0
30 3\ 3 A-1 ] 1
0 0 A=3 0 | 0

S obzirom na vrednost parametra A, razlikova¢emo tri slucaja:

SLUCAJ A = 1. Matrica Bg se svodi na

O = O N

0 2
3 3
0 0

Mnozenjem prve i druge vrste sa 1/2 i etvrte vrste sa —1/2, a zatim dodava-
njem elemenata prve vrste odgovaraju¢im elementima treée vrste, uz prethodno
mnozenje sa —3, redom imamo

1 1/2 0 0 | 1 1 1/2 00 | 1
0 1 00 | 0| _f0 1 007/ o0
3 3 30 | 1| |0 32 30| —2
0 0 10 | 0 0 0 10 ] 0
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Razmenom treée i Cetvrte vrste, a zatim dodavanjem elemenata druge i trece
vrste odgovarajuéim elementima ¢etvrte vrste, uz prethodno mnozenje sa —3/2 i
—3, respektivno, redom dobijamo

1 1/2 0 0 | 1 1 1/2 0 0 | 1
0 1 00 1] ofl_]|0 1 007 o0
0 0 10 1] of |o o 107/ o0
0 3/2 3 0 | —2 0 0 00 | —2

Iz poslednje matrice zaklju¢ujemo da je rang matrice A datog sistema jednacina
jednak 3, a rang odgovarajuée prosirene matrice jednak 4, sto znaci da sistem nije
saglasan53) .

SLUCAJ A = 3. Sada se matrica By svodi na

0100 | 2
0000/ 0
9 9 3 2 | 1
0000/ 0

MnozZenjem treée vrste sa 1/9, a zatim sukcesivnom razmenom prve i trede, pa
druge i tre¢e vrste, redom dobijamo ekvivalentne matrice

01 0 0 | 2 11 1/3 2/9 | 1/9
00 0 0 | 0|01 0 o0 | 2
11 1/3 2/9 | 1/9 00 0 0 | 0]’
00 0 0 | © 00 0 0 | ©

odakle zaklju¢ujemo da je rang A = rang B = 2. Na osnovu Kronecker-Capellieve
teoreme, sistem jednacina je saglasan. U stvari, on je ekvivalentan sistemu jedna-
¢ina
o2 1
$1+$2+3w3+9$4—9, T2 = 2,
odakle nalazimo sva resenja:

xlz____a__ﬁa !132:2, 3 = Q, !134:ﬂ,

gde skalari @ i 8 uzimaju proizvoljne vrednosti. Napomenimo da su, u ovom
slucaju, x3 i x4 slobodne promenljive.

SLUCAJ X\ # 1A X # 3. Mnozenjem prve, druge i ¢etvrte vrste matrice Bs sa p, p
i —p, respektivno, gde je p = 1/(3 — \), matrica By se transformise u ekvivalentnu
matricu

1 &5 0 0 |
o 1 0 0 | o0
B:
P708A 3 3 a-1 | 1
o 0 1 0 | o0

53) Cesto se kaze da je sistern protivurecan ili nemogud.
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Razmenom treée i ¢etvrte vrste, a zatim dodavanjem elemenata prve, druge i
treée vrste odgovarajuéim elementima cetvrte vrste, uz prethodno mnozenje pogod-
nim skalarima, dobijamo

1 2
1 5= 0 0 I T=x
1o 1 0 o0 0
Bs=1o o 1 o0 |0
0 0 0 A-1 | 32

Najzad, mnoZenjem Cetvrte vrste sa 1/(A — 1), matrica B3 se transformise na
ekvivalentnu matricu

2
1 5=x 0 0 | R
0 1 00 | 0
0 0 1 0 | 0 ;
3—T7\
00 01| %Ry

odakle zaklju¢ujemo da je rang A = rang B = 4, §to znaci da sistem jednacina ima
jedinstveno resenje dato sa:

2 3—T7\

Posmatrajmo sada sistem jednacina (2.6.1) u matricnom obliku
(2.6.4) Az =0,
kao i odgovarajué¢i homogeni sistem sa transponovanom matricom, tj. sistem
(2.6.5) ATy =o,

gde je o nula-vektor dimenzije n. Za homogeni sistem (2.6.5) kazemo da je
konjugovani homogeni sistem jednacina.

Na osnovu teoreme 2.6.1', sistem jednacina (2.6.4) je saglasan ako i samo
ako b € k(A). Skup resenja homogenog sistema je, u stvari, jezgro Nr.
Dakle, ako je defekt jezgra jednak nuli, tada homogeni sistem (2.6.5) ima
samo trivijalno reSenje y = o,,.

Koriséenjem teoreme 2.5.3, u daljem tekstu, prouci¢emo izvesne veze koje
postoje izmedu nehomogenog sistema jednacina (2.6.4) i konjugovanog ho-
mogenog sistema (2.6.5). Pre svega, napomenimo da je

r =rang A = rang AT
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Teorema 2.6.4. Sistem jednacina (2.6.4) je saglasan ako i samo ako je
vektor b ortogonalan sa svim re§enjima konjugovanog homogenog sistema
jednacina (2.6.5).

Dokaz. Pretpostavimo da je sistem jednacina (2.6.4) saglasan, tj. da vek-
tor b € k(A). Tada je, s obzirom na (2.5.8), b L Nz, tj. (b,y) = 0, za
svako y € V,,, za koje je ATy = o.

Pretpostavimo sada obrnuto, tj. neka je (b,y) = 0 za svako y € Nyr.
Tada je b L Nyr, odakle sleduje b € k(A4). O

Teorema 2.6.4 poznata je kao Fredholmova® teorema.

Ako su sistemi jednacina (2.6.4) i (2.6.5) sa kvadratnom matricom, tj. ako
je m = n, Fredholmova teorema se moze interpretirati u obliku alternative:
Ili sistem jednacina (2.6.4) ima jedinstveno reSenje za svaki vektor b, ili
konjugovani homogeni sistem (2.6.5) ima netrivijalna resenja.

Zaista, ako je r = n, tada nastupa prva alternativa jer je k(A) = V,
i Nyr = {o,}. Ako je, medutim, r < n, tada je k(A) pravi deo od V,,
pa sistem (2.6.4) ne moze biti saglasan za one vektore b koji ne pripadaju
k(A). U tom slucaju, jezgro N 4r sadrzi i nenula vektore tako da konjugovani
homogeni sistem (2.6.5) ima i netrivijalna resenja.

Napomena 2.6.1. Za tzv. operatorske jednacine u nekim funkcionalnim pros-
torima postoje veoma znacCajna uopstenja Fredholmove teorije.

Primer 2.6.2. Neka je data matrica

1 2 0 3 0
0 0 1 4 0
A=1]1 2 -1 -1 0
2 4 1 10 1
0 0 0 1

Odredi¢emo, najpre, jednu regularnu matricu S tako da SA ima trapezoidalnu
formu. U tom cilju formirajmo proSirenu matricu sistema jednacina Ax = vy,

gde je y = [yl cee Y5 ]T, a zatim primenimo elementarne transformacije nad
vrstama ove matrice sa strategijom dobijanja trapezoidalne forme. Tako redom

54)  Eric Tvar Fredholm (1866-1927), svedski matematicar.
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imamo
12 0 3 0| n 1 2 0 3 0 | U1
00 1 4 0| vy 00 1 4 0 | Y2
1 2 =1 =1 0 | y3|[=]|0 0 -1 —4 0| —y1+y3
2 4 1 10 1 | wa 00 1 4 1| —2y14+wm
00 0 01/ ys 00 0 0 1 | U5
(12 0 3 0 | n
001 4 0 | Y2
~10 00 00| —y1+y2+us3
000 0 1 | —2y1—y2+yas
(00 0 0 1 | s
12 0 3 0 | n
001 4 0 | Y2
~10 0 0 0 1 | s
000 00| —2y1—y2+ys—ys
(00 00 0| —y1+y2+ys
Ako je
Y1
Y2
Sy = s ;
—2y1 —Y2+ys—Ys
—y1+y2+y3
imamo
1 0 0 O 0
0 1 0 O 0
S = 0 0 0 O 1],
-2 -1 0 1 -1
-1 1 1 0 0
tj.
1 2 0 3 0
0 01 4 0
SA=(0 0 0 0 1
0 0 00 O
0 0 00 O

Dakle, rang A = dimv(A) = dimk(A) = 3. Kao bazis u prostoru vrsta v(A)
mozemo uzeti nenula vrste

ai=[1 2 0 3 0], a2=[0 0 1 4 0], ag=[0 0 0 0 1],
tako da je
’U(A) = {a | a = \ia1 + \2a2 + A\3as ()\1,)\2,)\3 S R)}
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Dakle, svaki vektor-vrsta a = [al ag a3 Qg4 a5] koji pripada prostoru
v(A) mora imati oblik

a=[M 2\ A2 3\ +4h N3],
tj. medu njegovim koordinatama mora biti sledeca zavisnost
a2 = 2aq, a4 = 3a1 + 4as.
Dakle, takvi vektori se mogu predstaviti u obliku
(2.6.6) [al 200 a3 3oq +4as oz5] ,

pri ¢emu su aq, a3, as proizvoljni skalari. Na primer, za a; = a3 = 11 a5 = 5,
dobijamo vektor-vrstu [1 2 1 7 5] iz prostora v(A). Inace, ovaj prostor je
trodimenzionalan. Koordinatna reprezentacija vektora (2.6.6) u bazi {a1,a2,as}
je

a1

a3

as

Pokaza¢emo sada kako se vektor a € v(A) moze izraziti pomocu matrice A.
Kako je

a:a1a1+a3a2+a5a3:[a1 ag a5 0 O](SA)

1 000 O
0 100 0

=la1 a3 a5 0 O]-| 0 0 0 0 1A,
-2 -1 0 1 -1
-1 110 0

imamo a = [al ag 0 0 a5] A.
Posmatrajmo sada homogeni sistem jednacina Ax = 0. Da bismo opisali pros-

tor reSenja, §to, u stvari, predstavlja jezgro N4, posmatrajmo redukovani sistem
(SA)x = o, tj.

r1 + 229 + 324 =0,

x3 +4xy =0,
x5 — 0.
Kako je x1 = —2x9 —3x4, 3 = —4x4, ©5 = 0, prostor reSenja sadrzi sve vektore
oblika
—2a — 30
o
T = _4B )
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gde su «a i B proizvoljni skalari. Kao bazis ovog prostora moze se uzeti skup
{T1,T2}, gde su
2 -3
1 0
T = o], To = | —4
0 1
0 0

Najzad, posmatrajmo nehomogeni sistem jednatina Ax = y. S obzirom da
je rang A = dim k(A) = 3, ovaj sistem jednacina nije saglasan za svako y € V.
Potrebani i dovoljni uslovi pod kojima je sistem Ax = y saglasan mogu se jed-
nostavno dobiti anuliranjem poslednje dve koordinate u vektoru Sy. Dakle, to su
uslovi

(2.6.7) —2y1 —y2 +y4 —ys =0, —y1+y2+y3=0.

Do ovih uslova mozemo dodi i na osnovu Fredholmove teoreme 2.6.4. Najpre,
redukcijom matrice AT na trapezoidalnu formu

1 0 1 2 0 1 0 1 2 0
1 0 1 2 0 01 -1 1 0
2 0 2 4 0(=]0 0 01 1],
01 -1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0

nalazimo ekvivalentni konjugovani sistem jednacina

y1 +y3 + 2ys =0,
y2 —y3 +ya =0,
ya+ys =0,

odakle zaklju¢ujemo da prostor reSenja sadrzi sve vektore oblika Yy = ay; + BY1
(a1 B proizvoljni skalari), gde su bazisni vektori

Y1 =

OO ==
<
)
|
(@)

Iz uslova ortogonalnosti vektora slobodnih ¢lanova sa bazisnim vektorima jezgra

Nr sleduje (y,y1) = —y1+v2+y3 =0, (¥,Y2) = —2y1 —y2 +y4 —y5 = 0, §to
je, u stvari, (2.6.7). A
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3. ZADACI ZA VEZBU

3.1. Razli¢itim metodima (Cramer, Gauss, ... ) resiti sisteme jednacina
3xr+ 2y —z=1, 2z —y+z =8,
1° T+y+2z=2, 2° z — 3y — 5z =6,
20 4+ 2y + 52 =3, 3z +y— 72z =—4.

Rezultat. 1° z=-8, y=12, z=-1, 2° =2, y=-3, z=1.

3.2. Regiti sisteme jednacina:

20 —y+ 32+ 2t =1, 2 +y —3z+4t =1,
. 3z +3y+3z+2t =1, . 3r+2y+4z— 3t =—1,

3r —y—z+2t=-1, r—3y—z—2t=0,

3r—y+3z—t=-1, T+ 15y + 524+ 9t = 0.

3.3. Regiti sistem jednacina

zr—y+z—3u+v=0,

20 —y 4+ 2z —u+v =3,

r+3y+z—2u—v=-1,
3x — 2y —z+u+2v =12,

r+y—z—2u+v=>5.

Rezultat. z=2, y=1, z=—-1, u=1, v=3.
3.4. Ako su a,b,c,d i «,(3,7,6 realni brojevi za koje je
abed # 0 i A+ +6%>0,
reSiti sistem jednacina
ax + by + cz + du = a,
br —ay +dz — cu = (3,

cx —dy —az + bu = v,
dx + cy — bz —au = 4.
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Posebno razmotriti slucaj kada je abed =01 a==v=9 =0.
3.5. U zavisnosti od vrednosti koje uzima parametar «, diskutovati sistem
jednacina
ar+y+z+u=1,

rt+ay+z+u=aq,

x+y—|—0zz—|—u:a2,

x+y+z+au:a3.

3.6. Neka je 22 + y? + 22 +u? > 0 i neka vaze jednakosti
r=byt+czt+du, y=ax+cz+du, z=ar+by+du, u=ax-+by-+cz.

ce a b c d
Odrediti zbir: S_a+1+b+1+c+1+d+1 (a,bye,d # —1).

Uputstvo. Dati skup jednakosti je homogeni sistem jednacina po z,vy, z, u.

3.7. Po x,y, z i u resiti sistem linearnih jednacina

:E—I—ay+a2z—|—a3u:a4,

z + by + b2z + bPu = b,

:L"+cy+62z—|—c3u:c4,

4+ dy + d*z + dPu = d?,
gde su a, b, ¢, d medu sobom razli¢iti realni ili kompleksni brojevi.

Uputstvo. Ocigledno, velicine a, b, ¢, d su koreni jednacine

A —uXd 222 —yr—z =0.

3.8. Odrediti rang svake od matrica

25 31 17 43
75 94 53 132 47  —67 35 201 155

A= , B=126 98 23 -—-294 86| ,

7 94 54 134
25 32 20 48 16 —428 1 1284 52

94 19 36 79 —38 17 28 45 11 39
24 =37 61 13 50

49 40 T3 147 —80
C=173 59 08 219 —118|' P=[2 ~—7 32 -18 -l
31 12 19 —43 —55

AT 36 71 141 -T2 o 13 20 55 o

Rezultat. rang A =3, rang B =2, rangC = 3, rang D = 2.



IV GLAVA

Algebarski polinomi i racionalne
funkcije

1. ALGEBARSKI POLINOMI

1.1. Prsten polinoma

Neka je (K, +,-) polje koje éemo oznacavati prosto sa K i neka su 0 i 1
neutralni elementi u odnosu na operacije + i -, respektivno®. Umesto a - b
(a,b € K) pisaéemo jednostavno ab. Neka je, dalje, operacija stepenovanja
uvedena na uobic¢ajeni na¢in pomocu

(Vz € K) %=1, 2 =z2"1 (keN).

Definicija 1.1.1. Akoz € Kia, € K (k=0,1,...,n), formalni izraz
n
(1.1.1) P(z)=ap+ a1z + - +apz" :Zakwk
k=0

naziva se algebarski polinom po x nad poljem K. Za elemente aj kazemo da
su koeficijenti polinoma P(x). Ako je koeficijent a,, # 0, za polinom P(x)
kazemo da je stepena m i to oznacavamo sa dg P(x) = n. Za koeficijent
a, # 0 kazemo da je vodeéi ili najstariji koeficijent polinoma P(x).

Dakle, stepen polinoma P(zx) je najvisi stepen od x koji se pojavljuje u
izrazu za P(z) sa nenula koeficijentima.

55) Dobar deo materijala za ovu glavu preuzet je iz monografije: G.V.Milovanovié,
D. S. Mitrinovié¢, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities,
Zeros, World Scientific, Singapore — New Jersey — London — Hong Kong, 1994.
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Definicija 1.1.2. Za polinom
O(x) =0+ 0z + -+ + 02" ! + 02"

kazemo da je nula polinom i oznacavamo ga prosto sa 0.

Stepen nula polinoma O(z) (= 0) se ne definise.

Polinomi stepena nula se nazivaju konstante i to su elementi polja K.
Element z € K moze se interpretirati kao polinom prvog stepena definisan
sa P(z) = x. Za element x koristi se termin neodredena. Za polinom P(z)
definisan sa (1.1.1) kaze se da je polinom po neodredenoj x.

Definicija 1.1.3. Za polinom ¢&iji je vodeéi koeficijent jednak jedinici kaze-
mo da je monican.

Dakle, moni¢ni polinom ima oblik
P(x)=ag+aix+ - +ap_12" ' + 2"

Skup svih polinoma nad poljem K oznacavamo sa K[z]. Od interesa je
¢esto uociti skup svih onih polinoma ¢iji stepen nije veéi od n. Taj podskup
¢emo oznacavati sa Py [z] (videti primer 1.1.3, glava III). Proizvoljni polinom
iz. Py, [x] ima oblik

P(z) = Zakxk (ar € K),
k=0
pri ¢emu ako je dg P(z) = m < n imamo da je apy1 = -+ = a, = 0.

U skup K[x] mozemo uvesti relaciju jednakost kao i operacije: sabiranje i
mnoZenje polinoma na sledeé¢i nacin:

Definicija 1.1.4. Polinomi
P(a;) =aqyt+ax+--- +az™ i Q(Z’) =by+bix 4+ bya™

su jednaki ako i samo ako je ar = by za svako k > 0, tj. kada su njihovi
koeficijenti jednaki.

Definicija 1.1.5. Za dva polinoma
Plx)=ap+ax+ - +azz™ 1 Qx)=by+biz+ - +bpz™
zbir 1 proizvod su redom

(P+Q)(x) = P(x) + Qx) =co+crx+ -+ +cpa’
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(PQ)(z) = P(z)Q(x) = do + dyx + - -+ + dsa®,

gde su
cx = ay + by (nggr:max(n,m))

k
dk:Zaibk,i (0<k<s=n+m).
i=0

Dakle, ako P(z) € P,lz] i Q(z) € Pnlz], tada (P + Q)(z) € P,lz] i
(PQ)(z) € Pglz], gde su r = max(n,m) i s = n+ m. Napomenimo da za
nenula polinome P(z) i Q(z) vazi

dg(PQ)(z) = dg P(x) + dg Q(x).
Takode, ako P(z), Q(z) € K[z] and P(z) + Q(z) # 0, tada je
dg(P + Q)(z) < max{dg P(z),dg Q(z)}.
Primer 1.1.1. Neka je K=R i
P(z)=2—-3z+52° i Q(z)=2z—a>+22"

Tada je
S(z) = (P+Q)(x) =2 —x +42* + 22°

R(z) = (PQ)(z) = 4o — 82° + 172> — 112* + 102°.
Dakle, dg S(x) =3 1idg R(z) = 5.

Ako je, medutim, P(x) = 2 — 3z + 22 — 223, tada je (P+Q)(x) =2— =z, sto
znaci da je zbir ova dva polinoma polinom prvog stepena. A

Kao specijalan slu¢aj proizvoda polinoma imamo proizvod polinoma P(x)
skalarom « (€ K), koji se moze tretirati kao polinom nultog stepena. Dakle,

aP(z) =alag + a1z + -+ + apz™) = (aap) + (aar)z + -+ + (ay)x".

Nije tesko dokazati sledeéi rezultat:
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Teorema 1.1.1. Skup K[z]| snabdeven sabiranjem i mnoZenjem polinoma
¢ing komutativni prsten sa jedinicom.

Inverzni element od Q(z) = Y byz® (€ K[z]) u odnosu na sabiranje
k=0

m

je > (—bg)x*, koji éemo oznacavati sa —Q(x). Tada mozemo definisati
k=0

oduzimanje polinoma pomocu

(P —Q)(z) = Pz) + (-Q(z)).
Napomenimo da za polinome u skupu K]z| ne postoji operacija deljenje,
tj. operacija inverzna operaciji mnozenja (videti slede¢i odeljak).

Sliéno prethodnom, mozemo definisati polinom po m meodredenih x4, ...,
T nad poljem K:

Definicija 1.1.6. Neka su kq,... ,k,, nenegativni celi brojevi i

k= (k... .kn), |kl=ki+ - +kn, xF¥=2cb. k.

N m
Polinom po m nedredenih x1, ..., z,, nad poljem K je izraz oblika
(1.1.2) P(x)=P(zy,... . 0m) = »  apz®,
[k|<n

gde su ag (€ K) njegovi koeficijenti.

Skup takvih polinoma, u oznaci K[xy, ... ,z,,], sa uvedenim odgovaraju-
¢im operacijama sabiranja i mnozenja polinoma, ¢ini, takode, komutativni
prsten sa jedinicom.

Definicija 1.1.7. Proizvod x* = :1:/’1Cl - zkm se nagiva primitivni monom
stepena |k| = ki + - -+ + k;,,. Polinom

axht .. gk, (a € K)
se naziva monom. Ako je P(x) polinom iz prstena K[xy,... ,x,,] definisan

sa (1.1.2) i P(x) # 0, tada se kao stepen polinoma P(x) uzima maksimum
stepena monoma koji se pojavljuju u polinomu. (Njihovi koeficijenti aj su
razli¢iti od nule.)

Napomenimo da je stepen polinoma P(x) nula ako i samo ako je P(x) =

ar? 2% =a (a #0).
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Polinom P(z1,...,2,) po m neodredenih moze se razmatrati kao po-
linom po jednoj neodredenoj, recimo x1, sa koeficijentima u K[zs, ... ,z,].
Stepen d; takvog polinoma se naziva stepen od P(xy,... ,Zmy) po z1. Jasno je
da je dy najvedi ceo broj koji se pojavljuje kao eksponent od x; u monomima
arx® sa ap # 0. Slicno se definise stepen polinoma po bilo kojoj neodredenoj
x (k=1,...,m). Naravno, ovi stepeni dj, su razli¢iti od stepena polinoma
P(xy1,...,x,), koji se ponekad naziva totalni stepen.

Primer 1.1.2. Polinom P(z1,xz2,x3) = x?x%xg + 21411:1:2 ima totalni stepen 6,
dok su 4, 2i 1 redom stepeni po x1, z2 i x3. A

Definicija 1.1.8. Za polinom P(x1,... ,%,,) kazemo da je homogeni poli-
nom ako i samo ako su njegovi nenula monomi istog stepena. Stepen ho-
mogenog polinoma se naziva stepen homogenosti polinoma.

Ako je P(xq,... %) homogeni polinom stepena homogenosti d tada je
P(tzy,... txy) = t1P(z1,... ,zm).

Primer 1.1.3. 1° Polinom
P(x1,z2,23) = 211:1:% — bx1zoxy + x%

je homogen stepena 3.

2° Ako je P(z1,x2,x3) = (1 — x2)%(z1 — 23)*(r2 — 23)? imamo
P(txl,txz,txg) = t6P(:1:1,a:2,a:3).

Ovo znadi da je posmatrani polinom homogen stepena homogenosti 6. A

Polinomi se, takode, mogu razmatrati nad strukturama koje su jednos-
tavnije od polja, na primer, nad prstenom sa jedinicom. Razmotrimo sada
jedan takav slucaj.

Saglasno teoremi 2.4.3 (glava III), skup M,, svih kvadratnih matrica reda
m nad poljem skalara K (realnih ili kompleksnih brojeva), snabdeven ope-
racijama sabiranje i mnozenje matrica, predstavlja prsten sa jedinicom [
(jediniéna matrica reda m). Ako X € M,, i A, € M,, (k =0,1,... ,n),
tada za

(1.1.3) P(X)=Ag+ A X+ + A, X" =) A X"
k=0

kazemo da je polinom nad M, ili prosto matri¢ni polinom. U slucaju kada
su matri¢ni koeficijenti Ay dati kao Ay = arl (k= 0,1,...,n), gde su ai
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skalari iz polja K, a [ jedini¢na matrica reda m, tada se matri¢ni polinom
(1.1.3) svodi na

P(X) = (10]—|—a1X_|- _|_aan = Zaka
k=0

Na kraju ovog odeljka ukazimo na vaznu ¢injenicu da se polinom moze
tretirati i kao funkcija. Naime, na osnovu (1.1.1) moze se definisati preslika-
vanje P: K — K, pomoc¢u

t— P(t)=ag+ait+ -+ + ayt",

i uociti homomorfizam P(z) — P(t). Preslikavanje P nazivamo polinomska
funkcija. Napomenimo da je ovde x neodredena, a ¢t promenljiva. Ne ulazeéi
dublje u algebarsko tretiranje ovog problema®® napomenimo da se moze
dokazati slede¢i vazan rezultat:

Teorema 1.1.2. Homomorfizam P(x) — P(t) je izomorfizam ako i samo
ako je polje K beskonacno.

Dakle, za beskonacna polja jednostavno neéemo praviti razliku izmedu
polinoma i polinomske funkcije, a za neodredenu x Koristi¢emo i termin
promenljiva. Takva beskona¢na polja su, na primer, R i C. Medutim, u
konacnim poljima iz jednakosti polinomskih funkcija ne sleduje jednakost
polinoma.

Kada ne moze doé¢i do zabune, umesto termina polinomska funkcija t —
P(t) koristicemo jednostavno termin polinom P. Skup svih polinomskih
funkcija (polinoma) ne viseg stepena od n oznacavatemo sa P,,.

Sli¢no se moze definisati i polinomska funkcija sa vise promenljivih.

1.2. Deljivost polinoma
Dokazaéemo, najpre, jednu veoma vaznu osobinu polinoma.
Teorema 1.2.1. Za svaki polinom P(x) i svaki nenula polinom Q(x), pos-

toje jedinstveni polinomi S(x) i R(x) takvi da vaZi jednakost

(1.2.1) P(z) = S(x)Q(x) + R(x),

56) Za detalje videti, na primer, knjigu: N. Jacobson, Basic Algebra I, W.H. Freeman
and Company, New York, 1985.
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pri ¢cemu je R(z) nula polinom ili dg R(x) < dg Q(z).

Dokaz. Pretpostavimo da P(x) i Q(x) imaju stepene n i m, respektivno,
i da su

P(a:):a0+a1x+...+anxn i Q($)2b0+blm+"'+bmxm.

Ako je n < m ili P(x) = 0, tada (1.2.1) vazi sa S(z) =01 R(z) = P(x).
Pretpostavimo zato da je n > m.

Posmatrajmo polinom

Pi(z) = P(z) - j—nj 2MQ(x),

Ciji je stepen, ocigledno, manji od n. Sa n; oznaCimo taj stepen, a sa aq(lll)

najstariji koeficijent polinoma P (z). Ako je n; > m stavimo dalje

ald)
Py(x) = Py(x) — b—l " "Q(x),

. . (2) .. . i kooficii I K
isamneian, oznatimo stepen i najstariji koeficijent ovog polinoma, respek-

tivno. Proces nastavljamo ako je no > m.
Jasno je da stepeni polinoma P;(z), P»(z),... opadaju i da posle konac-
nog broja koraka dobijamo jednakost

(k—1)
Pil() = Pioa(x) — = a1 " Qa),
u kojoj je Py (x) nula polinom ili takav da mu je stepen nj manji od m. U tom
sluéaju proces prekidamo, a Py(z) se, koris¢enjem prethodnih jednakosti,
moze predstaviti u obliku Py (z) = P(z) — S(z)Q(z), gde smo stavili
aq(ll) a%k—l)
S(:E) — a $nfm + b_ﬂi xnlfm + . _|_ ﬁ xnk_lfm‘

Dakle, ovaj polinom S(x) i R(x) = Px(x) zadovoljavaju jednakost (1.2.1), pri
¢emu je R(x) nula polinom ili je njegov stepen manji od stepena polinoma
Q).

Za dokaz jedinstvenosti polinoma S(x) i R(x), pretpostavimo da postoje
i polinomi S(z) i R(z), koji zadovoljavaju jednakost

P(x) = S(2)Q(x) + R(z),
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pri cemu je R(x) = 0 ili dg R(x) < dgQ(z). Tada je

(12.2) (S(2) - $(2))Q(x) = R(x) - R(x),

pri ¢emu je polinom na desnoj strani ove jednakosti nula polinom ili je,
pak njegov stepen manji od stepena polinoma Q(x). S druge strane, ako
je S(z) — S(z) # 0, tada polinom na levoj strani u jednakosti (1.2.2) je ne
manjeg stepena od stepena polinoma Q(x). Prema tome, jednakost (1.2.2)
je moguca samo ako je

Kao sto je receno u prethodnom odeljku, za polinome u skupu K[z] ne pos-
toji operacija deljenje, inverzna operaciji mnozenja. Moze se, medutim, sa-
glasno osobini iz prethodne teoreme, definisati deljenje polinoma polinomom
sa ostatkom.

Definicija 1.2.1. Za polinom S(z) koji zadovoljava (1.2.1) kazemo da je
koli¢nik pri deljenju polinoma P(x) polinomom Q(z) (£ 0), a za odgo-
varajuéi polinom R(x) da je ostatak pri tom deljenju.

Ako je ostatak nula polinom, kazemo da je P(z) deljivo sa Q(z) i polinom
Q(z) zovemo delilac polinoma P(x).

Cinjenicu da je Q(x) delilac polinoma P(z) simbolizujemo sa Q(z)|P ().
Neke osobine deljivosti polinoma navodimo u sledeéoj teoremi.

Teorema 1.2.2. Za proizvoljne polinome P(z),Q(x),U(x) vaZe tvrdenja:
(a) P(z)|P(z);
(b) Ako Q(z)|P(z) i P(z)|Q(z), tada je P(z) = aQ(z) za neko a € K;
c) Ako U(2)|Q(z) i Q(z)|P(z) tada U(z)|P(x);
(d)

d) Ako U(x)|P(z) i U(2)|Q(z), tada U(x)|aP(x) + SQ(z) za svako
a, 0 e K.

oS

1.3. Najvedéi zajednicki delilac

Definicija 1.3.1. Polinom D(x) je zajednicki delilac za polinome P(x) i
Q(x) ako D(z)|P(x) i D(z)|Q(x).
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Definicija 1.3.2. Polinom D(z) je najveéi zajednicki delilac za polinome
P(z) i Q(x), tj. D(z) = NZD(P(z),Q(z)), ako je zajednicki delilac za ove

polinome i ako je deljiv sa svim ostalim zajednickim deliocima ovih polinoma.
Primetimo da ako je D(x) = NZD(P(zx),Q(z)), tada je i polinom aD(x)
(v # 0, a € K) takode najvedi zajednicki delilac polinoma P(x) i Q(z).

Teorema 1.3.1. Za svaka dva polinoma P(x) i Q(z) postoji najveéi za-
jednicki delilac D(x) i on je jedinstven do na multiplikativnu konstantu.

Dokaz. Pretpostavimo da je dg P(z) > dg Q(x). Sa S1(x) i Ry(x) oznadi-
mo redom koli¢nik i ostatak pri deljenju polinoma P(x) sa Q(z). Ako je
Ri(xz) = 0 tada je Q(z) najveéi zajednicki delilac polinoma P(z) i Q(z).
Medutim, ako R;(z) nije nula polinom, tada delimo polinom Q(x) sa Ry (x),
i odgovarajuéi koli¢nik i ostatak pri deljenju oznacavamo sa Sa(z) i Ra(x),
respektivno. Ako je Ra(z) = 0 tada je Ry(z) najveéi zajednicki delilac za
polinome P(z) i Q(x). Zaista, iz
P(z) = S1(2)Q(x) + Ry (x),

Q) = Sa(a) R (2) + Ro(a)

sleduje P(z) = (51(2)S2(x) + 1) Ri(2) i Q(z) = Sa2(x)Ri(z), tj. Ri(2)|P(x)
i Ry(2)|Q(x). Da bismo dokazali da je R;(x) najveéi zajednicki delilac za
P(z) i Q(x) dovoljno je pretpostaviti da ovi polinomi imaju zajednicki delilac
D(x) i primetiti da iz (1.3.1) sleduje D(x)|R1(x).

Medutim, ukoliko Rs(z) nije nula polinom, prethodni postupak se nas-
tavlja, saglasno sledeé¢im jednakostima,

Ri(z) = S3(z)Rz(z) + Rs(x),
Rg(ﬂ?) = S4($)R3(1’) + R4(1’),

(1.3.1)

(1.3.2)

Ry—1(z) = Sp1(2) Ri(z) + Ri41(2),

sve do ispunjenja uslova Rj.1(x) = 0. Tada je Ri(x) = NZD(P(z), Q(x)).
Ovo zaklju¢ujemo sliénim rezonovanjem kao u slucaju k =1. 0O

Napomena 1.3.1. U dokazu ove teoreme koris¢en je Euklidov algoritam, pri
¢emu su za odredivanje najveceg zajednickog delioca (NZD) dva polinoma bitni
samo ostaci Ry (x), a ne i koliénici Sy(z), v = 1,2,... . Imajuéi na umu jedin-
stvenost NZD do na multiplikativnu konstantu moguce je u svakom koraku Eukli-
dovog algoritma mnoziti ostatke R, (x) pogodnim konstantama razli¢itim od nule
u cilju dobijanja jednostavnijih izraza pri deljenju.
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Definicija 1.3.3. Ako je najvedi zajednicki delilac za polinome P(z) i Q(x)
konstanta, za te polinome kazemo da su uzajamno prosti.

Primer 1.3.1. Za polinome u R[z],
P(z) =2z + 42° + 2* — 22 — 8, Qz) = 2> + 2% + 4,

odredi¢emo NZD. Kako je

(22 + 4234+ 2% — 22— 8) : (P + 22 +4) =22 +2

2:1:4 + 2x3 + 8z
22% + 22 —10z— 8
2x3 —|—2x2 + 8
— 22— 102—16

imamo

P(z) = (22 4 2)Q(z) — (z* 4 10z + 16).
Uzmimo da je Ry(z) = 22 + 10z 4+ 16 (pomnozeno sa —1) i podelimo Q(z) sa
Ri(x). Dakle,

(23+ 2° + 4): (2®4+10z+16)=2—9
2’ +102”+162

— 922162+ 4
— 922902 — 144

T4x + 148

t.
Q(z) = (z —9)R1(x) + 74z + 148.

Uzmimo Ra(z) = z + 2 (pomnozeno sa 1/74) i podelimo Ry (z) sa Ra(z). Kako je
Ri(z) = (z + 8)Ra(x), zakljucujemo da je

NZD(P(z),Q(x)) = Ra(z) =z +2. A

Teorema 1.3.2. Ako je D(x) = NZD(P(x),Q(x)) tada postoje polinomi
U(x) i V(z) takvi da je

(1.3.3) D(z) =U(z)P(x) + V(x)Q(z).
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Dokaz. Na osnovu (1.3.1) i (1.3.2) imamo redom

Ri(z) = P(z) — S1(2)Q(z),
Ry(z) = =Sy (x)P(x) + (1 + S1(x)S2(2)) Q(x),
R3(z) = (14 S2(2)S5(2)))P(z) — (S1(z) + S3(x) 4+ S1(2)S2(2)S5(2)) Q (=),

itd. Najzad, D(z) = Ri(z) ima oblik (1.3.3). O

1.4. Bézoutov stav i Hornerova Sema
Neka je a € Ki P(x) =ap+ a1z + -+ + a,2™. Tada je
Pla)=ap+ara+ -+ +aza”
jedan element u polju K. Za P(a) kazemo da je vrednost polinoma u tacki

r = a.

Za element a € K kazemo da je nula polinoma P(z) € K[z] ako je vrednost
polinoma u toj tacki jednaka nuli, tj. P(a) =0. U tom slu¢aju, za polinom
prvog stepena x — a kazemo da je linearni faktor.

Teorema 1.4.1. Ako je a nula polinoma P(x) € K], tada je P(x) deljiv
linearnim faktorom x — a.

Dokaz. Kako je
b —af =@+ e+ 4 2d TP+ A (2 - a),
imamo
P(z) — P(a) = a1(z — a) + az(z? — a®) + - + an (2" — a™)

=[a1+a(z+a)+ - +a,(" "+ +a" )] (z—a)

= Q(.Z')(.Z' - CL),
gde je Q(z) polinom stepena n — 1. S druge strane, po pretpostavci je
P(a) = 0, pa imamo da je P(x) = Q(z)(x —a), §to znaci da je polinom P(z)
deljiv linearnim faktorom x —a. [

Sledeée tvrdenje je poznato kao Bézoutov®”) stav:

57) Etienne Bézout (1730-1783), francuski matematicar.
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Teorema 1.4.2. Ostatak pri deljenju polinoma P(x) sa © — a jednak je
vrednosti polinoma P(a).

Dokaz. Kako je Q(x) = x — a polinom prvog stepena, na osnovu teoreme
1.2.1, postoji jedinstveni polinom S(z) i konstanta R (polinom stepena nula)
tako da je

(1.4.1) P(z) = S(z)(x — a) + R.

Stavljajuéi = a u (1.4.1) dobijamo R = P(a). O
Koriséenjem prethodne teoreme, svaki polinom P(x) € K[z]| stepena n

mozemo na jedinstven nac¢in predstaviti (razloziti) po stepenima od z — a,
tj.

(1.4.2) P(x) = Ag+ Ai(z —a) + Ag(x —a)® +--- + Ap(z — a)",

gde su A, k= 0,1,... ,n elementi polja K. Zaista, na osnovu (1.4.1) imamo
(1.4.3) P(z) = Ay + Pi(z)(z — a),

gde smo stavili Ag = R = P(a) i Pi(z) = S(z). Ako je Pi(z) polinom
nultog stepena trazeni razvoj (1.4.2) je dobijen. U protivnom sluc¢aju, delimo
polinom P;(x) sa x — a, dobijajuéi pritom da je

(1.4.4) Pi(z) = A1 + Py(x)(x — a),

gde je Ay = P;(a). Na ovaj nacin, kombinujuéi (1.4.3) i (1.4.4), dobijamo

P(z) = Ag + Ay (z — a) + Py(x)(x — a)*.

Nastavljajuéi ovaj postupak dobié¢emo razvoj (1.4.2).
Definicija 1.4.1. Ako je P(z) = ap + a1z + asx® + - -+ + a,x™ proizvoljan
polinom iz K[z], tada za polinom

P'(z) = a; + 2a27* + - -+ +na,z" ' € K[z]
kazemo da je (prvi) izvod polinoma P(zx). Za preslikavanje P(z) — P'(x)
kazemo da je diferenciranje u prstenu K[z].

Visi izvodi P*) (z) definisu se rekurzivno; na primer, izvod polinoma
P'(x) naziva se drugi izvod polinoma P(z), itd. Po definiciji, P(¥) (z) = P(x).
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Napomenimo da je dg P'(z) = dgP(x) — 1. Takode, za svako k > n =
dg P(z) imamo da je P(*)(z) nula polinom.

Ocigledno, kada je K = R, polinomska funkcija ¢ — P(t) je realna funk-
cija realne promenljive t. Ona je, kao $to znamo iz glave V, neprekidna i
diferencijabilna za svako ¢t € R, a za |t| — +oo tezi ka +oo ako je stepen
n > 1. Kao sto je receno u odeljku 1.1, za beskona¢na polja ne pravimo
razliku izmedu polinoma i polinomske funkcije. U tom slucaju, primenom
Taylorove formule (videti odeljak 1.12, glava V), koeficijenti Aj u razlaganju
(1.4.2) mogu se izraziti pomoéu

1
(1.4.5) Ap =4 P® (@)  (k=0,1,...,n).

Tako dobijamo Taylorovo razlaganje

P//(a)
2!

"(a (”)a
P(:E):P(a)+P()(:E—a)+ Pn!()

T (x—a)?+-- +

(x —a)™.

Ovi rezultati vaze i u sluc¢aju polja kompleksnih brojeva K = C.

Jedan elementaran, ali vazan problem je izra¢unavanje vrednosti polinoma
za dato x = a. Predstavimo polinom po opadajué¢im stepenima

(1.4.6) P(z) = apz™ + a12™ ' + aox™ 2 4 -+ ap_1T + ap.

Ako bismo izrac¢unavali vrednost polinoma P(a), na osnovu (1.4.6), bilo bi
potrebno 2n—1 mnozenja i n sabiranja. Medutim, ukoliko P(x) predstavimo
u obliku

(1.4.7) P(z)= (- ((aox + ar)r +a)x + -+ an_1)x + an

potrebno je samo n mnoZenja i n sabiranja.

Sabg, by, ... ,b,_1 oznacimo koeficijente polinoma S(x) u (1.4.1) i stavimo
b,, = R. Tada imamo

apr” + a4+ ap_ 1z + ap

= (bo!Enil + blﬂ?niQ + -+ bn—l)($ - a) + bn7

odakle, uporedivanjem koeficijenata uz odgovarajuce stepene na levoj i des-
noj strani prethodne jednakosti, dobijamo

a(]:bo, ak:bk—bk_la (k’:L... ,n).
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Na osnovu ovih jednakosti moze se formirati rekurzivni postupak za izra-
¢unavanje vrednosti polinoma za = = a:

(1.4.8) by = ay, b = ap + bp_1a (k=1,...,n),

koji posle n koraka daje vrednost polinoma, tj. P(a) = b,. Primetimo da
su koeficijenti by, u stvari, vrednosti u odgovarajué¢im zagradama u (1.4.7)
izracunate za x = a.

Izlozeni postupak (1.4.8) poznat je kao Hornerova® sema i moze se in-
terpretirati kroz sledecu Semu:

a ap aq a9 as N Qp—1 QA
boa bla bgCL bn,ga bn,la
b by by bs bn1 | bn=Pla)

Prou vrstu, dakle, zapocinjemo sa vrednoséu x = a za koju izracunavamo
vrednost polinoma, a zatim pisemo koeficijente polinoma (1.4.6), poéev od
najstarijeg koeficijenta. U trecoj vrsti pisemo koeficijente by, koje izracu-
navamo sabiranjem odgovarajuéih elemenata prve i druge vrste, pri cemu je
bo = ag. Elemente druge vrste formiramo mnoZenjem vrednosti a sa prethod-
nim elementom iz trece vrste. Elementi treée vrste su, dakle, koeficijenti
polinoma S(x) i ostatak pri deljenju R = P(a).

Nastavljajuéi postupak deljenja dobijenog kolicénika S(x) sa x — a mogudce
je dobiti razlaganje (1.4.2). Koeficijenti u tom razlaganju Ay su, upravo,
ostaci pri ovim deljenjima. Na taj nacin, Hornerovom Semom i koriscenjem
(1.4.5), mogu se odrediti svi izvodi polinoma P(x) u tacki r = a,

(1.4.9) P®(a) =KlA,,  (k=1,...,n).

Primer 1.4.1. Neka je P(z) = 42 — 423 4+ 1322 — 162 — 12 € R[z]. Primenom
Hornerove §eme odredi¢emo vrednost P(2):

2| 4 —4 13 -16 —12
8 8 42 52
4 4 21 26 | 40

Dakle, P(2) = 40. Koli¢nik pri deljenju polinoma P(z) sa  — 2 je polinom S(z) =
423 + 42° + 21z + 26, a ostatak deljenja je R = P(2) = 40. Navedena Sema se
moze uprostiti izostavljanjem druge vrste. Na primer, za a = —1/2 imamo

58) William George Horner (1773-1827), engleski matematicar.
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-1/2 | 4 -4 13 —-16 —12
4 —6 16 —24| 0

odakle zaklju¢ujemo da je a = —1/2 nula polinoma P(x).

Primenimo sada postupak sukcesivnog deljenja u cilju dobijanja razlaganja poli-
noma P(z) po stepenima od x —2 i izra¢unavanja izvoda polinoma u tacki x = 2.

Postupak je prikazan u sledeéoj tabeli:

2 4 —4 13 -16 12
4 4 21 26 40
4 12 45| 116
4 20 | 85
4 28
4

Prema tome,
P(z) =40 + 116(x — 2) + 85(z — 2)® + 28(z — 2)% + 4(z — 2)*.

Na osnovu (1.4.9) imamo redom P’(2) = A; = 116, P"(2) = 245 = 170, P"'(2) =
645 =168, P (2) =244, =96. A

1.5. Osnovni stav algebre i faktorizacija polinoma

U daljem izlaganju posmatra¢emo polinome na tzv. algebarski zatvorenim
poljima.

Definicija 1.5.1. Za polje K kazemo da je algebarski zatvoreno ako svaki
polinom P(z) € K[z], razli¢it od konstante, ima bar jednu nulu u K.

Da sva polja nisu algebarski zatvorena ukazuje slede¢i primer.

Primer 1.5.1. Posmatrajmo polinom P(z) =1 + 2?2 nad poljem K. Ako je K
polje racionalnih brojeva ili polje realnih brojeva, P(x) nema ni jednu nulu u K.
Medutim, na polju C ovaj polinom ima dve nule x =i iz = —i. A

Sledeéa teorema o algebarskoj zatvorenosti polja kompleksnih brojeva
tradicionalno se naziva osnovna teorema algebre:
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Teorema 1.5.1. Svaki polinom P(z) € Clz] stepena n > 1 ima bar jednu
nulu.

Postoji vise razlic¢itih dokaza ove teoreme. Jedan kratak dokaz se moze
dati metodima Kompleksne analize. Kori§¢enje elementarnog matematickog
aparata zahteva komplikovan dokaz pa ¢emo ga ovde zbog toga izostaviti.

Teorema 1.5.1 se ¢esto formulise i u obliku:

Teorema 1.5.2. Svaki polinom P(z) € Clx] stepena n > 1 je proizvod n
linearnih faktora.

Ocigledno iz teoreme 1.5.2 sleduje teorema 1.5.1. Obrnuto, ako je x; nula
polinoma P(x) € C[z] koja postoji na osnovu teoreme 1.5.1, tada je, na
osnovu teoreme 1.4.1, P(z) deljiv linearnim faktorom x — z1, tj. vazi

P(z) = (¢ — 21)Pi(2),

gde je P;(z) polinom stepena n — 1. Ako je n > 2, tada ponovo primenom
teoreme 1.5.1, zakljuéujemo da Pj(z) ima bar jednu nulu, recimo zo, tako
da je
Pi(x) = (x — x9) Py (x), dg Py(x) =n — 2.
Dakle,
P(z) = (x — x1)(x — z2) Pa(x).

Nastavljajuéi ovakav postupak dolazimo do faktorizacije
Px)=(zr—x1)(x —x2) - (x — xp) Py (),

gde je dg P, (x) = 0, tj. P,(z) se svodi na najstariji koeficijent polinoma
P(z).

Dakle, polinom

(1.5.1) P(z) = anz™ + ap_12" 1+ - +ayz + ao,
sa kompleksnim koeficijentima ag, a1, ... ,an i a, # 0ima n nula x4, z9, ...,
Ty, 1 Vazi
(1.5.2) P(z)=an(z —z1)(x —x2) - - (T — mp).
Medu kompleksnim brojevima x1, x2, ..., x, moze biti i jednakih. U

slede¢oj definiciji uvodimo pojam visestruke nule polinoma P(z).
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Definicija 1.5.2. Za nulu z; polinoma P(x) € C[z] kazemo da je viSestruka
reda k (€ N) ako postoji polinom Q(z) takav da je

(1.5.3) P(x) = (x — 21)*Q(z), Q(z1) # 0.

Ako je k =1 kazemo da je nula x; prosta ili jednostruka.

Teorema 1.5.3. Ako je x = x1 videstruka nula reda k > 1 polinoma P(x) €
Clz], tada je ona nula reda k — 1 izvodnog polinoma P'(z) € Clx].

Dokaz. Pretpostavljajuéi da je x = x; viSestruka nula reda k£ > 1 poli-
noma P(z) € C[z], na osnovu prethodne definicije postoji polinom Q(x)
takav da vazi (1.5.3). Tada je®®

P'(x) = k(z —21)" ' Q(z) + (2 — 21)*Q'(z) = (z — 21)* ' Q1 (w),

gde je Q1(x) = kQ(z) + (x — z1)Q'(z). Kako je Q1(x1) = kQ(x1) # 0,
zaklju¢ujemo da je x = x7 viSestruka nula reda k — 1 izvodnog polinoma
Pl(z). O

Teorema 1.5.4. Kompleksan broj x1 je visestruka nula reda k polinoma
P(z) € Clz] ako i samo ako je

(1.5.4) P(zy)=P'(x1)=---=P* V(@) =0 PH®(z;)#0.

Dokaz. Pretpostavimo da je x = z; viSestruka nula reda k polinoma
P(z) € C[z]. Tada, sukcesivhom primenom prethodne teoreme na P(x),
P'(z), ..., P*=Y(z), dobijamo (1.5.4).

Obrnuto, ako pretpostavimo da vazi (1.5.4), tada se Taylorovo razlaganje
polinoma u tacki = = z1 (videti odeljak 1.4)

/ T /! T ('n,) T
Pla)= Pley) + L0 gy D0 (2 Py
svodi na
) (1 (h+1) (5 ™) ( )
P(z) = (z —1)" P kf 1)+P(k+1()!1)(x—x1)...+7p n$ 1)(95—:p1)n "l

59) Ne pravimo razliku izmedu polinoma i polinomske funkcije i koristimo pravila za
diferenciranje funkcija.



256 ALGEBARSKI POLINOMI I RACIONALNE FUNKCIJE

tj. P(x) = (z — 21)*Q(z), gde je Q(z1) = P®)(x1)/k! # 0, §to znadi da je
x1 viSestruka nula reda k polinoma P(z). O

Primer 1.5.2. Da bismo dokazali da je polinom
P(z) = 22" —nn+ 1)a" 2 +2(n? = 1)a"z —n(n—1)a"™" (neN)

deljiv sa (z — a)® dovoljno je proveriti da li su ispunjeni uslovi P(a) = P'(a) =
P"(a) = 0. Kako je

P'(z) =2(n+1)z" = 2n(n+ 1)a™ o+ 2(n* — 1)a",
P’(z) =2n(n+ 1)z" "' = 2n(n+1)a" !,

nalazimo redom

P(a) = 2a"" —n(n+1)a"a® +2(n* — 1)a"a — n(n — 1)a™ ! =0,
P'(a) =2(n+1)a" — 2n(n+ 1)a" ‘o +2(n® — 1)a" =0,
P"(a) = 2n(n + 1)an_1 —2n(n+ 1)a"_1 =0. A

Kao direktnu posledicu teoreme 1.5.2 imamo sledeéi rezultat:

Teorema 1.5.5. Neka su x1, 2, ..., Ty, medu sobom razlicite nule poli-
noma P(x) € Clz| stepena n sa redom visestrukosti k1, ko, ..., kp,, respek-
tivno. Tada vazi faktorizacija

(1.5.5) P(x) = ap(z —z)" (x — 22)"2 - (z — zn) ",

gde je ky + ko + - + kyy = n, a a, je nagstariji koeficijent polinoma P(x).

Faktorizacija (1.5.5) se naziva kanonicko razlaganje polinoma P(z) na
faktore.

Teorema 1.5.6. Kanonicko razlaganje (1.5.5) je jedinstveno.

Dokaz. Pretpostavimo da, pored kanonickog razlaganja (1.5.5), postoji
drugo kanonicko razlaganje

P(z)=an(z —y1)" (z —y2)"? -+ (2 — z,)"r,

gde je Iy + Iy + -+ + I, = n. Tada mora vaziti jednakost

(15.6) (z—21)™ (z —22)" - (z —zm)"™ = (@ — )" (@ — )2 - (@ — yr)'".
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Nije tesko videti da se skupovi nula

Xm:{xlyx%”- 7xm} i Yr:{ylay%'” 7?]7«}

moraju poklapati. Naime, ako to nije slucaj, jednakost nije moguéa za svako
x € C. Na primer, ako z1 € Y., tada za x = x; leva strana u (1.5.6) postaje
nula, dok je pri tome desna strana razli¢ita od nule. Prema tome, ako postoje
dva kanonicka razlaganja onda bi jednakost (1.5.6) eventualno bila moguéa
samo kada je X,, =Y, tj. kada je

(1.5.7) (x— xl)kl (z— xg)kQ- (- xm)km =(x— xl)ll (x— xg)l2~ (= xm)lm.

Pretpostavimo sada da je, na primer, k1 # [; i neka je k; > l;. Deobom
(1.5.7) sa faktorom (x — z1)"* dobijamo

(x—z) bz —z)?2 (= xp) = (2 — 22)2 - (& — ),

odakle, stavljajuéi x = xz1, zakljucujemo da mora biti k&y = [ jer bi u
protivnom slucaju leva strana bila nula, a desna razli¢ita od nule. Na ovaj
nacin dokazujemo da mora biti k; = [; za svako ¢ = 1,... ,m, Sto znaci da
je kanonicko razlaganje (1.5.5) jedinstveno. O

Napomena 1.5.1. Na kraju ovog odeljka ukazimo na moguénost da se polinom
sa viSestrukim nulama, ¢ije je kanonicko razlaganje dato sa (1.5.5), moze redukovati
na polinom sa samo prostim nulama 1, z3, ..., Tm. Pretpostavimo da je D(x)
najvedi zajednicki delilac za polinome P(z) i P'(x), tj. D(z) = NZD(P(z), P'(x).
Ukoliko je D(z) konstanta, polinomi P(z) i P’(x) su uzajamno prosti, §to znaéi da
oni nemaju zajednickih faktora, tj. polinom P(x) ima samo proste nule. Medutim,
ukoliko je dg D(z) > 1, polinom P(z) ima viSestruke nule jer su tada faktori
polinoma D(z), upravo, zajednicki faktori polinoma P(z) i P'(z). Zato deljenje
polinoma P(x) sa D(x) daje kao koli¢nik polinom koji ima iste nule kao i polinom
P(x), ali su one sve proste. Dakle, taj polinom ima faktorizaciju

P(z)
D(x)

=clr —z1)(x —x2) - (T — Tm),
gde je c neka konstanta.

1.6. Vieteove formule

Posmatrajmo polinom P(z) sa kompleksnim koeficijentima stepena n koji
je dat sa (1.5.1). Neka su njegove nule redom 1, zo, ..., x,. 1z jednakosti
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polinoma, na osnovu (1.5.1) i (1.5.2), dobijamo tzv. Vieteove®®) formule

Ap—1

Ty +T2+ 0 Ty = — ;
Qp,

Ap—2

T1T2 + 2123+ +Tp_1Tp = P
n

a
T1Tg -+ Ty = (—1)"—0.
an

Oznacimo leve strane u prethodnim jednakostima redom sa oy, o2, ...,
oy. Detaljnije razmatranje ovih veli¢ina koje se, inace, nazivaju elementarne
simetricne funkcije bi¢e dato u odeljku 3.1. Nije tesko zakljuciti da vazi

U™ 4 Ay 2" P apy_ox™ 2+ +arz + ag
=ap(x—x1)(x —22) -+ (T —y)

=a, (2" — o2 F oo™ — o 4 (=1)"0,).

1.7. Nule realnih polinoma

Neka je
(1.7.1) P(z) = anz™ + ap_12" '+ - + ayz + ao,
gde su koeficijenti ag, a1, .. . ,a, realni brojeviia, # 0. Za takav polinom ko-

risti¢emo termin realni polinom. Nule realnih polinoma su, u opstem slucaju,
kompleksni brojevi. Dokaza¢emo da se one javljaju kao parovi konjugovano-
kompleksnih brojeva.

Teorema 1.7.1. Ako je x,, kompleksna nula reda k, realnog polinoma P(zx),
tada je i T, takode njegova kompleksna nula istog reda.

Dokaz. Na osnovu (1.7.1) imamo
P(2) = apZ™ + apn 17" 4 - + a1 7 + ap = P(7).
S druge strane, na osnovu faktorizacije (1.5.5), tj.
P(x) = an(z —x)f (. — 20)*2 - (2 — 2P (ki +ka+ -+ kpn =n),

60) Francois Viete (1540-1603), poznati francuski matematicar.
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zaklju¢ujemo da je

tj.
P(x) = ap(z — 21)" (x — Zo)"2 - (z — T,
odakle neposredno sleduje tvrdenje teoreme. [J

Na osnovu prthodnog izlaganja mozemo zakljuciti da realni polinom moze
imati realne nule i/ili parove konjugovano-kompleksnih nula. Pretpostavimo

da polinom P(x) ima realne nule z1,... ,z,,, reda visestrukosti k1, ... , kn,
respektivno, i parove konjugovano-kompleksnih nula oy £i54,... ,0p £ 10,
reda viSestrukosti sq,... ,s;, takode respektivno. Naravno, mora biti

zm:k‘,, + 22123,, = dg P(z).
v=1 v=1
Kako je
(r—a, —iB) (& — o, +if,) = (r - ) + 6} = 2> +pr+q (p,q €R),
parovima konjugovano-kompleksnih nula odgovaraju kvadratni faktori

Prprt+q (b= —20, ¢ =a+8)

odgovarajuce visestrukosti s, .

Prema tome, realni polinom P(z) se moze faktorisati u obliku

m l

(1.7.2) P(z) =ay H(m — )k H(m2 + oo+ q)°%,
v=1

v=1
gde je a,, najstariji koeficijent polinoma P(x).
Primer 1.7.1. Neka je P(z) = 2% — 223 + 1. Kako je

P(z)= (2 —1)? = (z = )@ + 2 +1))%,

faktorizacija (1.7.2) postaje P(z) = (z—1)%(z? +x+1)?, 5to znadi da polinom ima
dvostruku realnu nulu z = 1 i par konjugovano-kompleksnih nula z = (—1:|:\/§) /2,
¢iji je red viSestrukosti, takode, dva. A
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Primer 1.7.2. Jedna nula polinoma P(z) = 4z* — 423 + 1322 — 162 — 12 je
—2i. Kako je ovo realni prolinom, on mora imati i konjugovanu nulu 2¢. Polinom
P(z) je, dakle, deljiv faktorom (z + 2i)(x — 2i) = 2% + 4. Kako je

(42* — 42° 4132 — 160 — 12) : (2* + 4) = 42? —4x—3=4(m—|— %)(m— §),

faktorizovani oblik polinoma P(x) je

P(z) = 4<x + %) (x - g)(xz +4).
Njegove nule su redom 1 = —1/2, x9 = 3/2, x3 = —2i, 4 = 2i. Napomenimo da
smo, u primeru 1.4.1, Hornerovom Semom zakljucili da je P(—1/2) =0. A
Razmotrimo sada potrebne uslove da jedan realni polinom sa celobrojnim
koeficijentima ima racionalne nule.

Teorema 1.7.2. Neka je P(x) realni polinom sa celobrojnim koeficijentima,
P(z) = ap2™ 4+ an_13" '+ - + a1z +ao,  (ar € a;b; aoan #0).

Ako je x1 = p/q nula ovog polinoma, gde sup i q uzajamno prosti celi brojevi,
tada ag deljivo sa p i a, deljivo sa q, tj. vaZe relacije plag i qlay,.

Dokaz. Pretpostavimo da je x; = p/q € Q nula polinoma P(z), tj. da je
n n—1
P(xl):an@) +an_1<£) +ooda L fag=0.
q q q

Ako ovu jednakost pomnozimo sa ¢"~! dobijamo da je
7

an% +an_1p" T+ Faipg" T Fagg" T =0,

odakle zakljucujemo da qla, jer su p i ¢ uzajamno prosti brojevi. Sli¢no,
mnoZenjem poslednje jednakosti sa ¢/p dobijamo

q’I”L

gt ang" +ao— =0,

anp™ ' + an_1p
odakle zaklju¢ujemo da plag. O
Primer 1.7.3. Na polinom iz primera 1.7.2 mozemo primeniti prethodnu teo-
remu. Faktori broja 12 (= —ag) su: +1, +2, +3, £4, £6, £12. Pozitivni faktori
broja 4(= a4) su: 1, 2, 4. Na osnovu teoreme 1.7.2; racionalne nule polinoma
(ukoliko postoje) pripadaju slede¢em skupu:

1 1 3 3
{11, o, kg, 2, £3, 25, k5, 4, £6, 112}.
To su, kao §to smo videli u primeru 1.7.2, z1 = —=1/2 1 z2 =3/2. A

Rolleova teorema (videti odeljak 1.11, glava V) moze se ovde iskazati u

obliku:
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Teorema 1.7.3. Izmedu dve uzastopne realne nule x1 i xo (x1 < x2) realnog
polinoma P(x) nalazi se bar jedna nula izvodnog polinoma P'(x).

Takode, za realne polinome vaze slede¢i rezultati koji su posledice Rolleove
teoreme:

Teorema 1.7.4. Izmedu dve uzastopne realne nule ' i x4 () < ) realnog
izvodnog polinoma P'(x) nalazi se najvise jedna nula polinoma P(zx).

Teorema 1.7.5. Ako su sve nule realnog polinoma P(x) realne, tada su
i sve nule izvodnog polinoma P'(x) realne i nule izvodnog polinoma P'(x)
razdvagjaju nule polinoma P(x).

Teorema 1.7.6. Realni polinom P(x) ne mozZe imati vise od k + 1 realnih
nula ako izvodni polinom P’(x) ima k realnih nula.

1.8. Broj realnih nula

Ovaj odeljak posveéujemo pitanju broja realnih nula datog polinoma P(x)
u intervalu (a,b), u oznaci N(a,b) = N(a,b; P). Da bismo formulisali os-
novne rezultate koji se odnose na broj N(a,b), potrebno je najpre uvesti
definiciju varijacije (promene znaka) u jednom kona¢nom nizu realnih bro-
jeva

(181) {a17a27--- Jan}7

od kojih nijedan nije nula.

Definicija 1.8.1. Ako je ararsr1 < 0 (1 <k <n —1) kazemo da na mestu
k u nizu (1.8.1) postoji varijacija ili promena znaka.

Primer 1.8.1. Niz brojeva {—4,—2,1,—3,—2,5,2} ima ukupno tri varijacije
koje postoje na drugom (¢lanovi niza —2 i 1), treem (11 3), i na petom mestu (sa
¢lanovima —215). A

Napomena 1.8.1. Cesto se, radi lakseg prad¢enja promene znaka, datom nizu
realnih brojeva pridruzuje niz simbola 4 i —. Tako za niz iz primera 1.8.1 imamo

{_47 _27 17 _37 _27 57 2} — {_7 ) +7 Ty T +7 +}

Broj varijacija u nizu koji ima i ¢lanove koji su jednaki nuli odreduje se
tako Sto se takvi ¢lanovi ne uzimaju u obzir.

Primer 1.8.2. Kod odredivanja broja varijacija u nizu {0, —2,0,0, 3,4,0, 1, 3}
treba posmatrati niz {—2,3,4,1,3}. Ovaj niz ima samo jednu varijaciju. A
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Neka V' oznacava broj varijacija u nizu

(1.8.2) {ag,a1,... ,apn_1,a,} (ap >0, a, #0)

¢iji su ¢lanovi koeficijenti realnog polinoma

(1.8.3) P(z) = apx™ + a12" ' 4+ ap_12 + a, (ap > 0).

Sledeée tvrdenje, koje navodimo bez dokaza, poznato je kao Descartesova
teorema:

Teorema 1.8.1. Broj pozitivnih nula polinoma (1.8.3) jednak je broju vari-
jacija u nizu (1.8.2) ili je od njega mangi za paran broj2m, tj. N(0,+o0; P) =
V —2m.

Napomena 1.8.2. U prethodnoj teoremi visestruke nule se racunaju onoliko
puta koliki je njihov red viSestrukosti.

Napomena 1.8.3. Broj negativnih nula polinoma (1.8.3) mogude je analizirati
primenom teoreme na polinom Q(z) = (—1)"P(—z).

Primer 1.8.3. Neka je P(z) = z° — 2 + 1. Njegovi koeficijenti ¢ine niz
{1,0,—1,0,0, 1}, ¢iji je broj varijacija V = 2. Na osnovu Descartesove teoreme,
polinom P(z) ima dve ili nijednu pozitivnu nulu. Za analizu broja negativnih nula
posmatrajmo polinom Q(z) = —P(—x) = z° + 22 — 1, Eji koeficijenti ¢ine niz
{1,0,1,0,0,—1}. Kako ovaj niz ima samo jednu varijaciju, zaklju¢ujemo da poli-
nom @Q(z) ima jednu pozitivnu nulu, tj. polinom P(z) ima samo jednu negativnu
nulu. A

Za odredivanje tacnog broja realnih nula jednog realnog polinoma u datom
intervalu postoji opsti metod, zasnovan na Sturmovoj®! teoremi. Za poli-
nom bez visestrukih nula moze se formirati niz polinoma, tzv. Sturmov niz,
na osnovu koga se moze odrediti tacan broj njegovih realnih nula u bilo kom
intervalu (a,b). Kao §to je poznato (videti napomenu 1.5.1) polinom P(z)
se uvek moze ,o¢istiti“ od visestrukih nula, uzimajuéi umesto P(z) polinom
P(z)/NZD(P(x), P'(x)).

Dakle, pretpostavimo da polinom P(z) nema visestrukih nula i formiraj-
mo niz polinoma

s[z] = {Pg(a;),Pl(x),... ,Pm(a:)},

startujudi sa
Py(z)=P(x) i  Pi(z)=P(x).

61)  Jacques Charles Frangois Sturm (1803-1855), francuski matematicar.
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Sliécno kao u Euklidovom algoritmu dalje ¢lanove niza s[z] odredujemo po-
modu

(1.8.4) Pk_l(l‘) = Pk(:E)Qk(l‘) — Pk_:,_l(:E),

meQ(x) - mel(x)mel(x) - Pm(x)a

gde sudg Pyi1(x) < dg Pe(x) (k=1,... ,m—1)idg Py, (x) = 0. Primetimo
da ovde ostatak pri deljenju Py_1(z) sa Py(z) oznacen sa —Pyy1(x).

Od izuzetnog znacaja je prouciti osobine Sturmovog niza s[z] i broj vari-
jacija u tom nizu, u oznaci V (s[z]). Preciznije re¢eno, interesuje nas promena
u broju varijacija u nizu s[z] kada se  menja duz intervala (a,b). Jasno je,
da promene necée biti ako nijedan ¢lan niza ne menja svoj znak na ovom
intervalu.

Lema 1.8.2. Neka je P(z) realni polinom sa prostim nulama i sx| njegov
Sturmov niz. Tada vaZi:

(a) Uzastopni ¢lanovi niza s[x] nemaju zajednickih nula;

(b) Ako je x = a realna nula polinoma Py(z) (1 <k <m —1), tada je

(1.8.5) Pkfl(a)PkJrl(a) < O;

(c) Ako je x = a realna nula polinoma Py(z) (1 < k < m — 1), tada
postoji okolina ove tacke u kojoj se broj varijacija u Sturmovom nizu
ne menga, tj. V(s[x]) = const za svako z € (a —e,a + €);

(d) Ako je x = a realna nula polinoma P(zx), tada za dovoljno malo
pozitivno € imamo V(s[a +¢€]) = V(s[a —¢]) — 1.

Dokaz. (a) Pretpostavimo suprotno, tj. da Pg(z) i Pgy1(z) imaju za-
jednicku nulu = a. Tada, na osnovu (1.8.4), zaklju¢ujemo da je Py_1(a) =
0. Ovo dalje znaci da je i Py_2(a) =0, ..., Pi(a) =0, Py(a) =0, tj. da je
x = a viSestruka nula polinoma P(z). Ovo je, medutim, u kontradikciji sa
pretpostavkom da polinom nema visestrukih nula.
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(b) Ako je Py(a) =0 iz (1.8.4) sleduje Py_1(a) = —Py11(a), tj.
Py—1(a)Pyey1(a) = —Prya(a)®.

Kako je, na osnovu (a), Pyy1(a) # 0, zakljuéujemo da vazi (1.8.5).

(¢) Na osnovu (a) i (b) zaklju¢ujemo da su Px_1(a) i Py1(a) (1 <k <
m—1) razli¢iti od nule i suprotnog su znaka. Zbog neprekidnosti polinomskih
funkcija (videti komentare u odeljku 1.4), postoji okolina tacke x = a u
kojoj Px—_1(x) i Pry1(x) nemaju nula, tj. konstantnog su znaka za svako
x € (a—¢e,a+¢). Moze se pretpostaviti, na primer, da je u toj okolini
Pi_1(x) <01 Pgyq(z) > 0. Tada imamo sledeée moguénosti:

x sgn Pp_1(x) sgnPg(xz) sgn Pgyi(x)
r<a - + +
r>a — - +
r<a - - +
T>a - + +

Dakle, broj varijacija ostaje nepromenjen kada se x menja duz intervala
(a —e,a+e).

(d) Polinom P(z) nema visestrukih nula pa je P'(a) = Pi(a) # 0. Ovo
znaci da se moze izabrati dovoljno malo € > 0 tako da se u intervalu (a —
g,a+¢) izvod P’'(z) ne anulira i da u tom intervalu polinom P(z) ima samo
jednu realnu nulu x = a. Sli¢no, kao i u slucaju (c), Sematski mozemo
analizirati moguée slucajeve kada x € (a —e,a + ¢):

x sgn P(z) sgnP’'(x) | sgn P(x) sgnP'(x)
r<a — + + -
T>a + + - -

Kao $to mozemo videti, postoji jedna varijacija u nizu {P(z), P'(z)} za
r < a,dok za x > a ovaj niz ne menja znak. Prema tome, imamo smanjivanje
broja varijacija za jedinicu. [

Na osnovu prethodne leme jednostavno se dokazuje slede¢a Sturmova teo-
rema:

Teorema 1.8.3. Neka je s[x] Sturmov niz za polinom P(x) bez visestrukih
nula i neka * = a i x = b nisu njegove nule, tj. neka je Py(a)Py(b) # 0.
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Tada je broj realnih nula polinoma P(x) wu intervalu (a,b) jednak razlici
broja varijacija u nizovima sla] i s[b], tj.

N(a,b) = V(s[a]) — V(s[b]).

Dokaz. Evidentno je da do promene broja varijacija u Sturmovom nizu
moze do¢i samo kada z rastu¢i od a do b prolazi kroz neku nulu ¢lanova
Sturmovog niza. Na osnovu leme 1.8.2, pri prolasku kroz nulu nekog od
polinoma Py(z) (1 < k < m — 1), broj varijacija u Sturmovom nizu ostaje
nepromenjen. Jedino, pri prolasku kroz jednu nulu polinoma P(z) broj va-
rijacija se smanjuje za jedinicu. Ovo znaci da razlika izmedu broja varijacija
u Sturmovom nizu za = a i za x = b daje taéno broj nula polinoma P(x)
koji se nalaze u intervalu (a,b). O

Primer 1.8.4. Neka je
P(z) = 42 — 232°% — 52° + 432" + 2023 — 2422 — 202 — 4.
Da bismo eliminisali visestruke nule ovog polinoma (ukoliko postoje) potrebno je
odrediti najpre najvedi zajednicki delilac za P(z) i P'(z) = 3227 —1382° — 252 +
17223 + 6022 — 482z — 20. Euklidovim algoritmom (videti odeljak 1.3) nalazimo
NZD(P(z), P'(z)) = 22> + 2° — 42 — 2.
Tada, deljenjem P(z) sa 2% + 22 — 4z — 2 dobijamo
Py(z) = 22° — 2 — 72 + 2% + 62 + 2.

Dakle, ovaj polinom ima samo proste nule. Pomoéu Sturmovog niza mozemo
odrediti broj njegovih realnih nula u bilo kom intervalu (a,b).

Sa Pj(z) ozna¢imo izvod polinoma Py(z), tj.
Pi(z) = 102" — 42® — 212% 4 2z + 6.

Ako 50Fy(x) podelim062) sa Pi(z) dobijamo koli¢nik 10z — 1, dok je ostatak pri
ovom deljenju uzet sa negativnim znakom

Py(z) = 1442> — 92 — 2422 — 106.

62) U cilju dobijanja jednostavnijih izraza, i ovde, kao i kod odredivanja najveceg
zajednickog delioca za dva polinoma (videti napomenu 1.3.1), u postupku dobijanja Stur-
movog niza mogucée je mnoziti ¢lanove niza proizvoljnim pozitivnim konstantama. Pozi-
tivnost konstanata je bitna zbog o¢uvanja znaka ¢lanova niza.
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Sada deljenjem 1152P;(x) sa P>(x) dobijamo koliénik 80x — 27 i odgovarajuéi
ostatak —507522 + 4250z + 4050. Za &lan P3(x) u Sturmovom nizu uzimamo ovaj
ostatak, prethodno pomnozen sa —1/25, tj. P3(x) = 203z — 170z — 162.

Slicno, deljenjem 41209P>(z) sa P3(x) dobijamo kao koli¢nik 29232z + 22653,
dok je ostatak —1385984x — 698368. Za ¢lan Py(x) u Sturmovom nizu uzimamo
prethodni ostatak sa negativnim znakom (uz dodatno deljenje sa 512). Dakle,
Py(z) = 2707z + 1364.

Najzad, 7327849P3(x)/Ps(z) daje kolicnik 549521x — 737082 i odgovarajuéi
ostatak —181731690. Za poslednji ¢lan Sturmovog niza mozemo uzeti Ps(z) = 1.

Na ovaj nacin, dobili smo Sturmov niz
slz] = {2x5 —zt = 7% 4 2 4 62 +2, 102" — 42 — 2127 4 22 + 6,
1442% — 92% — 2420 — 106, 2032° — 170z — 162, 2707z + 1364, 1},

za, koji, na primer, imamo

s[—2] = {-30, 110, —810,990, —4050, 1} — {—, 4+, —, +, —, +}, V(s[-2]) =5,
s[-1] = {1,-3,-17,211, 1343, 1} —{+,—,—,+,—,+} V(s[-1]) =4,
s[0] = {2,6,—106, —162, 1364, 1} —{+,+,—-,—+,+} V(s[0]) =2,
s[1] ={3,—-7,-213,-129,4071,1}  — {+,—, —, —,+,+}, V(s[1]) =2,
s[2] = {10, 54,526, 310,6778, 1} —{+,+,+,+ +,+}, V(s[2])=0.

Primetimo, takode, da je V(8[—o0]) =51 V(8[+00]) =0, s obzirom na
s[—oo] = {— +, =+, — 4} 1 s[too] = {+,+ + +,+ +}

Sada mozemo, na osnovu Sturmove teoreme, da odredimo broj realnih nula
polinoma Py(z) u intervalu (a,b). Oznacavajudi taj broj sa N(a,b), imamo

N(—00,-2)=5-5=0, N(-2,-1)=5-4=1, N(-1,00)=4-2=2,

N(0,1)=2-2=0, N(1,2)=2-0=2, N(2,400)=0—-0=0.

Dakle, polinom petog stepena Py(x) ima sve realne nule i to jednu u intervalu
(=2 —1) i po dve u intervalima (—1,0) i (1,2). Napomenimo da su njegove nule

—1/2, +v2, (14+/5)/2. Inage, nule —1/2 i ++/2 su dvostruke za polazni
polinom P(x). A

2. ALGEBARSKE JEDNACINE

2.1. Resavanje algebarskih jednacina

Jedan od glavnih problema algebre je nalazenje resenja algebarskih jed-
nacina.
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Definicija 2.1.1. Ako je P(x) polinom stepena n, pod algebarskom jedna-
¢inom n-tog stepena podrazumevamo jednacinu

(2.1.1) P(z) = apz™ + a12" ' + -+ ap_12 +a, = 0.

Koren ili resenje jednacine (2.1.1) je svaka nula polinoma P(x).

Ocigledno je da resenje jednacine (2.1.1) zavisi od koeficijenata ag, aq, .. .,
an. Dakle, ako je x = a resenje ove jednacine, tada je a funkcija koeficijenata,
tj. a = F(ag,a1,... ,ay,).

Pretpostavimo da je funkcija F' obrazovana kona¢nom primenom opera-
cija sabiranja, oduzimanja, mnozenja, deljenja i korenovanja nad koeficijen-
tima ag, a1, ..., a,. Resiti jednacinu (2.1.1) pomoéu radikala znaci odrediti
sve takve funkcije F' za koje je F(ag,aq,... ,a,) resenje jednacine (2.1.1).

Za reSenje opste kubne jednacine zasluzni su italijanski algebristi Scipione
del Ferro, Niccold Tartaglia i Gerolamo Cardano iz Sesnaestog veka?). U
tom periodu dobijeno je i reSenje za opStu algebarsku jednacinu ¢etvrtog
stepena.

Svi napori tokom sledeca dva veka bili su usmereni na reSavanje opstih
algebarskih jednacina stepena veéeg od cetiri, ali bezuspesno. Jedan od
vaznih doprinosa Gaussa u teoriji algebarskih jednacina je, svakako, kom-
pletno resenje binomne jednacine®®

(2.1.2) " —1=0,

63) Njihov rad je veoma zna¢ajan za istoriju algebre. Scipione del Ferro (1465-1526)
nikad nije publikovao svoje resenje, veé ga je samo saop$tio nekim svojim prijateljima.
Gerolamo Cardano (1501-1576) je bio ¢uveni lekar, astrolog, filozof i matematicar, koji je
ziveo u Milanu. Niccold Tartaglia (1500-1557) je, takode, italijanski matematicar, ¢ija je
godina rodenja, prema raspolozivim izvorima, nesiguran podatak.

64)  Ova jednacina je usko povezana sa konstrukcijom pravilnog poligona od n strana
koji je upisan u dati krug. Starogréki mistik, matematicar i prirodnjak Pitagora (5697—
5007 pre nase ere) znao je da konstruiSe pravilne poligone sa 3, 4, 5 i 6 stranica. Njihove
konstrukcije se mogu nadi i ¢etvrtoj knjizi Fuklidovi elementi. Gauss je bio jo§ na Uni-
verzitetu (1796) kada je otkrio da pravilan poligon sa 17 stranica moze biti upisan u dati
krug koris¢enjem samo lenjira i Sestara. Kasnije, on je dokazao da pravilan n-tougao
moze biti konstruisan samo pomocu lenjira i Sestara ako i samo ako je ispunjen bilo koji
od sledeéih uslova: (1) n je prost broj oblika 92" + 1, ili je proizvod razli¢itih prostih
brojeva ovog oblika; (2) n je neki stepen od 2; (3) n je proizvod brojeva koji zadovoljavaju
uslove (1) i (2). Na osnovu ovoga, pokazano je da mogu biti konstruisani pravilni poligoni
sa 257 i 65537 stranica. Godine 1801. pojavilo se znacajno Gaussovo delo Aritmeticka
ispitivanja.
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pomocu radikala. ReSavanje binomne jednacine razmatrali smo u odeljku
3.5, glava I. Prisetimo se samo da su koreni ove jednacine kompleksni brojevi
rasporedeni na jediniécnom krugu tako da predstavljaju temena pravilnog
poligona od n strana koji je upisan u ovaj krug. Dakle, binomna jednacina
(2.1.2), ili kako se drugacije kaze n-ti koren iz jedinice, ima n reSenja koja
odgovaraju tzv. granama n-tog korena, kojih ima ta¢no n.

Za jednacinu (2.1.1) kazemo da je opsta algebarska jednacina ako su njeni
koeficijenti ag, a1, ..., a, opsti brojevi. Ukoliko su, medutim, svi koefici-
jenti dati kao fiksne numericke konstante, tada za jednacinu kazemo da je
numericka algebarska jednacina. Ruffini®®, Abel, Galois®®), i drugi, dokazali
su da se opsta algebarska jednacina stepena n > 5 ne moze resiti pomocéu
radikala. ResSenje je, dakle, moguée samo za jednacine stepena n < 4. U
narednim odeljcima dajemo resenja za kvadratne jednacine (n = 2), kubne
jednacine (n = 3) i jednacine Cetvrtog stepena (n = 4).

S druge strane, numericke algebarske jednacine mogu se reSiti sa proiz-
voljnom taénoséu raznim iterativnim metodima®?).

Na kraju ovog odeljka napomenimo da je Galois dao kompletan odgovor
na pitanje pod kojim se uslovima neka algebarska jednac¢ina moze resiti
pomocu radikala.

2.2. Kvadratna jednacina

Neka su x1 1 x9 koreni kompleksne kvadratne jednacine

(2.2.1) ? +a1x+ag=0

reprezentovani pomoc¢u kompleksnih brojeva o i 3,

(2.2.2) 1 =a+ 0, To=a— .

Tada je

(2.2.3) 20 = —a;, o —B3*=ao.

Iz (2.2.3) dobijamo o = —a;1/2 kao i linearnu jednacinu za 3% iz koje +/3

moze biti odredeno. Dakle,

a 1 a 1
(2.2.4) x1:—71—|—§\/a%—4a0, :132:—?1—5 a? — 4day.

Napomena 2.2.1. Grana kvadratnog korena u (2.2.4) moze biti izbrana proiz-
voljno. Izbor grane utice samo na redosled resenja x1 i xg. Sli¢na primedba vazi i
za, jednaline treéeg i Cetvrtog stepena.

65) Paolo Ruffini (1765-1822), italijanski matematicar.
66) Evariste Galois (1811-1832), francuski matematicar.
67)  Ovi metodi se proucavaju u okviru kursa Numericka matematika.
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2.3. Kubna jednacina

Posmatrajmo kompleksnu jednacinu treéeg stepena, ili tzv. kubnu jedna-
¢inu,

(2.3.1) 3 4+ agx? + a1z + ag = 0.

Njeni koreni x1,z2 i 3 se mogu predstaviti kompleksnim brojevima a, 3 1«
u obliku

r1 = a+qof + qo7,
(2.3.2) o =a+q B+ q27,
r3=a+ @b+ q9,

gde su qx, k= 0,1, 2, dati sa
-1-1iV3

—1+iV3
—, =

q0:17 q1 =

2 2

Tada, na osnovu Vieteovih formula
X1+ T2 + X3 = —aaq,
(233) T1T9 + T1T3 + Tok3 = ay,
T1X2x3 = —ao,

imamo

3o = —aq,
(2.3.4) 30’ - 38y = ay,

o + 3% ++% - 3aBy = —ay.

Iz jednacina (2.3.4) mozemo naéi sumu 32(3% + 42) i proizvod 3%(33+3),
pomocu kojih se moze formirati kvadratna jednacina

(2.3.5) (3v)° + (2a3 — 9ayras + 27a0)(3v)® + (a3 — 3a,)® =0,

¢ija resenja su (38)% i (37)3.

Ako stavimo

(2.3.6) Q = a3 — 3a4, R = —2a3 + 9ajay — 27ay,
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iz kvadratne jednacine (2.3.5) sleduje

R+ /R? —4Q3 R —\/R? —4Q?
(37 (3pp = TV g RO VI
Dakle,

(23.8) az—@,ﬁzlvR+¢ftﬂf,7_lvR—¢fTZ§_

3 3 3

Grana kubnog korena u drugoj jednac¢ini u (2.3.8) moze biti izabrana
proizvoljno, ali u treéoj jednacini ona mora biti izabrana tako da je 8y =
@/9. Poslednji zahtev proizilazi iz druge jednacine u (2.3.4).

Napomena 2.3.1. U knjizi: D. S. MrrriNovi¢®) i D. Z. Dokovié®?), Poli-
nomi 1 matrice, Nau¢na knjiga, Beograd, 1966 (str. 121-126) izlozen je Cardanoov
metod za reSavanje kubne jednacine.

2.4. Jednacina cetvrtog stepena
Neka su koreni 1, 2, x3 i x4 kompleksne jednacine ¢etvrtog stepena
(2.4.1) zt +asz® +axr’ a1z +ag =0
reprezentovani pomodu
T, =a+ 6 + v+ (5,
To=a+83—-v-19,
r3=a—F+v—0,
Ta=0o—03—v+9,

(2.4.2)

gde su a, 8,7, kompleksni brojevi. Tada imamo

4o = —ag,
60 —2(8% ++*+ %) = ao,
(2.4.3) 403 — 4a(B? + 2 +02) + 8870 = —aq,

OZ4+ (ﬁQ _‘_72 +52)2 —2042(ﬁ2 _‘_72 +52)
—4(3%y% + B320% ++%6%) +8afBys = ap.
68) Dragoslav S. Mitrinovi¢ (1908-1995), poznati jugoslovenski matematicar.

69) Dragomir Z. Pokovié (1938- ), poznati jugoslovenski matematicar koji zivi i radi
u Kanadi.
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Na osnovu (2.4.3) dobijamo
LE+2+6), AN+ B+ 7), 455
koji su, u stvari, koeficijenti kubne jednac¢ine

(16v%) — (3a3 — 8az)(16v%)?

(2.4.4) +(3a3 — 16aza3 + 16a1a3 + 16a3 — 64ao)(160?)
— (a3 — dasaz + 8a;)* = 0.
Njena resenja su (43)2, (47)? i (46)2. Dakle, jednacine (2.4.3) definisu vred-
nost za a, & = —ag/4, i impliciraju jedna¢inu treég stepena (2.4.4) za odre-
divanje 32, 2 i 62.
Ako stavimo

P = ag — 4(12&3 + 8(11,

(2.4.5) Q = 12ay + a3 — 3a,as,

R = 27a0a§ —9aqasas3 + 2a§ — T2agas + 27a%

« —a2—§a
0 — Wz 3 2
4 3| R++/R? — 4Q3
(2.4.6) By = ¢/ 2 Q,
3 2
4</R—\/R2 —4Q3
Yo =3 ;
3 2
tada su
a—_%
=1
1
ﬁZZ\/ao+ﬁo+%7
(2.4.7)

1
V= Z\/ao + q180 + ¢20,

1
6= Z\/Oéo + q280 + q170,
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gde su q; i g2 dva ne-realna kubna korena iz jedinice, ¢iji redosled nije bitan.

Bilo koji izbor grane kubnog korena u (2.4.6) za koji je

21 = 152

je dozvoljen. Sli¢no je mogué proizvoljan izbor znaka kvadratnog korena u
(2.4.7) za koji je

P

Ogranicenje (2.4.9) za izbor znaka veli¢ina 3, 1 ¢ u (2.4.7) proizilazi iz prve
tri jednacine u (2.4.3).

Moze se, takode, dokazati slede¢a karakterizacija:
Teorema 2.4.1. Neka je
(2.4.10) zt+asz® +ayr’ +ax+ag=0
realna jednacina cetvrtog stepena i neka su
Q = 12ag + a3 — 3a,as,

R = 2Tapa3 — 9ajasa3 + 2a3 — T2apas + 2743,

/R2 _ 3
(2.4.11) T:3a§—8a2+8Re<§’/R+ R2 1Q )

Racunajuci visestrukost korena

(1) ako je R*—4Q?* > 0 tada su dva i samo dva korena jednacine (2.4.10)
realna;

(2) ako je R?> —4Q% =0 tada su dva korena jednacine (2.4.10) realna,
dok su preostala dva korena realna, ako i samo ako je T' > 0 za sva
tri moguca izbora kubnog korena u (2.4.11);

(3) ako je R?> —4Q3 < 0 tada su (a) éetiri korena jednacine (2.4.10)
realna ako i samo ako je T > 0 za sva tri moguca izbora kubnog
korena u (2.4.11); i (b) Nijedan koren jednacine (2.4.10) nije realan
ako i© samo ako je T' < 0 za najmanje jedan od moguca tri izbora
kubnog korena u (2.4.11).

Isto tako vaze i sledeca dva tvrdenja:
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Teorema 2.4.2. 1° Kubna jednacina (2.3.1) ima dva jednaka korena ako
i samo ako je R? —4Q3 = 0 i ima tri jednaka korena ako i samo ako je
R=Q =0, gde su

R = —2a§ + 9asasz — 27aq, Q= a% — 3asy ;

2° Jednacina cetvrtog stepena (2.4.1) ima dva jednaka korena ako i samo
ako je R?—4Q3 =0 i ima tri jednaka korena ako i samo ako je R = Q = 0,
gde su
R = 27a0a§ — 9aja%a3 + 2a§ — T2agas + 27a%,

Q = 12a9 + CL% — 3aias.

Ove teoreme se mogu neposredno dokazati koriséenjem algebrskih resenja
koja su prethodno data.

Teorema 2.4.3. 1° Jednacina cCetvrtog stepena (2.4.1) ima dva para jed-
nakih korena ako i samo ako su ispunjeni uslovi

R*—4Q° =0 i  32R=27a}.

2° Jednacina (2.4.1) ima éetiri jednaka korena ako i samo ako je R =
Q = Qg = 0.

3. POLINOMSKE FUNKCIJE VISE PROMENLJIVIH

3.1. Simetric¢ni polinomi
Sva razmatranja u ovom poglavlju se odnose na polinome nad poljem
realnih ili kompleksnih brojeva.

Polinomska funkcija P(zq,x2,...,x,) se naziva simetricni polinom po
1, Ta, ..., Ty ako je invarijantna za svaku permutaciju izvrsenu nad =1, o,
..., Tn. Umesto simetri¢ni polinom koristi se i termin simetricna funkcija.

Na primer,
P, = Py(a,b,c) = a® + b* + ¢ — 3ab,

3.1.1
( ) Py, = Py(a,b,c) = a®> +b* + c* —ab — bc — ca

su simetriéni polinomi, ili simetri¢ne funkcije, promenljivih a, b, c.
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Uzimajuéi sumu svih razlicitih ¢lanova (monoma) dobijenih iz tipi¢nog
¢lana oblika

k1, ko k,
xl ':UQ e xmm’
gde su ki,ko, ..., k, prirodni brojevi, i zamenom indeksa 1, 2, ..., m sa
svim moguéim uredenjima od m (< n) brojeva uzetih od 1, 2, ..., n, dobija
se simetri¢na funkcija promenljivih x1,zs,... ,x,, koju oznacavamo sa

§ : k1, k2 km
"1:‘1 x2 ---xm7

ili krace kao [k1, ko, ..., km).

U opstem slucaju, ako je t proizvod stepena od zi1,zs,...,T,, Ciji su
eksponenti pozitivni celi brojevi, tada > ¢t oznac¢ava sumu ovog ¢lana t i svih
razli¢itih ¢lanova dobijenih iz ¢ permutacijom promenljivih. Na primer, ako
imamo samo tri promenljive a, b, ¢, tada je

Z a’b’c = [2,2,1] = a®*b*c + b*c*a + c*a®b.

Takvi simetri¢ni polinomi se nazivaju X-polinoms.
Dva standardna sluc¢aja Y-polinoma od n promenljivih z1,zs, ... ,x, su:

1° Centralne simetricéne funkcije (polinoms)
sk:Zx’f: (k] :x’f+x§+'~+xﬁ (k > 0);
2° Elementarne (osnovne) simetriéne funkcije

ak:lea;g---xk:[l,l,...,1] (1<Ek<n).

k puta

Za k = 0 imamo sg = n i 09 = 1. Takode, uzimamo da je o, = 0 za
k > n.
U Y-notaciji, polinomi u (3.1.1) mogu se predstaviti jednostavnije

P =) d*—3) abe=[3]-3[1,1,1],
Py=) d*=) ab=[2—[1,1].
Korigéenjem funkcija sy, i oy, imamo

P1283—30'3, PQZSQ—O'Q.
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Elementarne simetri¢ne funkcije od x1, xs, ... ,x, koristili smo u odeljku
1.6 u cilju dobijanja Vieteovih formula za korene algebarskih jednacina ste-
pena n. Naime, tada smo imali

n

P(z) = [[(z — )

i=1
=z" —o" e ()" oz 4 (—1) "0,

(3.1.2)

Posmatrajmo sada polinom @Q;(x), definisan sa

P(x )
Ql(x)zl_ll(a:—x,,)—:n_(x)i (1<i<n)
Vi
i elementarne simetri¢ne funkcije promenljivih xq, ..., z;_1, Tiy1, ..., Tn.
Stavljajuéi
o =[1,1,...,1] (Q<k<n-1), o=1
k. Pl I = = ’ 0o —
N\ ——
k puta
imamo

Qi(z) =21 — 05”%”72 + -+ (—1)”710$ﬁl.
Na osnovu ovoga i (3.1.2) dobijamo
(3.1.3) o = oy + a0,
Koris¢enjem (3.1.3) nalazimo

i 1 i 2
0'(()):1, Ug)zal—xi, Ué)zag—xial—i-xi.

U opstem slucaju, imamo
A k
(3.1.4) o) =3 (-1 ator—,  (k=0,1,...,n—1).

v=0

Veza izmedu funkcija s; i o data je slede¢com Newtonovom teoremom:
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Teorema 3.1.1. Za svako k (1 <k <n — 1) vaZi jednakost
k

(3.1.5) > (~1)"8,05—y + ko = 0.

v=1

Dokaz. Diferenciranjem (3.1.2) dobijamo

-1 T o
Kako je
n P(a;) n n n—1 @
_ . _ k(1) n—1—k
DR SEYRID )
i=1 i=1 =1 k=0
n—1 n ]
_ ( 1)k <ZO-IE;Z))xn_k_17
k=0 i=1

zaklju¢ujemo da je
Yol =(n-kor  (0<k<n-1).
i=1

Koris¢enjem (3.1.4) nalazimo

n k
Z Z(—l)yiﬂéjo’k—u =m—-k)op, (k<n-1),
i=1 v=0
.
k
S () sp0hm = (n—kox  (k<n-—1).
v=0

Kako je sg = n, ova jednakost se svodi na (3.1.5). O

Napomena 3.1.1. Jednakost (3.1.5) vazi, takode, za k > n, stavljajudi, na-
ravno, o, = 0 za v > n.
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Zak=1,2,..., iz (3.1.5) dobijamo trougaoni sistem linearnih jednacina
S1 = 10_17
0181 — S92 = 20’2,
0981 — 0182 + S3 :30'3,
Ok—181 — 0k—282 +O’k,383 — 4 (—1)k718k = kO’k,

odakle nalazimo slede¢u eksplicitnu formulu

1 10’1
o1 1 202
op) o1 1 303
sp= (=D . ;
Ok—2 Okg—3 Ok_4 1 (k—1)ok—1
Op—1 Ok—2 Ok—3 o1 koy,

odakle, na primer, za k = 1,2, 3,4, imamo

2
S§1 =01, 8220'1—20'2, 83:0'?—30'10'24-30'3,

Sq4 = a‘f — 40%02 + 40103 + 203 —4doy .

Vazi 1 obrnuta formula

1 S1
S1 2 S9
(—1)k=1] 52 s 3 $3
k= TR
Sk—2 Sk—3 Sk—4 kF—1 sp_1
Sk—1 Sk-2 Sk-3 S1 Sk

Na primer, za k = 1,2, 3,4, imamo

1 1
o1 = 81, 09 = 5(8%—82), 03 = 6(8?—381824‘283),
1
o4 = ﬂ(sil — 65355 + 85153 + 353 — 654).

Sada mozemo da formuliSemo tzv. osnovnu teoremu za simetriéne funk-
cije:
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Teorema 3.1.2. Svaki simetriéni polinom P(x1,xa,... ,x,) moZe biti izra-
Zen kao polinom od elementarnih simetriénih funkcija o1, o2, ..., op, t].
(316) P(a:l,mg,... ,Z‘n):p(gl,(fg,... ,O’n).

Stavise, koeficijenti ovog polinoma se dobijaju iz koeficijenata simetricne
funkcije samo pomocu operacija sabiranje i oduzimanje.

Postoji vise razlicitih dokaza ove teoreme. Jedan od dokaza dao je Cauchy.

Neka su sada o1, 09,... ,0, promenljive. DefiniSimo teZine monoma
oM gg2 . gOn
kao sumu oy + 205 + -+ + nay,. Takode, definiSimo i tezinu polinoma
p(o1,09,...,0,) kao maksimum tezina monoma koji se pojavljuju u ovom

polinomu. Ako svaki od ovih monoma ima istu tezinu, tada kazemo da je
polinom izobarican.

Teorema 3.1.3. Neka je P(xq,x2,... ,x,) simetricni polinom. Ako je poli-
nom p(oy,02,... ,0,) odreden sa (3.1.6), tada je njegov totalni stepen jednak
stepenu polinoma P(xq1,Ta,... ,Ty,).

Teorema 3.1.4. Neka je P(x1,x2,...,2,) homogeni simetriéni polinom
stepena d. Ako je p(o1,09,... ,0,) definisan sa (3.1.6), tada je on izobaric¢an
polinom teZine d.

Napomena 3.1.2. Dokazi ovih teorema mogu se naéi u knjizi: D. KUREPA7O),

Visa algebra I (treée izdanje), Gradevinska knjiga, Beograd, 1979 (str. 697-698).

Primer 3.1.1. (a) Neka je P(z1,z2,23) = (z1 +z2)(x2+23)(z3+x1). Ovo je
simetri¢ni homogeni polinom treceg stepena. Njegov stepen po promenljivoj x1 je
d1 = 2. Takode, do = d3 = 2. Odgovarajuéi polinom p(o1,02,03) bie izobariéni
polinom tezine 3 i totalnog stepena 2. S obzirom na prethodnu teoremu, njegov
oblik mora biti

(3.1.7) P(x1,2z2,23) = p(o1,02,03) = Aci109 + Bos,

gde su A i B konstante.

Stavljajué¢i x1 = 01 zg = x3 = 1 imamo 01 = 2, 02 = 1, 03 = 0, P = 2. Tada,
iz (3.1.7) sleduje A = 1. Sli¢no, za 1 = 22 = x3 = 1 nalazimo da su o1 = g9 = 3,
o3 =1, P =38, azatim B = —1. Dakle,

p(o1,02,03) = 0102 — 03.

70) Puro Kurepa (1907-1993), poznati jugoslovenski matematicar.
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(b) Neka je P(z1,z2,... ,an) = :13%:132:1}3. Ovo je simetri¢ni homogeni polinom
stepena 4. Kako je njegov stepen po x1 jednak 2 zakljucujemo da odgovarajuéi
polinom p(o1,02,... ,0n) ima oblik

(3.1.8) P(z1,22,... ,2n) = p(o1,02,... ,0n) = Ac103 —|—BO’% + Coy,

gde su A, B, C konstante.

Zan=3ix1=0,2r9 =23 =1imamoo; =2,09=1,03=0,04=0,1i P=0.
Tada (3.1.8) daje B = 0. Sli¢no, za 1 = —1, x2 = x3 = 1 dobijamo o1 = 1,
o9 = —1, g3 = —1, a

2 2 2
P =zx{zoxs + 251123 + 237172

postaje P = —1. Dakle, (3.1.8) se redukuje na —1 =A-1-(—1),tj. A=1.

Zan=41ix; =x2 =1x3 =x4 = 1 dobijamo

Iz (3.1.8) sleduje C' = —4.

Dakle, za svako n imamo

2
2901962963 =p(01,02,... ,0n) = 0103 — 404.
(c) Neka je n >4 i P(x1,22,... ,2n) = Y. xx323. Tada je
P(zy,22,... ,2n) =p(01,02,... ,0n) = 0203 — 30104 + Ho5. A

3.2. Rezultanta i diskriminanta polinoma

Neka su
P(x) = Z a, " i Qx) = Z b,x™ ™Y
v=0 v=0

polinomi stepena n i m, respektivno, gde je agby # 0. Neka su dalje
x1,T2,...,%, koreni jednacine P(z) = 0. Jednacine P(xz) =01 Q(z) =0
imaju zajednicke korene ako i samo ako je

Qx1)Q(22) -~ Qwn) = 0.
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Medutim, leva strana u ovoj jednakosti je simetri¢na funkcija korena jednaci-
ne P(z) = 0, stepena m po svakom korenu, i kao takva moze biti izrazena u
obliku polinoma stepena m po elementarnim simetriénim funkcijama”™).

DefiniSimo sada

(3.2.1) R(P,Q) = ag'Q(z1)Q(x2) - - - Q(zy)

kao rezultantu (ili eliminantu) polinoma P(z) i Q(x). To je, ocigledno,
funkcija njihovih koeficijenata i moze biti predstavljena kao determinanta
reda n 4+ m u obliku:

apg ay ... Qp,
ap ay (07
m vrsta
a a ce. Gy
R(P.Q) = bo by ... b,i 1
b b bm
0 . ' n vrsta
bo b1 ... by

Primer 3.2.1. Za dva kvadratna polinoma (trinoma)

P(x)=apz’ + a1z +az i Q(z)=box> +biz+by

imamo
ap a1 ag 0
_ 0 ap a1 ag
R(P7 Q) - bO bl b2 0 9
0 by by b2
tj.
(3:2:2) R(P,Q) = (agbz — azbo)* — (agb1 — a1bo)(a1bs — asby).

Neka su P(z) = 22 + 2 — 2, Q(z) = 22 + 1, i S(z) = 22 — 3z 4+ 2. Na osnovu
(3.2.2) nalazimo R(P,Q) = 10, R(P,S) = 0, R(Q,S) = 10. Ovo znaci da samo
polinomi P(z) and S(x) imaju zajednic¢ku nulu (z =1). A

Neka su y1,¥2, ... ,Ym koreni jednacine Q(z) = 0. S obzirom na (3.2.1)
imamo

m

R(P,Q) = af [T bo [T(xr — ) = agvy T] T (xn — wo)-
k=1

i=1 k=1i=1

71 Ovo je fundamentalna teorema o simetri¢nim funkcijama.



POLINOMSKE FUNKCIJE VISE PROMENLJIVIH 281

Primetimo da je R(Q,P) = (—1)"™R(P, Q).

Definisimo, takode, diskriminantu polinoma P(z) kao izraz

D=D(P)= a%”ﬂ(aﬁl — :1:2)2 s (xg — ﬂj‘n)z(ﬂfz - 33‘3)2 o (Tpoy — :En)2,

gde su 1, zs,... ,x, njegove nule i ag najstariji koeficijent. Zbog ¢injenice
da je stepen po bilo kojoj nuli jednak 2(n — 1), simetri¢na funkcija D moze
biti izrazena kao polinom od ag, a1, - ..,a,. Diferenciranjem

P(z) = ao(z — 21)(x — 22) -+ (x — xn),
dobijamo

P'(x1) = ag(xy — x2) (1 — 23) - (21 — T0),

P'(x2) = ao(wa — 1) (w2 — a3) -+ (w2 — Tn),

P,(xn) = CL()(.Z'” - xl)(xn - x2) T (xn - xnfl)a
odakle sleduje

af T P (1) Plan) = af T =DM R (@) = 29) - (g — )

= (—1)"Y/2g4p.
Leva strana je jednaka rezultanti polinoma P(z) i P’'(z). Dakle,
(3.2.3) D(P) = (—1)""=Y/2q 1 R(P, P").

Na osnovu prethodnih razmatranja mozemo zakljuciti da polinom ima
visestruke nule ako i samo ako je njegova diskriminanta jednaka nuli.

Koriséenjem funkcija s = o% + 25 + .- + 2% (k > 0), diskriminanta
polinoma P(x) moze biti predstavljena u obliku determinante reda n

So S1 . Sn—1
_ S1 52 Sn
(3.2.4) D = a2"?
Spn—1 Sn S2n—2

(videti primer 2.10.2, glava II).
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U izvesnim sluc¢ajevima moguce je naci eksplicitne formule za diskrimi-
nantu polinoma. U slede¢im primerima dajemo eksplicitne formule u sluc¢aju
kvadratnog i kubnog polinoma kao i za opsti trinom.

Primer 3.2.2. Neka su n = 2, P(z) = az® + br + ¢, i neka su z1 i 22 nule
polinoma P(x). Kako su sp =2 i

b 2 2 2 b2—2ac
31:x1+x2:—5, 32::1:1+:1:2:(x1+x2) —2951952:7,

formula (3.2.4) daje diskriminantu kvadratnog trinoma
D =a*(sgsg — s3) = b%> —dac. A

Primer 3.2.3. Neka su n = 3, P(z) = aor® + a12? + asx + as, a 1, T2 i
x3 su nule polinoma P(z). Odredi¢emo diskriminantu ovog polinoma koriséenjem
razvoja homogene simetri¢ne funkcije

2 2 2
F(z1,22,23) = (z1 — 22)" (21 — 23)" (z2 — 3)
po elementarnim simetri¢nim funkcijama o1, o2, 3. Kako je F(z1,z2,x3) ¢etvrtog
stepena po bilo kojoj nuli, a takode i homogen polinom stepena homogenosti d = 6,
ovaj razvoj mora imati oblik

(3.2.5) F= AO’% + Bag + Coy0903 + DU?O’g + EU%O’%,

gde su A, B, C, D, E konstante, ¢ije vrednosti treba odrediti. Primetimo da je svaki
clan u (3.2.5) oblika co' 052053, gde je ¢ konstanta, a (a1, as, as) € Nj takvo da

O<ar+as+az3<4 i a1+ 2as+ 3a3 =06.

Uzimajuéi x1 = 0, zo = —z3 = 1 nalazimo 01 =0, 020 = —1, 03 =0, F = 4.
Tada iz (3.2.5) dobijamo B = —4. Sli¢no, za z; = 0, g = z3 = 1 dobijamo o1 = 2,
o9 =1,03=0,F =0,1 B+4E =0, tj. E = 1. Dakle, (3.2.5) se predstaviti u
obliku

3y 3 22
(3.2.6) 03(Aos + Cor02 + DoY) = F + 405 — 0103.
Stavljajuéi (1,1, —-2), (—=1,1,1), (1,1, 1), umesto (z1,x2,x3), dobijamo

4A=4(-3)3 A+C-D=-5A+9C+27D = 25,

respektivno. ReSavanjem ovog sistema jednacina nalazimo A = —27, C = 18,
D =—-4.
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Kako su o1 = —a1/ag, 02 = a2/ag, 03 = —a3/ag, na osnovu (3.2.5) dobijamo
diskriminantu kubnog polinoma

D(P) = ag(w1 — x2)° (w1 — 23)° (w2 — 73)°
2 3 3 2 2
=a [—2703 — 405 + 18010203 — 40103 + 0105

= —27aga§ — 4aga% + 18apaiasasz — 4a:1)’a3 + a%a%.

Isti rezultat moze biti dobijen koriséenjem (3.2.4) i centralnih simetri¢nih funkcija
Sk, 0 <k < 4.

U specijalnom slu¢aju kada su ag = 1, a1 = 0, a2 = p, a3 = q, zakljucujemo da
je diskriminanta polinoma P(z) = 2> + pz + q data sa

D(P) = —27¢* —4p®. A

Primer 3.2.4. Neka je P(z) = az™ ™ +bz™ +cinekasu u=m/div=n/d,
gde je d najvedi zajednicki delilac brojeva m i n.

Nule izvoda P'(z) = (m + n)az™ "1 + mbz™ ! su date sa

Gl=b = =bm1=0 i Epip=Emne” (k=0,1,...,n—1),

gde su e = exp(2mi/n) i &, = —mb/((m + n)a).

Kako su P(£1) = P(&) == P({m-1) =ci
P(fmsk) _ a€m+n5k(m+n) + bgmskm te=cH+ nb gmskm,
m+n
dobijamo rezultantu za P’(z) i P(x) u obliku
m—1 n—1
R(P',P) = (m+n)" """ [T P(&) [] P(Eme™)
k=1 k=0
n—1 nb L
o m+n _m+n m-—1 m _km
=(m+n)"""a"" e H<c+m+n£mé‘ >
k=0
S druge strane
1 d

¢ — (~1)rt min ot 17
(m + n)Htvar | 7
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gde je n = exp(27i/v).
Dakle,

R(P,P') = R(P', P) = a"c™ Y [(m +n)"Vale” — (—1)HHmbnrphtr]?.
Najzad, na osnovu (3.2.3) dobijamo
D(P) = (-1)%a" "1™t [(m + n)F Vet — (—1)“+”m”nyb“+"]d,

gde je s=(m+n)(m+n—1)/2.
Zam:1in:?imamoP(x):ax?’—l—bx—l—cid:1,,u:1,V:2,s:3.
Prethodni izraz za diskriminantu se redukuje na —27a%c® — 4ab®. A

Na kraju ovog odeljka pomenimo i slede¢u interesantnu formulu
D(PQ) = D(P)D(Q)R(P,Q)?,

gde su P(z) and Q(x) proizvoljni polinomi.

4. HURWITZOVI POLINOMI

4.1. Definicija Hurwitzovih polinoma

U mnogim problemima koji se odnose na stabilnost sistema (elektron-
skih, mehanickih, itd.) pojavljuju se polinomi ¢ije sve nule imaju negativan
realni deo. U ovom poglavlju razmatra¢emo takvu klasu polinoma i dati
potrebne i dovoljne uslove da jedan polinom pripada ovakvoj klasi. Jedno
algoritamsko reSenje ovog problema iz 1877. godine, koje je nedovoljno poz-
nato u literaturi, potice od Routha’™). Elegantno resenje ovog problema u
determinantnom obliku dao je Hurwitz™) 1895. godine i zato se polinomi iz
ove klase nazivaju Hurwitzovi polinoms ili krace H-polinomi. Dakle, realan
polinom

(4.1.1) P(z) =ag + a1x + agx® + - + aza” (an, #0)

je H-polinom ako sve njegove nule xj, (k = 1,... ,n) imaju osobinu Re z, < 0.

Ne umanjujuéi opstost razmatranja, na dalje pretpostavljamo da je naj-
stariji koeficijent polinoma pozitivan.

72)  Edward John Routh, Stability of given state of motion, London, 1877. Blize
biografske podatke o Routhu ne posedujemo.
73)  Adolf Hurwitz (1859-1919), nemacki matematicar.
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Teorema 4.1.1. Ako je polinom (4.1.1) sa a, > 0 H-polinom, tada su svi
njegovi koeficijenti pozitivni.

Dokaz. Pretpostavimo da H-polinom (4.1.1) ima konjugovano kompleksne
nule
T = —oay + 10k, Tom—k+1 = Tk, k=1,...,m,

i realne nule
Tom+k = Yk k:17"'7n_2m7

gde su ay, v, > 0. Tada se on moze faktorisati u obliku

m n—22m
P(z) = ay H(az + ag — i) (z + o +i0k) H (x + k),
k=1 k=1
tj. 2
P(z) = ay, H(x2 + 204,z + af + (7) H ( + Yk)-
k=1 k=1

Kako je a,, > 0 i kako svi kvadratni i linearni faktori imaju pozitivne koefi-
cijente zaklju¢ujemo da polinom P ima sve pozitivne koeficijente. A

Napomena 4.1.1. Obrnuto tvrdenje vazi za n = 1 i n = 2, tj. polinomi
ag+ai1x i ag+arx+ a2x2, sa ag,a1,as > 0, su H-polinomi. Ovakvo tvrdenje ne
vazi za n > 3. Na primer, 14 x + 2?+ a3+t a0 nije H-polinom. Njegove nule
se mogu odrediti iz faktorizacije

l+o+22+2°+2 ' +2° =@+ D@ +2+ D)2 -z +1).

4.2. Schurov metod

Posmatrajmo proizvoljan kompleksni polinom
(4.2.1) P(z) = ag + a17 + agz® + -+ - + a,a" (an, #0).

Sa P*(z) ozna¢imo polinom koji se dobija iz (4.2.1) zamenom koeficijenata
sa odgovarajué¢im konjugovanim vrednostima i promeni znaka koeficijentima
uz neparni stepen od x, tj.

(4.2.2) P*(z) = ap — a1 + a@gx® — - - - + (—1)"a,z".

Primetimo da iz P(z) = U(x)V (z) sleduje P*(z) = U*(z)V*(z). Takode,
(P)"(x) = P(x).



286 ALGEBARSKI POLINOMI I RACIONALNE FUNKCIJE

Pretpostavimo da su zy = ay + ifk, k = 1,... ,n nule polinoma P*(z).
Tada imamo faktorizacije

(4.2.3) P(z) = an [ [ (@ — ),
k=1

n n

(4.2.4) P (x) =a, [[ (2 —2) = (=1)"an [[ (= + 2).

k=1 k=1
Dokazaé¢emo sada jedan pomoéni rezultat:
Teorema 4.2.1. Ako je P(x) H-polinom, tj. Rexy = ap <0, k=1,... ,n,
tada vaZe nejednakosti
|P(z)] > |P*(z)| >0 za Rex >0,
|P*(x)] > | P(z)]| >0 za Rez <0,
|P(z)| = |P*(x)] >0 za Rex =0,

Dokaz. Za dokaz ovih nejednakosti dovoljno je za proizvoljno k (1 < k <
n) uociti razliku
D=z +z)* — |v — a1)?
= (a; + fk)((f + a:k) - (a; - xk)(i — fk)
= (z + 7)(zr + Tp),

koja, zamenom xp = ay + 0, postaje D = 4oy Rex, odakle zakljucujemo
da D ima suprotan znak od Rex. Dakle, imamo

|x — x| > |z + Tk za Rex > 0,
|z — x| < |z + Zy za Rex <0,
|x — x| = |z + T za Rex =0,

Sto zajedno sa (4.2.3) i (4.2.4) daje tvrdenje teoreme. [J

Nejednakosti u teoremi 4.2.1 nazivaju se Schurove™ nejednakosti. Koris-
¢enjem tih nejedakosti mozemo dokazati sledece tvrdenje:

™) Tssai Schur (1875-1941), nemagki matematicar.
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Teorema 4.2.2. Ako su a i b proizvoljne kompleksne konstante takve da je
la] > |b|, tada je P(x) H-polinom ako i samo ako je

(4.2.5) Q(x) = aP(x) — bP*(x),

H-polinom.

Dokaz. Ako polinom P(x) ima samo nule sa negativnim realnim delom,
tj. ako je on H-polinom, tada na osnovu prethodne teoreme, za Rex > 0
imamo |P(z)| > |P*(x)|. Stavise, za |a| > |b] imamo

[aP(x)] > [bP"(z)]  (Rex >0),

§to znaci da je Q(x) # 0 za svako x za koje je Rex > 0, tj. Q(x) je H-polinom.

Obrnuto, neka Q(x) ima samo nule sa negativnim realnim delom. Tada,
na osnovu

Q(z) = aP(z) —bP*(z),  Q"(x) = aP*(z) - bP(x),
dobijamo

a b .
(4.2.6) P(x) = m Q(x) + m Q" ().

Kako je koeficijent uz Q(x) u (4.2.6) veéi po modulu od koeficijenta uz Q*(x),
na osnovu prvog dela tvrdenja, zaklju¢ujemo da je P(z) H-polinom. O

Neka je £ proizvoljan kompleksan broj sa negativnim realnim delom. Ako
je P(z) H-polinom, na osnovu Schurovih relacija imamo da je

(4.2.7) [P= ()] > [P(©)]-

Ako stavimo a = P*(§) i b = P(§), na osnovu prethodne teoreme i (4.2.5)
zaklju¢ujemo da jednacina

(4.2.8) P (§)P(z) — PP (x) =0
ima samo korene sa negativnim realnim delom. Vazi i obrnuto, ako jedna¢ina

(4.2.8) ima korene u levoj poluravni i (4.2.7) vazi za Re§ < 0, tada je P(x)
H-polinom. Ovim smo dokazali tvrdenje:
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Teorema 4.2.3. Neka je & proizvoljan kompleksan broj takav da je Re & < 0.
Polinom P(x) je H-polinom samo ako je

_ Pr(P(x) - PE)P*(x)
=&

(4.2.9) Sg (:E)

H-polinom i |P*(&)| > |P(&)].

Poslednja teorema daje rekurzivni postupak, poznat kao Schurov metod,
za ispitivanje da li je jedan polinom Hurwitzov ili nije. Naime, problem za
polinom stepena n se svodi na odgovarajui problem za polinom stepena n— 1
uz proveru jedne nejednakosti. Obi¢no se uzima £ = —1.

Polinom S¢ () definisan pomocu (4.2.9) moze se razmatrati i kao polinom
po stepenima od &,

(4.2.10) Se(x) = Rp(€) = ro(x) + 11 ()€ + -+ 1pq (2)E" T,

gde su koeficijenti 7 (x), k = 0,1,... ,n—1, polinomi po z, stepena ne viseg
od n — 1. Kako je

P*(§)P(x) — P(E)P"(z) = (z — § Ru(§)
= zro(x) 4+ (wr1(z) —ro(x))+ - — ruo1(2)€",

koriséenjem (4.2.1) i (4.2.2) i poredenjem koeficijenata u prethodnoj jed-
nakosti uz ¢*, za k = 01i k = 1, dobijamo

agP(z) — agP*(x) = xro(x), —a1P(z)— a1 P*(x) = zri(x) — ro(x),
odakle sleduje
U(z)P(z) — V(x)P*(x) = 2*(ro(z) + r1(2)€),
gde su
U(x) = apz + ap€ — a1 €, V(x) = agz + ap€ + ayz€.

Moze se dokazati i slededi rezultat (videti knjigu na bugarskom jeziku: N.
OBRESKOV™), Nule polinoma, BAN, Sofija, 1963 (str. 189-191)).

Teorema 4.2.4. Neka je & proizvoljan kompleksan broj takav da je Re £ < 0.
Polinom P(x) je H-polinom samo ako je

ag # 0, Re(ay/agp) >0
i polinom Q(x) = ro(z) + &ri(x), stepena n — 1, H-polinom.

75) Nikola Obreskov (1896-1963), poznati bugarski matematicar.
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4.3. Primena na polinome sa realnim koeficijentima

Prethodno izlozeni Schurov metod se moze uprostiti ako je polinom
(4.3.1) P(z) = ag + a1x + agx® + -+ + ana” (ap > 0).

sa realnim koeficijentima.

Definisimo determinante D,(cn), k=1,2,...,n, pomoc¢u
aq ap 0 0 L 0
as as aq ap 0
(n) _
Dk — as ay as a9 0 ,
a2k—1 Qa2k—2 A2k—-3 (G2k—4 ag

gde stavljamo a, = 0 za v > n.

Teorema 4.3.1. Polinom P(x) dat pomocu (4.3.1) je H-polinom ako i samo
ako su sve determinante D,gn), za k=1,2,... ,n, pozitivne.

Dokaz. Kako se (4.3.1) moze predstaviti u obliku
P(z) = G(2?) + zH (2?),
gde su polinomi G(¢) i H(t) dati sa
G(t) =ay +ast+ast> +---, H(t)=ao+ ast +agt> +---,

imamo

P*(z) = G(2?) — xH(2?).
Tada se polinomi 7(z) i r1(z) u razvoju (4.2.10) mogu izraziti u obliku
(4.3.2) ro(x) = 2a0H (2?), xri(2) = 2a0H (2%) — 201 G(x?).

Da bismo primenili teoremu 4.2.4 potrebno je naéi odgovarajuéi polinom
Q(x) =ro(x) + &ry(z) stepena n — 1. Na osnovu (4.3.2) imamo

%Q(:p) :ag<1+§>H(:p2)—a1§G(x2), Re¢ < 0.
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Ako stavimo™® ¢ = —ag, prethodna jednakost se svodi na
1 ap a1
L@ = (1- @) me) + L ow),
Q) = 5.~ Q) = (1= ) H() + T G(a?)
tj.

Ql(az) = ax + (alag — aoag)l' + CL3£2 + (a1a4 — aga5)x3 + a5x4 R R

Sada, na osnovu teoreme 4.2.4, sleduje da je polinom (4.3.1) H-polinom
ako i samo ako je Q1(x) H-polinom i a; > 0.

Tvrdenje, ocigledno, vazi za n = 1. Pretpostavimo da tvrdenje vazi za
polinome stepena n — 1. Neka su pritom odgovarajuce determinante D,gn_l),
k=1,2,...,n—1, za Q(z) date sa
ajq 0 0
a3 ai1a2 — apgaz a1

D(n—l) —
k —las ai1a4 —apas as

Ako elementima druge kolone dodamo odgovarajuce elemente prve kolone,
uz prethodno mnozenje sa ag, zatim elementima cetvrte kolone dodamo ele-
mente treée kolone, uz prethodno mnozenje sa ag, i tako dalje, dobijamo

_ kE+1
o

odakle zaklju¢ujemo da su uslovi
DIV >0, k=1,2,...,n—1, a; >0

ekvivalentni sa uslovima D,(gn) >0,k=12,... ,n. O

U specijalnom slucaju kada se radi o polinomima treceg i cetvrtog stepena,
iz teoreme 4.3.1 dobijamo sledeée rezultate:

Teorema 4.3.2. Polinom sa realnim koeficijentima

ao + a1z + agz? + aga® (ap > 0)
je H-polinom ako i samo ako su ispunjeni uslovi
D%g) =a; > 0, Dég) = @1 Qo = ajaz — apas > 0,
az ag
ay Qo 0
Dég) =l|asz a2 a1|= (13D§3) > 0.
0 0 as

76) 1. Schur je u svom dokazu koristio £ = —1.
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Teorema 4.3.3. Polinom sa realnim koeficijentima
2 3 4
ao + a1 + asx” + asxr’ + asx (ap > 0)

je H-polinom ako i samo ako su ispunjeni uslovi

4) (4) ap  ap
pW =4 >0 Dy = = ajag —agag >0
1 1 ) 2 43 Gg 102 003 )
a1 Qo 0
(4) _ _ _ 2 2
D;” =las ax ai|=aiaa3 — apaz — asay > 0,
0 a4 as
a1 Qo 0 0
az a2 a1 Qg (4)
DY = = asDLY > 0.
4 0 as az a 473
0O 0 0 ag

Primer 4.3.1. 1° Koeficijenti polinoma 2 + x + 22+ 23 su ag=2,a1 =az =
a3 = 1, pa su odgovarajuée determinante redom jednake:

p¥ =150, D =-1<0, D{¥=-1<0

Ovo znadi da dati polinom nije H-polinom.

2° Za polinom 1 + z + 222 + 23 odgovarajuée determinate su
p¥ =150, DP=1>0, DY =1>0,

odakle zaklju¢ujemo da se radi o H-polinomu. A

5. RACIONALNE FUNKCIJE

5.1. Racionalna funkcija

Neka su P(x) i Q(z) algebarski polinomi takvi da je dgP(x) = n i
dg Q(z) = m, tj.

P(z) = Z apx™ " i Qz) = Z bk (ag,bo # 0).
k=0 k=0
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Definicija 5.1.1. Funkcija x — R(z) = P(x)/Q(x) naziva se racionalna
funkcija reda [n/m)].
Definicija 5.1.2. Ako su polinomi P(z) i Q(x) relativno prosti, tj. nemaju

zajednicki faktor stepena r > 1, tada se za racionalnu funkciju x — R(x) =
P(z)/Q(x) kaze da je nesvodljiva racionalna funkcija.

Definicija 5.1.3. Ako je stepen polinoma P(z) manji od stepena poli-
noma Q(z), tj. ako je dg P(x) < dgQ(x), racionalna funkcija x — R(x) =
P(z)/Q(x) naziva se prava racionalna funkcija.

U protivnom sluc¢aju radi se o nepravoj racionalnoj funkciji.

Svaka neprava racionalna funkcija uvek se moze prestaviti kao zbir jednog
polinoma i jedne prave racionalne funkcije, §to se postize deljenjem polinoma
P(z) polinomom Q(x).

Primer 5.1.1. Posmatrajmo racionalnu funkciju
20+ 32 + 2% — 522 44w — 7

x4 + 522 4+ 4 '

Deljenjem brojioca imeniocem dobijamo

R(z) =

(x6 + 3zt 4a® —5 2% + dr—7) : (x4 + 522 + 4) = )
2% + 52 +4 22

— 2x4+x3 —9 22 +4x—7
—2z*  — 1027 —8

x> + z? +4x+1
tj.
z3 +x2 +4r+1

R(z)=2> -2 N
(z) == + x4 4+ 522 +4

U naSem daljem razmatranju ograni¢i¢emo se samo na realne racionalne
funkcije, tj. na slucaj kada su P(x) i Q(z) realni polinomi. Najpre ¢emo se
upoznati sa tzv. prostim ili parcijalnim razlomcima, kao i sa odgovaraju¢im
rastavljanjem ili razlaganjem nesvodljive prave racionalne funkcije.

Definicija 5.1.4. Funkcije

A Mx+ N
- ey et
(x —a)k (22 + px + q)F

gde su A, M, N, a, p, q realne konstante i p? — 4¢q < 0, nazivaju se prosti ili
parcijalni razlomci.

(k=1,2,...),

X —
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5.2. Rastavljanje prave racionalne funkcije
na parcijalne razlomke

U mnogim primenama veoma je vazno rastavljanje prave racionalne funk-
cije na parcijalne razlomke. Sa jednom takvom primenom sreSéemo se kod
integracije racionalnih funkcija (videti odeljak 3.1, glava VII).

Neka je © — R(z) = P(x)/Q(x) nesvodljiva prava racionalna funkcija.
Rastavljanje takve funkcije na parcijalne razlomke oslanja se na sledec¢e dve
leme.

Lema 5.2.1. Neka je a realan koren reda visestrukosti r polinoma Q(x), tj.
neka je

(5.2.1) Qz) = (r—a)"Qu(z)  (dgQi(x) =dgQ(x) —7).

Tada postoji jedinstveno rastavljanje prave racionalne funkcije u obliku

P(x) A, b ()
(5.2.2) Qz) (z—a)r + (x —a)"~1Q1(x)’

gde je A, realna konstanta, a drugi élan na desnoj strani jednakosti (5.2.2)
je, takode, prava racionalna funkcija.

Dokaz. Pretpostavimo da vazi (5.2.2). Tada imamo
(5.2.3) P(x) = A,Q:1(z) + (x — a) Py (),

odakle zaklju¢ujemo da je A, = P(a)/Q1(a). Konstanta A, egzistira jedin-
stveno jer je Q1(a) # 0. Zamenom ove vrednosti za A, u (5.2.3) dobijamo

Pl(.Z') — P(gj) — ArQl(:E)

r—a

Ocigledno je
dg P1(z) < max(dg P(z),dgQ1(z)) — 1 < dgQ(z) — 2.
Kako je stepen polinoma (z — a)"~'Q;(z), koji se pojavljuje na desnoj

(z
strani u (5.2.2), jednak dgQ(x) — 1, zakljucujemo da je ovaj ¢lan, takode,
prava racionalna funkcija. [
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Lema 5.2.2. Neka je 2 + pxr + q (p,q € R; p? < 4q) faktor visestrukosti
s (s € N) polinoma Q(x), tj. neka je

(5.24) Q) = (z* +pr +¢)°Qi(x)  (dgQi(z) = dgQ(z) — 2s).
Tada postoji jedinstveno rastavljanje prave racionalne funkcije u obliku

P(x)  Msx+ N, Py ()
(5.2.5) Q(x)  (22+pr+q)* (22 +px+q)*1Q:i(x)’

gde su Mg i Ng realne konstante, a drugi ¢lan na desnoj strani u (5.2.5) je,
takode, prava racionalna funkcija.

Dokaz. Koreni kvadratnog trinoma 22 + px + ¢ su konjugovano-komplek-
sni brojevi jer je p? < 4q. Oznac¢imo ih sa a +i3. Sli¢no, kao i u dokazu
prethodne leme, pretpostavimo da egzistira (5.2.5). Tada imamo

(5.2.6) P(z) = (Myz + N,)Q1(x) + (2% + px + q) Py ().
Stavljajuéi x =a=a+i06ix =a= a— i dobijamo
P(a) = (Mya+ N.)Qi(a),  P(a) = (Maa+ N,)Qi (a),
tj.

_P@ o P@ (P@Y_
(56.2.7) Msa+ N, = Qia) Msa+ N, = Qi(a) <Q1(a)> -

Napomenimo da su Q1(a) i Q1(a) razli¢iti od nule.
Resavanjem sistema jednacina (5.2.7) nalazimo jedinstvena realna resenja
Im(w) Im(aw)

Ms = i Ns = 5
' Tm(a)

jer je Im(a) = 8 # 0.

Potrebno je jos dokazati da je drugi ¢lan na desnoj strani u (5.2.5) prava
racionalna funkcija. Stavljanjem nadenih vrednosti za Mg i Ns u (5.2.6)
dobijamo
P(z) — (Msxz + N4)Q1(x)

Pilw) = 2 +pr+q

9
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i tada, jednostavno kao u prethodnoj lemi, dokazujemo da je
dgPi(z) <dgQ(z)—2. O

Ako lemu 5.2.1 primenimo r puta, zaklju¢ujemo da se prava racionalna
funkcija x — R(z) moze predstaviti u obliku
P(x A A, A
()_ TT_‘_ rlr_l_‘_... 1
Q) (r—a)"  (r—a)
gde je z +— Ry(x), takode, prava racionalna funkcija ¢iji je imenilac polinom
Q1(x), definisan pomocu (5.2.1).

Sli¢no, primenom leme 5.2.2 s-puta, dobijamo

R(z) =

(),

P(x)  Msx+ N, Myix + Ny

Riz) = Q)  (@*+prt+q® a2t prig

Rz(l‘),

gde je x — Ry(x) prava racionalna funkcija ¢iji je imenilac polinom Q1 (x)
odreden pomocu (5.2.4).

Pretpostavimo sada da polinom Q(x) ima realne nule ay, ... ,a,,, reda vi-
Sestrukosti 71, ... ,7m, respektivno, i parove konjugovano-kompleksnih nula
ay 118, ..., £106;, reda viSestrukosti sq,... ,s;, takode respektivno. Na-

ravno, mora biti
m l
Zrk +2Zsk =dgQ(z)
k=1 k=1

Parovima konjugovano-kompleksnih nula odgovaraju kvadratni faktori
22 + prr + qr (pr = —2a, qx = i + 37) odgovarajude visestrukosti s.

Polinom Q(z) se moze faktorisati u obliku

m l
(5.2.8) Q) =A@ - a)™ [[=* + prz + @)™,

k=1

gde je A najstariji koeficijent polinoma @Q(z). Ne umanjujuéi opstost moze
se uzeti A = 1.

Na osnovu prethodnog izlaganja, prava racionalna funkcija se moze ras-
taviti na parcijalne razlomke ¢iji oblik zavisi od oblika faktora u (5.2.8).
Naime, faktoru (z — a)” odgovara oblik
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a faktoru (22 + pz + ¢)*® oblik

Mlx—i-Nl M2$+NQ Msaz+Ns
2 2 R N S
v +pr+q (22 +pr+q) (x% 4 px +q)

Tako imamo sledeci rezultat:

Teorema 5.2.3. Neka je x — R(x) = P(z)/Q(z) nesvodljiva prava racio-
nalna funkcija, pri cemu se polinom Q(x) moze faktorisati u obliku (5.2.8).
Tada je

m Ty Apn ok Mpnx + Ny,
(5.2.9) ZZ (z — ap)" +ZZ (% 4+ prx + q)"

=1n=1 1n1

gde se nepoznati koeficijenti Axpn, Mypn, Nin, mogu odrediti metodom mneo-
dredenih koeficijenata.

Primer 5.2.1. Na osnovu (5.2.9), racionalna funkcija

8x% + 21z — 11
(x — 1)2(22 + 2+ 1)2

R(z) =

moze se predstaviti u obliku

Ay Ao Mizxz + N Moz + No
5.2.10 R = .
(5-2.10) @ = At e T Pt T @rar1)

Nepoznate koeficijente Ay, My, Ny, (k = 1,2) odredujemo iz identiteta

Az =) (@?+z+1)2 + As(2® + 2+ 1)?
+(Myz + Ny)(z — 1)* (2 + 24+ 1) + (Maz + No)(z — 1)?
=823 + 21z — 11,

tj. iz
(A1 + M)z’ + (A + Ay — My + Ny)a*
+(A1 + 245 — Ny + Ma)a® + (—A1 + 343 — My — 2Mp + No)z”

+(—A1 +2A2 + My — Ny + My — 2N2)x + (—A1 + Az + N1 + Na)
=8z% + 21z — 11,

Dakle, trazeni koeficijenti su reSenja sistema linearnih jednacina



RACIONALNE FUNKCIJE 297

Ay + My = 0,
A1+ Ay — M1+ N = 0,
A1+ 242 — N1+ My = 3§,
—A1 +3A5 — My —2Ms+ No = 0,
—A14+2A2+ My — N1+ My —2Ny = 21,
—A1+ As + N + No = —11,

odakle nalazimo
A1 =1, Ay =2, My = -1, Ny = —4, My =—1, No = —8.
Vazi, dakle, rastavljanje

1 2 T +4 x+8
R(x)_x—1+(x—l)z_xQ—l—x—l—l_(xz—l—x—l—l)Q' A

Napomena 5.2.1. Koeficijenti A1 i Az u (5.2.10) mogu se odrediti tzv. me-
todom ostataka.””)

Ako R(z) pomnozimo sa (z — 1), a zatim pustimo da 2 — 1, dobijamo

, 8% + 21z — 11
Az—iﬂ(x—l) (x)_iﬂl—(:zﬂ—i—x—i—l)? =2

Koeficijent A1 dobija se, na nesto komplikovaniji nac¢in, kao

d 8z3 + 21z — 11
Ap =1 —{ —1)? }_ lim Sot +2le— 11
1 :clinl dx v :E) mIHl dx { ($2 +x+ 1)2 }
odakle je
2 2 _ 3 .
Ay = lim (24z* +21)(z* +z + 1) — 2(22 4+ 1)(8z° + 21z — 11) _1.
z—1 (22 + x4+ 1)3

U opsStem slucaju, metod ostataka je pogodan za odredivanje koeficijenata Ay,
u razlaganju (5.2.9), pri ¢emu je

i
11. d

Tk _ i — _
z'mggkdxl{(x_ak) Rx)} (k=1,2,...,m;i=0,1,... ,rp — 1).

Ak,’l”k—i =

77)  Ovaj metod se proucava u Kompleksnoj analizi.
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Primer 5.2.2. Na osnovu (5.2.9), racionalna funkcija

1

R =
@) = e e T3P
ima razlaganje
A1l
R =
(z) porag
n A2 Aao
x+2  (x+2)2
A A A
4 Aa 32 33

t+3  (z+3)2  (z+3)3

Primenom metoda ostataka dobijamo

A= tm —— 2+ -1
U e @+2)2@+3)3 8§
1
Ap= lim —— =1
2= @ )(z+3)3 ’
d —4r —6
Agp = lim — =2
2 xidex{(x+1)x+3)3} B R ILI P I E
1
A = l _— =
3BT 3(x+1)(x+2)2 T2
Agp= tim L1 1y, Srod B
27 M i @+ D@ +2)2 ) aois (@t 1)2(z+2)3 Q
e = L @ 1 _ 1o 1207 4 320 4 22
Ao 3d22 e+ D@ +2)2 )  22--3(@+1)3(z+2)4

Dakle, imamo
11 2 1
8 z+1 z+2 (z+2)2
S D S
8 43 4 (z+3)2 2 (z+3)3

R(x) =

6. ZADACI ZA VEZBU

6.1. Rastaviti na proste ¢inioce polinom

P(z) = (z + 1)1 4 (z — 1)1%0,

17

=3
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Rezultat.
- 2k +1 - 2k+1
_ o _ 2 2
P(z) = I | (x icot 100 7r> = | | (JE + cot 100 7r) .
k=0 k=0

6.2. Odrediti najveéi zajednicki delilac za polinome

P(z) = 2° 4+ 2* + 22% + 227 + 22 + 1,
Q(z) = z* + 42 4 622 + 5z + 2,

P(z) = 2° + 2* + 32 + 42 + 42 + 2,
Q(z) = 2° + 22* 4 32 + 62 + 62 + 2.

Rezultat. (1) 2 +x+1, (2) 3 4+ 22 + 2.
6.3. Ako je n neparan prirodan broj, dokazati da je izraz

(1) (a+b+c)" —a™ =" — "

deljiv izrazom
(a+b+c)®—a®—b>—c>.

Uputstvo. Prethodno dokazati da je
(a+b+c)P —a® =02 -3 =3(a+b)(b+c)c+a),

Sto znaci da zatim treba pokazati da je izraz (1) deljiv redom sa a +b, b+ cic+ a.

U tom smislu posmatrati polinome

F@) =(@4+b+m—a"—b" —c" i gl@)=(z+ate) —a —a" —
6.4. Odrediti brojeve a, b, p, ¢ tako da je

23 +152% + 324+ 5 = p(z — a)® + q(z — b)?,
a zatim odrediti realan koren jednacine

2+ 152 + 3z +5=0.
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3 3
2 3

Rezultat. =z = H .
V2 -3

6.5. Odrediti polinom P(z) Sestog stepena, tako da je P(z) + 1 deljiv
polinomom (z — 1)3 i da je polinom P(z) + 2 deljiv sa z%.
Rezultat. P(z) = 1025 — 2425 + 152% — 2.

6.6. Odrediti p i ¢ tako da je 22™ + pz™ 4+ ¢ (m € N) deljivo sa 2% + z + 1.

Rezultat. Ako je m deljivo sa 3, tada je 1 +p+ g = 0, a ako m nije deljivo sa 3, tada je
p=gq=1.

6.7. Dat je polinom
P(z) = 2* 4+ az® + bx? + cx + d.

Odrediti uslov koji treba da zadovolje koeficijenti a, b, ¢, d da bi postojali
polinom Q(x) i konstanta r tako da je

Primenom ove moguénosti, resiti jednacinu

2t +22% — 222 -3z +2=0.

1
Rezultat. Trazeni uslov je: a®—4ab+8c = 0, a reSenja jednacine su: 1, —2, 5(—1:&\/5).
6.8. Ako sum,n € Ni P(x) proizvoljni polinom, dokazati da je polinom

n

P(z)™ + (1—-P(z)) —1

deljiv polinomom P(z) — P(x)2.

6.9. Odrediti realne parametre a i b tako da je polinom z* + 322 + ax + b
deljiv polinomom 22 — 2azx + 2.

3
Rezultat. 1° a=0, b=2 i 2° a::t%, b=3.

6.10. Odrediti koeficijente a, b, ¢ tako da izraz

2 4ar?+br+c 23+ brP+cx+a 23+ ci+ar+bd
+ +
x—1 xr—2 r—3

bude polinom.
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Rezultat. a =4.2, b=-0.9, ¢= —4.3.

6.11. Odrediti polinom P(x) stepena n = 7, ako se zna da je
P(1)=P(1/2) = P(1/3) = P(1/4) =0,
P(1)=1, P'(1/2)=P(1/3)=P(1/4) =0.
2 2 2
Remat, P = (s 1) (1) (o 1)’
6.12. Neka je dat polinom
P(z) = 2° — 42* 4+ 92° — 212% + 202 — 5.

Ako su x1,x2,x3, x4, x5 nule polinoma P i ako se zna da vazi jednakost
x4x5 = 5, odrediti svih pet nula polinoma P.
3+v5  3-5

, T
2 3 2

, x4 =iV5, 5 = —iV5.

Rezultat. z1 =1, zo =

6.13. Resiti jednacinu
A4 (1—9)23 + 222+ (1+4d)z—1=0,

stavljajuéi da je u = z +i/z.

V2 N 1+V3 ‘
7(171) i2=—p (1 —14).

Rezultat. ResSenja su: z =+

6.14. Odrediti A\ tako da jednacina
A4 —222 4+ X2 -3=0

ima dva suprotna korena, a zatim resiti posmatranu jednacinu.

Rezultat. A =1 i A= —-3.

6.15. Neka je
P(z) =32 -2+ (2+30)22 + (1 +2i)z + 1 +1.

Dokazati da polinomi P(z) i P(z) imaju dve zajednicke nule, a zatim
resiti jednac¢inu P(z) = 0.

—1+iv/2

v, 1—1.
3

Rezultat. ResSenja jednacine su:



302 ALGEBARSKI POLINOMI I RACIONALNE FUNKCIJE

6.16. Neka je a realan i pozitivan broj. Proveriti tvrdenje: Sva tri korena
jednacine
P 4a+42+a=0

imaju negativne realne delove.

6.17. Ako je P(z) = az? + bz + ¢, odrediti a, b, ¢, m tako da je

P(z) = P(mz+1).

—14+iV3

Rezultat. m = i P(z)=a(z—1)(z—m—1).

6.18. Ako su a, b, ¢ koreni jednacine z3 + 22 4+ ¢ = 0, odrediti zbir

A+ b+ P tad
Z T T

2
Rezultat. s = —— — 3.
q



V GLAVA

Spektralna teorija operatora
i matrica

1. PROBLEM SOPSTVENIH VREDNOSTI

1.1. Sopstveni vektori i sopstvene vrednosti

Neka je X konac¢no-dimenzionalni linearni prostor nad poljem K i neka je
A: X — X linearan operator koji vektoru u € X pridruzuje vektor v = Au
koji, takode, pripada prostoru X. Od interesa je prouciti slucaj kada su
vektori u i v kolinearni.

Definicija 1.1.1. Skalar A € K i nenula vektor u € X se nazivaju sopstvena
vrednost 1 sopstveni vektor za operator A: X — X, respektivno, ako je Au =
Au.

Pored termina sopstvena vrednost i sopstveni vektor koriste se i termini:
karakteristicna (svojstvena) vrednost i karakteristicni (svojstveni) wvektor.
Odrediti sopstvene vrednosti i sopstvene vektore za dati operator A znaci
reSiti tzv. problem sopstvenih vrednosti za operator A.

Na osnovu prethodne definicije mozemo zakljuciti sledece:

1° Ako je u (# ) sopstveni vektor operatora A koji odgovara sopstvenoj
vrednosti A, tada za svako a # 0 vektor au je, takode, sopstveni vektor koji
odgovara istoj sopstvenoj vrednosti A.

2° Ako su u i v sopstveni vektori operatora A koji odgovaraju istoj sop-
stvenoj vrednosti A, tada je au 4+ [v, takode, sopstveni vektor koji odgovara
istoj sopstvenoj vrednosti A.

3° Skup svih sopstvenih vektora koji odgovaraju istoj sopstvenoj vred-
nosti A ne obrazuje linearni potprostor prostora X jer nula vektor € ne
pripada ovom skupu. Ako, medutim, proSirimo ovaj skup sa nula vektorom,
tada on postaje potprostor, koji se naziva sopstveni potprostor operatora A
koji odgovara sopstvenoj vrednosti A. Ovaj potprostor oznac¢avacemo sa Uy.

Primer 1.1.1. Posmatrajmo skalarni operator (videti primer 2.2.1, glava IIT)
definisan pomoéu Au = au (u € X), gde je « fiksirani skalar iz polja K. Ovaj
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linearni operator ima samo jednu sopstvenu vrednost A = « i jedan sopstveni
potprostor koji se poklapa sa X. Napomenimo da su nula-operator O i identicki
operator Z specijalni slu¢ajevi posmatranog operatora A, za « = 01 a = 1,
respektivno. A

Primer 1.1.2. Posmatrajmo tzv. projekcioni operator ili projektor P: X — X,
za koji vazi P2 = P. Kako je

P(Pu) =P u=Pu=1-Pu, P(ZT-Phu)=P—-PHu=0=0-(T—P)u,

zakljucujemo da projekcioni operator P ima bar dve razlicite sopstvene vrednosti
A1 = 11Xy = 0. Odgovarajuée sopstvene potprostore ¢ine skupovi vrednosti
operatora P ioperatoraZ — P, tj. Tp i Tr_p. A

Primer 1.1.3. Neka je u prostoru Vg (R) (videti odeljak 1.1, glava IT) definisan
operator rotacije R, koji vektor r = r(%2 cos « + jJ sin o) preslikava na vektor

s=Rr=rlicos(a+3%)+jsin(a+3)] =r[-isina+ jcosal.

Kako vektori 7 i Rr ne mogu biti kolinearni, zaklju¢ujemo da operator rotacije
nema sopstvene vektore. A

Neka je A: X — X linearan operator i ag,a1,... ,a, skalari iz polja K.
Posmatrajmo linearni operator B: X — X, definisan pomocu tzv. opera-
torskog polinoma

(1.1.1) B=P(A) =aZ+a A+ +a,A".

Kako za dva polinoma P(\),Q(A\) € K[A] vazi P(A\)Q(A) = Q(N\)P(N), ovo
svojstvo se jednostavno prenosi i na operatorski slucaj. Dakle, imamo

Ova osobina biée Cesto koriséena u daljem razmatranju.

Teorema 1.1.1. Ako je A sopstvena vrednost i u sopstveni vektor operatora
A: X — X, tada je u, takode, sopstveni vektor operatora B = P(A), koji
odgovara sopstvenoj vrednosti P(\) = ag + a1 A + - - + ap A™.

Dokaz. Kako je

Au = du,
A?u = A(Au) = AQDwu) = MAu = N,
Adu = A(A%u) = AV2u) = N2 Au = N,
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moze se zakljuciti da je
AFu = Ay,

tj. da je u sopstveni vektor i za iterirani operator A*, koji odgovara sop-
stvenoj vrednosti \*. Najzad, na osnovu

P(Au = (apZ + a1 A+ +a, A")u
=aqpZu+atAu+ -+ a, A"u
=aou + ai \u+ -+ apA"u

= (ag+ @A+ -+ apA") u,

zaklju¢ujemo da je tvrdenje teoreme tacno. [J

Teorema 1.1.2. Neka su uq, us, ..., U, Sopstveni vektori operatora A,
koji odgovaraju medu sobom razlicitim sopstvenim vrednostima Ay, Ao, ...,
Am- Tada je U = {uy,ua,... ,uy,} sistem linearno nezavisnih vektora.

Dokaz. Tvrdenje je, oCigledno, taéno za m = 1 jer sopstveni vektor ne
moze biti nula-vektor. Pretpostavimo sada da je tvrdenje tacno za bilo koji
sistem od m — 1 sopstvenih vektora, a da nije tacno za sistem U. Dakle,
pretpostavimo da je U sistem linearno zavisnih vektora, §to znaci da postoje
skalari aq, g, ..., a., takvi da je

(1.1.2) Uy + aolg + -+ Quptty, = 0,

a da pri tome svi skalari nisu istovremeno jednaki nuli. Na primer, neka je
ay # 0. Kako je Aup = Aguy (kK =1,2,... ,m), primenom operatora A na
(1.1.2) dobijamo

(113) QiU + oAU + - + A AU, = 0.

S druge strane, mnozenjem (1.1.2) sa —\,, i sabiranjem sa (1.1.3), dobijamo
(114) aq ()\1 - )\m)ul +042()\2 - )\m)u2 +-- +04m71()\m71 - )\m)umfl =0.
Kako je, po pretpostavci, svaki sistem od m — 1 sopstvenih vektora linearno
nezavisan, zakljuéujemo da svi koeficijenti u (1.1.4) moraju biti jednaki nuli,

pa i aj(A1 — Ap) = 0. Ovo, medutim, protivuredi ¢injenici da je Ay # Ay, i
pretpostavci da je a; # 0. Dakle, sistem vektora U je linearno nezavisan. [

Sledeci rezultat je neposredna posledica prethodne teoreme:
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Teorema 1.1.3. Neka je X n-dimenzionalni linearni prostor. Linearni ope-
rator A: X — X ne moZe imati vise od n medu sobom razlic¢itih sopstvenih
vrednosti.

Definicija 1.1.2. Za linearni operator A, koji deluje u n-dimenzionalnom
linearnom prostoru X iima n linearno nezavisnih sopstvenih vektora, kazemo
da je operator proste strukture.

Neka su uy, ug, . .. ,u, linearno nezavisni sopstveni vektori operatora pros-
te strukture A: X — X, koji odgovaraju sopstvenim vrednostima A1, Ao, ...,
An. Na osnovu prethodnog, takav sistem vektora {uj,us,...,u,} moze se
uzeti za bazu n-dimenzionalnog prostora X. Kako je

Auj:)\juj (j:1,2, ,n),

zakljuCujemo da matrica operatora proste strukture u ovoj bazi ima dijago-
nalni oblik (videti odeljak 2.3, glava III)

At

A
(1.1.5)

An

Vazi i obrnuto, tj. ako je matrica operatora A u nekoj bazi {uy, us, ... ,u,}
dijagonalna, tada je taj operator proste strukture, pri ¢emu su bazisni vektori
Ui, Uz, - .. ,Un, U stvari, njegovi sopstveni vektori, a dijagonalni elementi
matrice su sopstvene vrednosti tog operatora. Napomenimo da pritom sve
sopstvene vrednosti ne moraju biti medu sobom razlicite.

Prema tome, za operatore proste strukture problem konstrukcije baze u
kojoj matrica operatora ima najprostiji moguéi oblik je veoma jednostavan.
Baza se, dakle, sastoji od sopstvenih vektora, a matrica operatora je dija-
gonalna sa sopstvenim vrednostima na glavnoj dijagonali. Drugim rec¢ima,
matrica operatora proste strukture uvek je slicna nekoj dijagonalnoj matrici
(za sli¢nost matrica videti definiciju 5.2.3, glava III). Medutim, klasa ope-
ratora proste strukture ne iscrpljuje skup svih linearnih operatora L(X, X).
Na$ glavni cilj u ovom poglavlju bi¢e konstrukcija baze u kojoj matrica
proizvoljnog linearnog operatora na kona¢no dimenzionalnom prostoru ima
najprostiji moguéi oblik, tzv. Jordanov™ kanonicki oblik.

78) Marie Ennemond Camille Jordan (1838-1922), francuski matematicar.



PROBLEM SOPSTVENIH VREDNOSTI 307

1.2. Karakteristicni polinom

Kao §to smo videli u prethodnom odeljku, moze se desiti slucaj da jedan
linearni operator nema sopstvene vektore. Ovaj odeljak posveéujemo prob-
lemu egzistencije sopstvenih vektora putem karakterizacije ovog problema
pomocu algebarske jednacine.

Neka je X n-dimenzionalan linearni prostor i A: X — X linearan opera-

tor. U prostoru X izaberimo proizvoljnu bazu B, = {e1,es,... ,e,}. Tada
jednacini
(1.2.1) Au = Au,

koja definiSe problem sopstvenih vrednosti za operator A, mozemo pridruziti
odgovarajué¢u matri¢nu jednacinu

(1.2.2) Ax = Iz,
gde je A = [a;j]nxn matrica operatora A u bazi B, i ® = [x1 x2 ... x,]T
koordinatna reprezentacija vektora

U= x1€1 + Tog + -+ + Tpey.

Matriéni analogon problema (1.2.1) je, dakle, definisan homogenim siste-
mom linearnih jednacina (1.2.2), tj.

(1.2.3) (A= X))z = o,

¢ija nas netrivijalna reSenja « interesuju. Takva reSenja predstavljaju koor-
dinatne reprezentacije sopstvenih vektora operatora A u bazi B. Takode, za
njih kazemo da su sopstveni vektori matrice A. Odgovarajuce vrednosti A za
koje postoje ova netrivijalna reSenja predstavljaju odgovarajuée sopstvene
vrednosti matrice A, tj. operatora A.

Kao §to je poznato (videti odeljak 4.6, glava III) sistem jednacina (1.2.3)
ima netrivijalna resenja ako je njegova determinanta jednaka nuli. Dakle,
imamo

a1 — A a2 cee A1n
a agg — A
(1.2.4) det(A—Ap)=| -+ % —0

Gnl an2 Qpn — A
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Napomena 1.2.1. Uslov (1.2.4) je ekvivalentan uslovu da je operator A — \Z
singularan (videti definiciju 2.2.10, glava III).

Razvijanjem determinante u (1.2.4) dobijamo polinom stepena n po A,

¢iji je vodedi koeficijent (—1)". Koeficijenti tog polinoma ne zavise od A
i odredeni su pomocéu elemenata matrice A. Napomenimo ovde da ti ko-
eficijenti ne zavise od izbora baze u X, veé samo od osobina operatora A.
Zaista, uzimajuéi drugi bazis B, = {e},é€h,... e} razlicit od B, odgo-
varajuéa matrica operatora postaje A’, koja je slicna sa matricom A (videti
definiciju 4.2.3, glava III). Dakle, A’ = P~'AP, gde je P matrica transfor-
macije sliénosti. Kako je det(P~!) = 1/det(P) imamo redom
det(A" — XI) = det (P~'AP — AP~ 'IP)

= det (P~ (A— AI)P)

= det (P~") det(A — A1) det(P)

= det(A — AI).

Prema tome, polinom A — det(A — AI) ne zavisi od izabrane baze u
prostoru X veé samo od karakteristika operatora A.

Definicija 1.2.1. Za A — P(\) = det(A — AI) kazemo da je karakteristicni
polinom operatora A (ili matrice A). Za monican polinom

(1.25)  H) = (=1)"PA) = X" —p \" L 4 poA™ 2 — o 4 (=1)"p,,

kazemo da je normalizovani karakteristicni polinom operatora A (ili matri-
ce A).
Na osnovu prethodnog, slicne matrice imaju isti karakteristi¢ni polinom.

Napomena 1.2.2. Za odredivanje koeficijenata p, (k = 1,2,... ,n) karakte-
risticnog polinoma (1.2.5) postoji veéi broj numerickih metoda, o kojima se moze
naéi u knjizi: G. V. MILOVANOVIC, Numericka analiza, I deo (treée izdanje),
Naucna knjiga, Beograd, 1991.

Jedan od metoda za odredivanje koeficijenata karakteristicnog polinoma
zasniva se na transformaciji matrice A na tzv. Frobeniusov™ oblik

fl f2 fnfl fn
1 0 0 0

(1.2.6) F=]0 1 0 0],

™) Ferdinand Georg Frobenius (1849-1917), nemagcki matematicar.
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pri ¢emu su matrice A i F sliéne. S obzirom da sli¢ne matrice imaju identi¢ne
karakteristi¢cne polinome, jednostavno se, na osnovu (1.2.6), dobija karakte-
risti¢ni polinom matrice A. Naime, ako det(F —\I) razvijemo po elementima
prve kolone dobijamo

P()‘) = (fl - /\)(—/\)n_l - f2(_/\)n—2 + 4 (_1)n_1fn,
t].
POV = (=1)" (A" — FA™1 — foA"2 — oo ).

Dakle, svakom operatoru A odgovara jedinstven karakteristi¢ni polinom ¢&iji
su koeficijenti dati sa

pe= (D1 (k=1,2,....,n).

Obrnuto, svaki polinom oblika (1.2.5) predstavlja karakteristi¢ni polinom
nekog linearnog operatora, ¢ija matrica u nekoj bazi ima oblik (1.2.6), gde
sufr=(-DF1p (k=1,...,n).

Na osnovu prethodnog mozemo zakljuciti da potreban i dovoljan uslov da
A € K bude sopstvena vrednost operatora A je da takvo A bude resenje tzv.
karakteristicne jednacine

(1.2.7) AT = AT 4 poA" T2 — e (1), = 0,

tj. bude nula karakteristicnog polinoma. Napomenimo da, u opstem slucaju,
algebarska jednacina (1.2.7), sa koeficijentima iz polja K, ne mora uvek imati
reSenje u polju K, sto pokazuje sledeéi primer.

Primer 1.2.1. Za operator rotacije R koji deluje u realnom prostoru Vo (R)
(videti primer 1.1.3), u bazi B = {%, 7} imamo

R:H _H, H(A):P(A):'

Karakteristicna jednacina A? +1 = 0 nema korene na polju realnih brojeva, Sto
je u skladu sa ranijim zaklju¢kom u primeru 1.1.3. A

Primer 1.2.2. Neka operator A deluje u dvodimenzionalnom prostoru nad
poljem R i neka je njegova matrica u nekoj bazi data sa

A:B ﬂ
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Na osnovu karakteristi¢ne jednacine

‘1—)\ 2

) 1_)\’=(1—)\)2—4:0

dobijamo sopstvene vrednosti operatora: A\; = —11i Ag = 3.

Da bismo odredili sopstvene vektore koji odgovaraju ovim sopstvenim vrednos-
tima, posmatra¢emo odgovarajuée homogene sisteme jednacina (1.2.3), tj.

(1.2.8) (I=XNz1+222=0, 2x1+(1—Nz2=0.

Za X = A1 = —1, (1.2.8) se svodi na jednu jednac¢inu 2z; 4+ 2z2 = 0, odakle
sleduje x9 = —z1. Uzimajuéi 1 = 1 nalazimo z9 = —1, pa je odgovarajuéi
sopstveni vektor

1
1 =01 [_J ;

gde je C'1 proizvoljna realna konstanta razli¢ita od nule.

Za X = A = 3, (1.2.8) se, takode, svodi na jednu jednacinu —2z; + 2z9 = 0,
tj. na x1 = x9. Dakle, mozemo uzeti da je x1 = x2 = 1. Odgovarajuéi sopstveni

vektor je
1
Ty =Co [1} )

gde je C2 proizvoljna realna konstanta razlicita od nule. A

Samo u algebarski zatvorenom polju K (videti definiciju 1.5.1) svaki po-
linom sa koeficijentima iz K ima bar jednu nulu u ovom polju, $to znaci da
svaki linearni operator A koji deluje u linearnom prostoru X nad algebarski
zatvorenim poljem K ima bar jedan sopstveni vektor. Kao $to je poznato,
takvo polje je, na primer, polje kompleksnih brojeva C. U daljem tekstu raz-
matra¢emo linearne operatore koji deluju u kompleksnom linearnom pros-
toru (K = C). U tom slucaju, karakteristi¢cni polinom ima faktorizaciju

(1.2.9) PA)=(=D"A=A)"(A=X2)" - (A= A)",
gde su Aq, Ao, ..., A, medu sobom razliite sopstvene vrednosti, ¢ija je
viSestrukost redom nq, ns, ..., n, 1 pri ¢emu je nqy +n9 4+ --- +n, = n.

Na kraju ovog odeljka da¢emo neke dodatne napomene u vezi operatora
proste strukture.

Neka je A linearni operator proste strukture koji deluje u n-dimenzional-
nom kompleksnom linearnom prostoru X. Saglasno definiciji 1.1.2, opera-
tor A ima n linearno nezavisnih sopstvenih vektora wui, usg, ..., u,. Neka
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su x1, 3, ..., &, njihove koordinatne reprezentacije u nekoj bazi B =
{61, €o,... ,en}, tj.

Up = T1p€1 + Top€s + - + Tprln, XTp = . (k=1,2,... ,n).

Tk

Ako je A matrica operatora A u bazi B, tada se na osnovu onoga §to je
receno na kraju prethodnog odeljka i teoreme 4.2.1 (glava I1I) moze zakljuciti
da se, pri prelasku sa baze B na bazu sastavljenu od sopstvenih vektora
{ui,ug,... ,u,}, matrica A transformiSe na dijagonalni oblik (1.1.5), pri
¢emu je transformaciona matrica P data pomodu

T11 T12 e Tin
x x x
P=[x; 2 ... x,]= 2 e 2n
Tn1 Tn2 Tnn
Kako je
Pl'P=pP 'z 2 ... x,|=[P'x, Plzy ... Plz,|=1I,
dijagonalizacija matrice A moze se, u ovom sluc¢aju, realizovati pomocu
P 'AP =P '[Ax; Azy ... Az,]
= Pil [)\1331 )\22132 )\nwn] N
tj.
A1
A2
P AP =D = , ;
An
gde su A1, Ao, ..., A\, sopstvene vrednosti operatora proste strukture. Kao

§to je ranije napomenuto sve sopstvene vrednosti ne moraju biti medu sobom
razlicite.

Primer 1.2.3. Operator A iz primera 1.2.2 je proste strukture jer ima dva
linearno nezavisna sopstvena vektora. Uzimajuéi za bazu sopstvene vektore (na
primer, sa C1 = C2 = 1) dobijamo dijagonalnu matricu operatora

p=7 3
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Transformaciona matrica P, sastavljena na osnovu koordinatnih reprezentacija

sopstvenih vektora, je
1 1
P 11]
Tada imamo

1, 11 1] 12 1 1] _1[-2 0] _
P Ap_i[l 1}'[2 1}'[—1 1]_2[ 0 6]_D' A

Primer 1.2.4. Neka je data matrica operatora sa

3 -1 1
A= |-2 4 =2
-2 2 0

Za odgovarajuéi karakteristi¢ni polinom dobijamo

3-\ -1 1
PO =] -2 4-) —2[=2-2%3B-)),
2 2 A

odakle zaklju¢ujemo da su sopstvene vrednosti operatora (tj. matrice A) date sa:
Al =A2=2 )3 =3.

Kao i u primeru 1.2.2 odredujemo sada sopstvene vektore iz slede¢eg homogenog
sistema jednacina

(B—=A)w1— z2+ w3=0,
(1.2.10) 221 4(4 — \) 29— 223=0,
—2x1+ 2x9—Ax3=0,

uzimajuéi za A dobijene sopstvene vrednosti.

Tako za dvostruku sopstvenu vrednost A = A1 = Ay = 2, sve tri jednacine iz
prethodnog sistema svode se na istu jednacinu

1 —x2 + 23 =0,

odakle zaklju¢ujemo da imamo dve slobodne promenljive, na primer z1 i 2, a da
je promenljiva x3 tada odredena sa x3 = x2 —x1. Prema tome, ako uzmemo recimo
r1 = x2 = 1, dobijamo z3 = 0. Sli¢no, za 1 = 0, 2 = 1, dobijamo z3 = 1. Na
ovaj nacin nalazimo dva linearno nezavisna sopstvena vektora, ¢ije su koordinatne
reprezentacije redom
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Za A = A3 = 3, sistem (1.2.10) se svodi na dve jednacine
—x9 +x3 =0, —2x1 + 22 — 2203 =0,
odakle, uzimajuéi da je x1 slobodna promenljiva, dobijamo
Tro = T3 = —271.

Tako, ako stavimo x1 = —1, imamo x9 = xz3 = 2. Prema tome, sopstveni vektor
koji odgovara sopstvenoj vrednosti A3 = 3 ima reprezentaciju

-1
T3 = 2
2

S obzirom da imamo tri linearno nezavisna sopstvena vektora, operator koji
razmatramo je proste strukture, sto znaci da se njegova matrica moze svesti na di-
jagonalni oblik. Saglasno prethodnom, transformaciona matrica P i njena inverzna
matrica su redom

10 -1 0 1 -1
p=|11 2|, pP'=|2 —2 3],
01 2 -1 1 -1
pa je
2 0 0
(1.2.11) P'AP=D=1|0 2 0 A
00 3

Bez dokaza navodimo sledeci rezultat:

Teorema 1.2.1. Potrebni i dovoljni uslovi da operator A: X — X bude
proste strukture su da svakoj sopstvenoj vrednosti odgovara onoliko linearno
nezavisnih sopstvenih vektora kolika je mjena visestrukost.

Napomena 1.2.3. U primeru 1.2.4 dvostrukoj sopstvenoj vrednosti odgo-
varaju dva linearno nezavisna sopstvena vektora.

Napomena 1.2.4. Kod matrica operatora proste strukture veoma je jednos-
tavno odredivanje stepena matrice AP (k € N), s obzirom na jednakost

(P7rAP)* = (P~1AP)(PTAP)... (PTAP) = P~tA*P = D*,

k puta



314 SPEKTRALNA TEORIJA OPERATORA I MATRICA

odakle sleduje

AF = ppFp~l=p Pt

N

gde su A1, A2, ..., An sopstvene vrednosti operatora proste strukture i P trans-
formaciona matrica.

Primer 1.2.5. Na osnovu (1.2.11) imamo da je

3 -1 11" 3k ok _ gk 3k _ ok
—2 4 —2| =pPDFPT =|202F—3F) 2.3k _2k 0k _3k) ||
-2 2 0 2(2% —3%) 23k —2F) 3.2F 2.3k

za svako k € N. A

1.3. Cayley-Hamiltonova teorema

Teorema 1.3.1. Neka je P(\) karakteristiéni polinom linearnog operatora
A: X — X. Tada je P(A) nula-operator.

Drugim re¢ima, ako je A matrica operatora A: X — X, tada je P(A) = O,
tj. matrica A zadovoljava svoj karakteristicni polinom. Ovaj rezultat je
poznat kao Cayley-Hamiltonova®® teorema.

Dokaz teoreme 1.3.1. Neka je
P(\) =det(A— X)) =(-1)" [)\” —pIATTE AT (—1)”pn]

karakteristi¢ni polinom operatora A, tj. matrice A.
Primetimo najpre da se svi elementi matrice B = adj(A — \I) = [b;j]
mogu predstaviti u obliku polinoma ne viSeg stepena od n — 1, tj. kao

nxn

n—1
(1.3.1) bij =Y b (i j=1,...,n),
k=0

gde koeficijenti bgf) ne zavise od A. Zaista, elementi b;; se mogu predstaviti
u obliku (1.3.1) jer kao kofaktori elemenata matrice A — AI predstavljaju
determinante reda n — 1.

80)  William Rowan Hamilton (1805-1865), irski matematicar i astronom.
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Sada se matrica B moze predstaviti u obliku

n—1
(1.3.2) B=) BiM =By+BiA+ -+ By A",
k=0

gde je By = [bF]  (k=0,1,... ,n).

Kako je, na osnovu teoreme 2.11.1 (glava III),

nxn

F=(A—-X)B=det(A—\)I =P\,
koriS¢enjem karakteristicnog polinoma imamo
F=(=1)" A" =pi A" poX™ ™2 — o (=1)"pa] I,
tj.

n

F=> (-Dfpo AT (po=1).
k=0

S druge strane, na osnovu (1.3.2) zaklju¢ujemo da je

n—1
F=(A=A)B=ABy+ Y (ABy— By 1) \* = B, 1\".
k=1

Uporedivanjem dobijenih izraza za F nalazimo:
ABO = pn[a

ABp — Bi_1 = (—1)*ppxl  (1<k<n-1),
_Bn—l = (—1)”]90] = (—1)”],

¢ijim mnozenjem redom sa I, A¥ (1 <k <n—1), A", a zatim sabiranjem
tako dobijenih jednakosti, dobijamo

(1.3.3) pud —pp_1 A+ pp_oA? — 4 (=1)""Ip AV 4 (—1)"A" = O,

tj. P(A)=0. O
Na osnovu (1.3.3) stepeni matrice A¥ za & > n mogu se izraziti kao
linearne kombinacije matrica I, A4, ..., A»~!. Tako imamo

(1.3.4) A" =(-1)"! [pnl — 1A+ pp_o A — (—1)"_1p1A"_1].
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MnozZenjem sa A dobijamo

A = (=1)"  [pnA = ppo1 AP 4 pp2A® — -+ (1) Tp1 A7,
odakle, kori¢enjem (1.3.4), nalazimo

A = (1" [papad = (P1Pa—1 = Pa) A+ (P1Pa—2 — Pa—1)A® — -
+(=1)" (] —p2)A™ ]

Ponavljanjem ovog postupka moguce je dobiti matrice A"12, A"+3  itd.

Ako je matrica A regularna, tada, mnozenjem (1.3.3) sa A~!, dobijamo

1
AT = = [pusil = pposA+ o+ (-1 A2 4 (<) AN Y]

n

gde je p, = det A = P(0).

1.4. Minimalni polinom

Neka je f(\) proizvoljan algebarski polinom i A matrica operatora A
koji deluje u n-dimenzionalnom linearnom prostoru X. Jasno je da postoji
beskona¢no mnogo polinoma za koje je f(A) = O, tj. f(A) = O. Jedan takav
polinom je, na primer, karakteristi¢ni polinom P()), razmatran u prethod-
nim odeljcima. Moze se postaviti pitanje odredivanja polinoma najnizeg
moguceg stepena sa ovakvom osobinom.

Definicija 1.4.1. Moni¢ni polinom M (\) najnizeg moguceg stepena za koji
je M(A) nula-operator naziva se minimalni polinom operatora A.

Koristi se 1 termin minimalni polinom matrice A jer je M(A) = O.

Teorema 1.4.1. Za svaki operator A: X — X postoji jedinstven minimalni
polinom i on je delilac svakog polinoma f(X\) za koji je f(A) nula-operator.

Dokaz. Neka je H(A) normalizovani karakteristi¢ni polinom operatora A.
Postojanje bar jednog minimalnog polinoma obezbedeno je ¢injenicom da je
H(A)=0.

Da bismo dokazali jedinstvenost minimalnog polinoma pretpostavimo da
postoje dva razlicita minimalna polinoma M (\) i M (A\) za operator A
(dg M(\) = dg M()\) = m). Tada je r(\) = M(\) — M(\) polinom nizeg
stepena od m i za njega vazi r(A) = O. Ovo protivureéi ¢injenici da su
M(N) i M (\) minimalni polinomi za operator A.
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Za dokaz deljivosti M (\)|f(A) podimo od jednakosti

JFA) = MN)p(A) + q(N),
gde sup(A) i g(\) polinomi nizeg stepena od stepena polinoma M (\). Kako
je
q(A) = f(A) = M(A)p(A) = O,
zaklju¢ujemo da mora biti ¢(A) = 0, tj. M(N\)|f()\). Naime, u protivnom
slucaju, tj. kada ¢(\) nije nula-polinom, polinom m(\) ne bi bio minimalan,
§to je, inace, pretpostavka od koje smo posli. [
Kao posledica prethodne teoreme je sledeéi rezultat:

Teorema 1.4.2. Minimalni polinom operatora A je delilac njegovog karak-
teristicnog polinoma.

Ova teorema ima i prakti¢ni znacaj kod nalazenja minimalnog polinoma.
Naime, minimalni polinom treba traziti samo medu polinomima koji su de-
lioci karakteristiénog polinoma.

Primer 1.4.1. Za matricu iz primera 1.2.4 normalizovani karakteristi¢ni poli-
nom je H(A) = (A — 2)%(\ — 3). Delioci polinoma H()) su:

A=2 A=3, (A=2(A=3), (A=2)2 H(.

Kako je

1 -1 1 0 -1 1
A-2I=|-2 2 —2|, A-3I=|-2 1 -2/,

—2 2 =2 —2 2 -3
i (A—2I)(A—3I)= 0, zaklju¢ujemo da je minimalni polinom m(\) odreden sa
M) =(A—2)(A—3)=A* —B5X+6.
Zbog jedinstvenosti minimalnog polinoma nije bilo potrebno nalazenje matrice
(A— 2[)2 jer smo veé nasli polinom drugog stepena koji se anulira za A. A

Napomena 1.4.1. Ovaj postupak trazenja minimalnog polinoma moze se do-
datno uprostiti. U narednom odeljku pokaza¢emo da minimalni i karakteristi¢ni
polinom moraju imati iste skupove nula, $to znaci da se oni mogu razlikovati samo
u redu visestrukosti ovih nula. Znajuéi tu ¢injenicu, u prethodnom primeru, za
minimalni polinom bili bi kandidati samo polinom (A — 2)(A — 3) i karakteristi¢ni
polinom H()).

2. STRUKTURA LINEARNOG OPERATORA

2.1. Invarijantni potprostori

Neka je X kompleksan linearni prostor i A: X — X linearni operator koji,
na osnovu pretpostavke da je K = C, ima bar jedan sopstveni vektor.
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Definicija 2.1.1. Za potprostor U linearnog prostora X kazemo da je in-
varijantan u odnosu na operator A: X — X, ili da je A-invarijantan, ako
za svako u € U sleduje da i Au € U.

Dakle, invarijantni potprostori se karakteriSsu u odnosu na linearni ope-
rator A: X — X. Napomenimo da svaki linearni operator ima uvek dva
trivijalna invarijantna potprostora: {f#} i X, koji nisu od interesa. U kom-
pleksnom linearnom prostoru, kakav mi razmatramo, uvek postoji i bar jedan
netrivijalan invarijantni potprostor, tzv. sopstveni potprostor, o ¢emu je bilo
reci u odeljku 1.1.

Primer 2.1.1. Neka je A sopstvena vrednost operatora A: X — X i neka
je Uy sopstveni potprostor operatora A koji odgovara ovoj sopstvenoj vrednosti.
Kako za svako u € Uy imamo Au = Au € Uy, zakljuc¢ujemo da je potprostor Uy
invarijantan u odnosu na operator A. A

Primer 2.1.2. Za polinom f(\) € K[)\] i linearni oprator A: X — X uo¢imo
operatorski polinom f(A). Neka je U jezgro operatora B = P(A) (videti definiciju
2.2.6, glava III), tj.

U=Np=ker f(A) ={ueX| f(Au=0}.

Dokaza¢emo da je U jedan A -invarijantni potprostor.

Pretpostavimo da u € U, tj. da je f(A)u = 0. Kako je Af(A) = f(A)A, imamo
(Vu € U) f(A)(Au) = f(A)Au = A(f(A)u) = A0 = 6.

Dakle, zaklju¢ujemo da Au pripada, takode, jezgru operatora B = f(A).
Takode se moze dokazati da je i oblast vrednosti operatora f(.A), u oznaci T,

invarijantni potprostor u odnosu na operator A. Zaista, ako u € Ty, tada je
u = f(A)v za neko v € X. Zato je sada

Au= Af(Aw = f(A)(Av) € Ty. A

U spektralnoj teoriji operatora veoma je znacajno razlaganje prostora X
na direktnu sumu invarijantnih potprostora. Tada je, pogodnom konstrukci-
jom bazisa u ovim potprostorima, mogucée dobiti najprostiji oblik za matricu
operatora, tj. Jordanov kanonicki oblik.

Neka je U netrivijalni invarijantni potprostor prostora X u odnosu na
operator A: X — X, gde su dimX = n i dimU = m, i neka je V neki
njemu komplementaran potprostor tako da je X = U+ V. Naglasimo da
komplementarni potprostor moze da se konstruiSe na razlicite nacine, kao i
to da se moze desiti da medu takvim komplementarnim potprostorima ne
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postoji nijedan invarijantni potprostor. Naravno, ako bii V' bio invariajantni
potprostor tada dobijamo razlaganje prostora na direktnu sumu invarijant-
nih potprostora. Ovakvo razlaganje je veoma vazno jer znacajno uproScava
analizu dejstva operatora u prostoru X, koje se moze nezavisno tretirati na
svakom od invarijantnih potprostora. Umesto operatora 4 moze se uzeti
njegova restrikcija na svaki od potprostora. Vazna Cinjenica sa pocetka ovog
odeljka vazi sada za svaki od invarijantnih potprostora. Dakle, svaki od ovih
potprostora ima bar jedan sopstveni vektor.

Izaberimo sada u X bazu B = {ej,ea,...,e,} tako da prvih m vektora
€1,€2,... €y pripada invarijantnom potprostoru U, tj. daje {e1,ea,... e}
baza u U. Kako i slike ovih vektora, takode, pripadaju potprostoru U, to ih
je moguce razloziti po bazi u U na sledeé¢i nacin:

Aei = arier +aziea + - + amiem,

Aes = ajzer + ages + -+ + am2em,

Ae,, = armer + agmez + - + Gmmenm,

odakle zakljuéujemo (videti odeljak 2.3, glava III) da matrica operatora A
u bazi B ima oblik

a1 ai2 e A1m \ a1,m+1 e Q1n
azi a22 A2m | a2 m+1 a2n
Am1 Am2 Amm ‘ am,m+1 Amn
o o o o _ o o o )
0 0 0 ‘ Am+41,m+1 v Am+1,n
| 0 0 0 | An m+1 Qnn |

§to se jednostavnije moze izraziti blok matricom

(2.1.1) [A” A”] ,

O Az

gde su A1y i Ags kvadratne matrice reda m i n—m, respektivno, Ao matrica
tipa m x (n —m) i O nula matrica tipa (n —m) x m.
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Pretpostavimo sada da je i V invarijantni potprostor. Izborom baze B,
tako §to prvih m vektora pripada potprostoru U, a preostalih n — m vektora
potprostoru V', zaklju¢ujemo da se vektori Aey, 11, ..., Ae, razlazu samo po
vektorima e, 41, ... , €y, $to znaci da blok Ao u (2.1.1) postaje nula-matrica.
Dakle, u ovom slu¢aju, matrica operatora dobija tzv. kvazidijagonalni oblik
(videti definiciju 2.12.3, glava IIT)

A11 O

(2.1.2) Aee = [
O A

} — Ay F Ay
Izlozi¢emo sada jedan nacin za razlaganje (dekompoziciju) prostora na
direktnu sumu invarijantnih potprostora koriséenjem faktorizacije polinoma

Teorema 2.1.1. Neka je A: X — X linearni operator i f(\) € K[A] poli-
nom za koji je f(A) = O i koji se moze razloZiti na proizvod dva polinoma
f1(N\) @ fa(N), ¢igi su stepeni ne nizi od jedinice, a njihov najveéi zajednicki
delilac jednak jedinici. Ako su Ny, = ker f1(A) i Ny, = ker fo(A), tada vazi
razlaganje X = Ny, + Ny, .

Dokaz. Dakle, neka je f(A) = f1(\)f2(A), dgfi(N),dg fo(A) > 1, ineka
je NZD(fi(N), f2(A)) = 1.

Na osnovu teoreme 1.3.2 postoje polinomi U(\) i V() takvi da se najveci
zajednicki delilac moze predstaviti u obliku 1 = U(A) f1(A)+V (A) f2(A). Ovo
daje

I =U(A)f(A)+ V(A f2(A),
tj.
(2.1.3) u=U(A) fi(Au+ V(A fo(Au  (ueX).
Kako je
Fo(A)(U(A) f1(A)u) = U(A) f1(A) f2(A)u = U(A) f(A)u = 0,

zaklju¢ujemo da prvi ¢lan na desnoj strani u (2.1.3) pripada invarijantnom
potprostoru Ny, (videti primer 2.1.3). Slicno pokazujemo da drugi ¢lan
pripada jezgru Ny, . Dakle, prostor X je suma invarijantnih potprostora Ny,
i Ny,.

Da bismo dokazali da je ova suma direktna, potrebno je dokazati da je za
svako u € X reprezentacija

(214) U = Uy + U2 (’LL1 GNfl, Uo ENfg)
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jedinstvena. Zaista, primenom operatora U(A)f1(A) na (2.1.4) dobijamo
(2.1.5) U(A) fr(A)u = U(A) f1(A)uz

jer je f1(A)u; = 0. Uzimajuéi sada ug, umesto u, jednakost (2.1.3) se svodi
na

(2.1.6) us = U(A) f1 (A)us

jer je fa(A)uz = 6. Kombinovanjem (2.1.5) i (2.1.6) vidimo da je us jed-
noznac¢no odredeno pomocéu

us = U(A) f1(A)u.

Slicno, u; = U(A) fo(A)u. O

Prethodni rezultat se moze progiriti na sluc¢aj kada se polinom f(\) moze
izraziti kao proizvod vise faktora. Daéemo formulaciju takvog rezultata za
slucaj kompleksnog polja K = C.

Teorema 2.1.2. Neka je X linearni prostor nad poljem C, A: X — X line-
arni operator, f(X) € C[A] polinom takav da je f(A) = O sa faktorizacijom

FO)= A =2 A=) (A= Ak,
gde su A1, Ao, ..., A\, medu sobom razlicite nule. Ako sa N; oznac¢imo jezgro

operatora (A—NI)*¥ (i=1,2,...,r), tada je X direktna suma potprostora
Ny, Ny, ..., N,.

Od posebnog interesa je sluc¢aj kada je f(\), u prethodnoj teoremi, mini-
malni polinom operatora A, tj.

(2..7) FO) = M) = (A= A)™ (A= Ao)™ - (A= A,)™
Tada razlaganje prostora dato sa
X=N;+No+ -+ +N,,
gde su jezgra N; = ker(A — \;Z)™: invarijantni potprostori za koje se ko-

risti naziv korenski potprostori. Za vektore ovih potprostora kazemo da su
korenski vektori.
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Na osnovu prethodnog (videti (2.1.2)), uzimajuéi bazu B u prostoru X,

kao uniju baza By, Bs, ..., B, iz potprostora Ny, N, ..., N,, respektivno,
matrica operatora A dobija kvazidijagonalni oblik
Aqy
Ago . . .
(2.1.8) A= . =Ay1+Axn+ -+ A,
A'I"'I"

gde su A;; kvadratne matrice reda

n; = dim V; = dim {ker(A — \,Z)™} (t=1,2,...,7).
Moze se dokazati da je determinanta matrice A jednaka proizvodu deter-
minanti dijagonalnih blokova, tako da se karakteristicni polinom matrice

A moze odrediti kao proizvod karakteristi¢nih polinoma dijagonalnih blok
matrica A;;, tj.

(2.1.9) det(A — A,) = [ ] det(Ay — A,,),
=1

gde su I,, i I,,, jedini¢ne matrice reda n i n;, respektivno, pri ¢emu je n; +
na+---+n, = n. Matrica A;; odgovara restrikciji operatora A na potprostor
N;.

Razmotrimo sada jedan od korenskih potprostora N; = ker(A — \;Z)™:.
Pretpostavimo da je p sopstvena vrednost operatora A (restrikovanog na
N;) i u odgovarajuéi sopstveni vektor. Tada, dejstvom operatora A — \;Z
na ovaj vektor, dobijamo

(A= NDu=Au — \ju = pu — \u = (pu — \)u,

Sto dalje daje
(A=ND)™u=(u—N\)™u=086.

Kako je u # 0, poslednja jednakost daje 4 = A;. Prema tome, svi koreni
karakteristicnog polinoma restrikcije operatora A na N;, u oznaci A;, se
poklapaju sa A;, tako da je karakteristi¢ni polinom operatora A;: N; — N;
(ili matrice A;;) dat sa

det(An- - )‘[ﬂz) = ()\z — )\)n’ (Z = 1, 2, . ,T).
Koriséenjem (2.1.9), dobijamo karakteristi¢ni polinom operatora A: X — X
(ili matrice A),

P(\)=det(A—A,) = (A1 = )™ (A2 = A)"™2 - (A = A)™.

Na osnovu ovoga i (2.1.7), zakljuéujemo da vazi sledeéi rezultat:
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Teorema 2.1.3. Skup nula minimalnog polinoma M (\) poklapa se sa sku-
pom nula karakteristiénog polinoma P(\) za operator A: X — X. Visestru-
kosti nula u karakteristicnom polinomu odgovaraju dimenzijama korenskih
potprostora.

Dakle, ako su A;, Ag, ..., A\, medu sobom razli¢ite sopstvene vrednosti,
¢ija je viSestrukost redom nq, no, ..., n,., pri ¢emu je ny +no+---+n, = n,
normalizovani karakteristi¢ni polinom operatora A dat je sa

(2.1.10) HXN)=A=A)" (A=) - (A= \)",
dok minimalni polinom ima oblik
(2.1.11) MA)=A=XA)™"(A=X)™2 - (A= A\)™r,

gdejemy+mo+---+m.=m i 0<m; <n; (i=12,...,r).
Na osnovu dosadaSnjeg izlaganja, matricu operatora A uspeli smo da
svedemo na kvazidijagonalni oblik (2.1.8), gde su blokovi A4;; kvadratne mat-

rice reda n; i svaka od njih odgovara restrikciji operatora A na korenski
potprostor N; = ker A; = ker(A — \;Z)™:.

U cilju dalje redukcije matrice operatora na najprostiji moguéi oblik, raz-
motri¢emo detaljnije konstrukciju korenskih potprostora. Pretpostavimo da
u € N;. Tada je, u opstem slucaju, (A — \Z)™u = 0. Medutim, za svaki
konkretni vektor u € N; moguéa je jednakost (A — \Z)*u = 6 i pri nekom
k < n;. Na primer, ako je u sopstveni vektor operatora A, koji odgovara

(A — NTZ)u = 6. Sledeéa definicija precizira ovu ¢injenicu.

Definicija 2.1.2. Najmanji broj k& € Ny za koji je (A — \;Z)*u = 0 naziva
se visina korenskog vektora u € N;.

Dakle, svi korenski vektori u € N; (koji odgovaraju sopstvenoj vrednosti
A;) imaju visine koje nisu veée od visestrukosti n;. Moze se desiti slucaj, kao
kod operatora proste strukture, da visine svih korenskih vektora ne budu
vece od jedinice, bez obzira na viSestrukost sopstvenih vrednosti.

Posmatrajmo sada korenski potprostor /V;, koji odgovara sopstvenoj vred-
nosti \; viSestrukosti n;. Sa h ozna¢imo maksimalnu visinu korenskih vek-
tora iz ;. Napomenimo, jo§ jednom, da je h < n;. Nije tesko pokazati
da se korenski potprostor NV; sastoji od vektora svih visina od 0 do h. Ovo
proizilazi iz sledeée ¢injenice: ako je u € N; vektor visine k, tada je vektor
Aju = (A — \Z)u visine k — 1.
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Teorema 2.1.4. Ako sa U oznacimo skup svih vektora iz N;, ¢ija visina
nije veéa od k(< h), tada je Uy potprostor od N; i pritom vazi

(2.1.12) 0=UyCcU, C---CUp_1 CU,=N;.

Dokaz. Neka u,v € Uy. Tada je (A — \I)Fu = (A — \T)Fv =0, tj.
(Yo, B3€C)  (A—NID)*(au+ fv) =6,

odakle zaklju¢ujemo da proizvoljna linearna kombinacija au + (v pripada
skupu Uy, Sto znaé¢i da je Uy potprostor. Na osnovu definicije skupa Uy,
ocigledno vazi (2.1.12). O

U daljem tekstu opisa¢emo jedan nacin za dobijanje tzv. kanonicke baze
potprostora U;, = N;. Neka su dimenzije potprostora Uy, koji se pojavljuju
u (2.1.12), redom dj, tako da imamo

O=do<di < ---<dp_1<dp =n,.

Postupak ¢e se sastojati iz h koraka.

Korak k = 1. U potprostoru Uy, uo¢imo p; = dj, — dj,_1 linearno nezav-
isnih vektora eq, ... ,ep,, €iji lineal u direktnoj sumi sa Uy daje Uy, tj.

Liet,... ep,) +Up—1 = Up.

Primetimo da su svi korenski vektori ey,... ,e,, visine h i da ne postoji
njihova ne-nula linearna kombinacija koja pripada potprostoru Uy _;. Ako
je A; = A — \Z, ovim vektorima pridruzimo vektore A¥ey, ... Ake, (k=
1,...,h —1) tako da na dalje posmatramo slede¢i skup vektora
€1, ..., epl,
.A2i€1, cee A;epl,
(2.1.13) Aier, ..., Alep,
Ar=te A?_lepl,

za koji ¢emo pokazati da je linearno nezavisan. Zaista, ako na linearnu
kombinaciju

p1 p1 P1 p1
Z aWe, + Z oM Ae, + Z aP A2e, + -+ Z o= Ah=te, = ¢
v=1 v=1 v=1

v=1
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primenimo operator A? _1, sve sume na levoj strani, osim prve, se anuliraju,
tako da dobijamo

p1 P1
A7 (Setre) =35t o,
v=1 v=1

Sto znaci da linearna kombinacija vektora eq,... ,e,, pripada potprostoru

Ui _1. Ovo je pak moguce samo ako su svi koeficijenti oz,(,o) jednaki nuli. Ako
sada na polaznu linearnu kombinaciju vektora primenimo operator A?_Q, na
isti nacin zakljucujemo da svi koeficijenti ozl(,l) moraju biti jednaki nuli. Nas-

tavljajuéi ovakvo rezonovanje dokazujemo da se linearna kombinacija vektora

(2.1.1) moze anulirati samo ako su svi koeficijenti P (v=1,...,p1; k=
0,1,... ,h — 1) jednaki nuli, $to znaci da su ovi vektori linearno nezavisni.

StaviSe, ne postoji ne-nula linearna kombinacija vektora iz v-te vrste u
(2.1.13) koja pripada potprostoru Uj_,.

KORAK k = 2. Sistem vektora koji se pojavljuju u drugoj vrsti u (2.1.13)
dopunimo linearno nezavisnim vektorima ey, 41, ... , €, iz potprostora U _1,
tako da je

L(Aiela e 7Aiep17ep1+17 st 7ep2)+Uh72 = Uh*l’

Svi vektori iz ovog skupa (ukupno njih p = dj,—1 —dj,—2) su korenski vektori
visine h—1, ¢ija nijedna ne-nula linearna kombinacija ne pripada potprostoru
Up_o. Na isti na¢in, kao i u prethodnom koraku, formirajmo skup vektora

epl_;’_l, ey ep2,
Aielerl, ey Aiepz,
(2.1.14) .
h—2, h—2
Al %ep 41, oo Al ey,
Na slican nacin, sada se za sistem vektora A;eq,... , Aiep,,€p 415+ 5 €p,
mogu dokazati iste ¢injenice kao i za vektore ey,... ,e, u prethodnom ko-

raku, zamenjijuéi h sa h — 1.

Koract k = ¢ (2 < ¢ < h). Nastavljajuéi postupak na isti nacin kao
u prethodnim koracima, redom se prelazi na potprostore Up_o, Up_3, ...,
U1, i na taj na¢in dobijamo sistem od ukupno n; linearno nezavisnih vektora
u korenskom potprostoru NN;. Poslednja tablica tipa (2.1.13) — (2.1.14) (za
k = h) sastoji se iz samo jedne vrste

(2115) eph,l—i-la cee fph7
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¢iji vektori pripadaju potprostoru Hi, i gde je pp, = dy — dy = ds.

Vektori iz tablica (2.1.13) — (2.1.15) mogu se predstaviti u kompaktnijem
obliku uvodenjem notacije sa dva indeksa e§k), gde gornji indeks oznacava
visinu korenskog vektora. Sledeéu tablicu formiramo od vektora iz prethod-

nih tablica, navodeéi ih s leva na desno i ravnajuéi ih prema poslednjoj vrsti:

h h
e e,
(h—1) (h=1) _(h=1) (h—1)
e M T LY ) N
(2.1.16) Lo ’
1 1 1 1 1 1
T U RS (Y (1]

Primetimo da vektori koji se nalaze u prvoj vrsti ove tablice imaju visinu h,
vektori iz druge vrste imaju visinu A—1, itd. Vektori iz poslednje vrste imaju
visinu 1. Svaka kolona tablice odreduje po jedan invarijantni potprostor
operatora A;, tj. operatora A. Za takve potprostore kazemo da su ciklicki
i oznacavamo ih sa C; (j = 1,2,... ,ps). Dakle, vektori koji se nalaze u
Jj-toj koloni ¢ine bazu ciklickog potprostora C';. Dimenzija prvih p; ciklickih
potprostora je h, slede¢ih ps — p potprostora je h—1, itd. Najzad, poslednje
kolone (ukupno pj,—pp—1) odreduju jednodimenzionalne ciklicke potprostore.

Na osnovu prethodnog, dolazimo do sledeéeg rezultata:

Teorema 2.1.5. Direktna suma py ciklickih potprostora Cj, generisanih
pomocu kolona tablice (2.1.16), daje potprostor N;.

Vektori iz tablice (2.1.16) ¢ine tzv. kanonicku bazu invarijantnog potpros-
tora IV;.

2.2. Jordanov kanonicki oblik

Neka je X linearni prostor nad poljem C i A: X — X linearni operator,
¢ije su sopstvene vrednosti A1, Ag, ..., A medu sobom razli¢ite, sa redom
viSestrukosti ny, no, ..., n,, respektivno, pri ¢emu je ny +ng + - +n, =
n. Normalizovani karakteristi¢ni polinom i minimalni polinom operatora A
neka su dati sa (2.1.10) i (2.1.11), respektivno. Za invarijantni potprostor
N; = ker(A — \;Z)™i, koji odgovara sopstvenoj vrednosti A;, razmotri¢emo,
najpre, ciklicki potprostor C, generisan bazom (videti prethodni odeljak)

i 1 2 h—1 h
BE):{eg),eg),...,eg )765 )}
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Kao sto se da primetiti, bazisne vektore smo uzeli iz prve kolone tablice
(2.1.16), polazeéi od poslednje vrste. Kako za slike bazisnih vektora pomocéu
operatora A; = A — \;Z vazi
Aiegl) =0, Aief) = egl), e Aiegh) = egh_l),
zaklju¢ujemo da je

Ae? = el Ael) = e BTV (e =2, h).

Ovo znac¢i da matrica restrikcije operatora A na ciklicki potprostor C; (u
bazi By)) dobija jednostavan oblik (videti odeljak 2.3, glava III)

N 1 0 -~ 0 0
A1 0 0
(2.2.1) JON) = :
0 0 0 N1
0 0 0 Ai

Matrica reda h, oznacena u (2.2.1) sa JM();), naziva se Jordanov blok i
najcesée se piSe u obliku

I = Ai

Ai
prikazujuéi samo ne-nula elemente. Matrica J}(ll)()\i) je, dakle, dvo-dijago-
nalna, sa istim elementima na dijagonali koji su jednaki \; i sa jedinénom
gornjom subdijagonalom. Nije teSko ustanoviti da su sve njene sopstvene
vrednosti jednake ;.

Na potpuno slican nac¢in moguce je konstruisati Jordanov blok za rest-
rikciju operatora A na bilo koji ciklicki potprostor C; (j = 1,2,... ,ps).
Oznacimo takav blok sa J,EJ )()\i), gde k oznaCava dimenziju potprostora
Cj, tj. broj bazisnih vektora u j-toj koloni tablice (2.1.16). U stvari, k

je red matrice J,Ej )(/\i). Napomenimo da bazisne vektore treba uzimati
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iz j-te kolone, polaze¢i od poslednje vrste. Na taj nac¢in dobijamo bazu
@ _ g, @) (2 (k)
Bj = {ej €58 }
Ako sada uzmemo kanonicku bazu invarijantnog potprostora N;, kao uniju
baza BY (j =1,2,... ,pn), ti.

(2.2.2) BY ={B" BY,... B},

na osnovu teoreme 2.1.5 i prethodnog razmatranja mozemo zakljuciti da
restrikciji operatora A na invarijantni potprostor N;, u bazi B®) odgovara
kvazidijagonalna Jordanova matrica reda n;

(2.2.3) TocO) = IV O0) + - F TP (),
tj.
TP (M)
(2.2.4) Tn, () =
TP ().

Primetimo da su na dijagonali u matrici J,,, (A;) poredani Jordanovi blokovi,
¢ije dimenzije (redovi) ¢ine nerastuéi niz. Neki od Jordanovih blokova nizeg
reda od h ne moraju se pojavljivati u (2.2.3), tj. (2.2.4), ali red kvazidijago-
nalne matrice mora biti jednak dimenziji potprostora INV;. Dakle, red matrice
Jn; (A;) mora biti jednak n;.

Sada smo u situaciji da konstruiSemo Jordanov kanonicki oblik bilo koje
kvadratne matrice A, koja se inace, kao Sto je poznato, uvek moze dovesti
na kvazidijagonalni oblik (videti (2.1.8))

A= . = A+ A+ -+ A,
A"’T

gde su A;; kvadratne matrice reda n; = dim N; = dim {ker(A — \;,Z)™}
(i=1,2,...,r). U prethodnom razmatranju, pokazali smo kako se izborom

kanonickog bazisa B® gvaka od ovih matrica A;; moze redukovati na Jor-
danov oblik J,,, (\;).
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Na osnovu teoreme 2.1.2, prostor X se moze razloziti na direktnu sumu
invarijantnih korenskih potprostora N;. U svakom od ovih potprostora iza-
berimo kanonicke baze B(*), date pomocu (2.2.2), a zatim formirajmo bazu
B, kao uniju ovih baza,

B={BW B® .. B"],
tj.

_ (1) p) 1. RO p@) 2).  .p) p)
B_{B1 B BB BP. L BP B B, ,B}DQ},
gde je h; maksimalna visina korenskih vektora u NN;. Na ovaj nacin smo
dobili tzv. Jordanovu kanonicku bazu prostora X u odnosu na operator A.
Matrica operatora A, u odnosu na ovu bazu, dobija kvazidijagonalni oblik

(2.2.5) J=dny (M) JnyN2) + -+ + T (M),
gde su dijagonalni blokovi, upravo Jordanovi blokovi, ¢ije su dimenzije redom
ny, No, ..., Ny (N =n3+ng+---+n,) isopstvene vrednosti A1, Ag, ..., A
Za ovu kvazidijagonalnu matricu
Jﬂl ()‘1)
an ()‘2)
J =
Jnr ()\T)

kazemo da je Jordanov kanonicki oblik matrice operatora A.

Na osnovu prethodnog razmatranja moze se zakljuciti da jedan linearni
operator u prostoru X definiSe klasu sli¢nih matrica (videti definiciju 4.2.3,
glava IIT). Dobijeni rezultati pokazuju da se svaka kvadratna matrica moze
svesti na Jordanov kanonicki oblik. Naime, vazi sledeéi rezultat:

Teorema 2.2.1. Svaka kvadratna matrica A je slicna nekoj Jordanovoj
matrici J, tj. za svaku kvadratnu matricu A postoji reqularna matrica P
(matrica transformacije slicnosti) takva da je J = P~1AP.

Dakle, dve kvadratne matrice istog reda su sli¢ne ako i samo ako se one
svode na isti Jordanov kanonicki oblik, ili prostije na istu Jordanovu matricu.

Primer 2.2.1. Za datu matricu operatora

4 1 1 1

-1 2 -1 -1

A= 6 1 -1 1
-6 -1 4 2
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odredi¢emo Jordanovu matricu, kao i odgovarajué¢u kanonicku bazu.

Nadimo, najpre, karakteristicni polinom i sopstvene vrednosti. Kako je

4— )\ 1 1 1 3—X 3—-2\ 0 0
-1 2-2A -1 -1 -1 2—=2A -1 -1
Py = 6 1 —1-X 1 || 6 1 —1-A 1 |
-6 -1 4 2\ 0 0 3—X  3-2\
1 1 0 0
e 2|1 2= -1 -1
=(@-2 6 1 B Y 1 |’
0 0 1 1
tj.
1 0 0 0
a2l 3= 0 -1
P =(E-2 6 -5 —2-2X 1 |’
0 0 0 1
imamo
3—X 0 -1
PO =-A=3%A+2)] -5 1 1|l=0X=3>3*01+2),
0 0 1

odakle dobijamo dve sopstvene vrednosti:
A= A1 =3 (viSsestrukost n; =3), A=Xa=-2 (n2=1).

Resavanjem homogenog sistema jednacina

(4— Nz + T2+ x3 + zq4 =0,
—x1+(2—AN)xg — T3 — zy =0,

(2.2.6) 1+ (2= N ’ *
6x1 + o + (—1 — )\):133 + xq4 =0,
—6x1 — T2+ dxs+ (2 — N)zxg =0,

odredi¢emo sopstvene vektore koji odgovaraju sopstvenim vrednostima A = Ap i

A= o
Za A = A1 = 3, odgovarajué¢i homogeni sistem jednacina se svodi na dve
jednacine
r1+x2+x3+24=0, 621 +22 —4x3+24 =0,
tj.
r1+x2+2x3+14=0, x1—23=0,

odakle nalazimo

Ty =23=0qa, T2=-2a—-03, x4=7,
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gde su « i (8 proizvoljne konstante koje istovremeno nisu jednake nuli. Kako je

o 1 0
—2a -3 —9 1

T = o =l | T8 o]
3 0 1

zaklju¢ujemo da trostrukoj sopstvenoj vrednosti A = A1 = 3 odgovaraju dva line-
arno nezavisna sopstvena vektora:

(2.2.7) 1 -2 10" i [0 -1 0 1],

§to znaci da je odgovarajudi sopstveni potprostor dvodimenzionalan.

Za X = A = —2, sistem (2.2.6) se svodi na

6x1+ z2+ x3+ x4 =0,
—x1+4x9 — x3— x4 =0,
—6x1 — xo+4x3+4x4 =0,

odakle dobijamo 1 = 2 = 0, z3 + x4 = 0. Stavljajuéi x3 = 1 nalazimo sopstveni
vektor [0 0 1 —1]T. Ovde je jasno da je sopstveni potprostor jednodimen-
zionalan.

Za odredivanje kanonicke baze posmatrajmo homogene sisteme jednacina

(2.2.8) (A-3D’x=0 i (A-3D*z=o.
Kako je
1 1 1 1
-1 -1 -1 -1
A=3I=1 ¢ 1 4
-6 -1 4 -1
i
0O 0 0 0 o 0 0 0
2 | 0 0 0 0 .3 | 0 0 0 o0
(A=30"=1 95 o 25 o|> A3 =| 1955 o —125 o
25 0 —25 0 -125 0 125 0

sistemi u (2.2.8) su ekvivalentni. Dimenzija jezgra N (korenskog invarijantnog
potprostora koji odgovara sopstvenoj vrednosti Ay = 3) je n; = 3. Na osnovu
(2.2.8), koordinatna reprezentacija korenskih vektora [z zp 3 x4]7 moze se
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okarakterisati uslovom x; = xz3. Maksimalna visina korenskih vektora h = 2,
tako da se (2.1.12), u ovom slucaju, svodi na

0 =UycCcU; Cc Uy =Ny,

gde je Uy sopstveni potprostor dimenzije d; = 2. Kako su dg =0 i d2 = 3, prema
izlozenom postupku (korak k = 1), nalazimo da je py = do — d; = 1, $to znadi da
u potprostoru Uz treba izabrati samo jedan vektor, ¢iji lineal u direktnoj sumi sa
sopstvenim potprostorom U; daje potprostor Us. Ako, na primer, stavimo xzo =
24 =012z = x3 = 1, korenski vektor (€ Ny), ¢ija je koordinatna reprezentacija
ep=[101 O]T, ne pripada potprostoru U;. Zaista, jednostavno je proveriti da
se ovaj vektor ne moze izraziti kao linearna kombinacija dva linearno nezavisna
vektora koji su dati u (2.2.7). Napomenimo da je Uj je sopstveni potprostor
dimenzije di = 2 i da se sopstveni vektori (2.2.7) mogu uzeti za bazisne vektore
potprostora U;. Dakle, imamo

L(e1)+ Uy =Us

i odgovarajuca tablica (2.1.13) postajegl)

€1,
(2.2.9) { - sher

U drugoj vrsti tablice (2.2.9), vektor

1 1 1 11[1 2

W) . [ T T T B ) I
ep) =(@A=3her=1 o 1, 1|1 2
6 -1 4 —1|1lo —9

ima visinu 1 i pripada potprostoru Uj.

Kako je p2 = d1 — dg = 2, u drugom koraku naseg postupka potrebno je drugu
vrstu u (2.2.9) dopuniti vektorom eg, tako da je L(egl),eg) = U;. Primetimo da
je Up = 0. Za vektor ez mozemo uzeti, na primer, sopstveni vektor [0 — 1 0 1]T
iz (2.2.7), koji linearno nezavisan sa vektorom egl).

Ovim smo dobili kompletnu tablicu (2.1.16) koja odgovara korenskom potpros-
toru Np:
o

e, eV

)

81) Vektori su dati u koordinatnoj reprezentaciji.
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gde su
2 1 0
1 _ |2 @ _, _|0 W _, |1
(2.2.10) e’ = o e mer=],|, e =ex= 0
-2 0 1

Ovi vektori ¢ine kanonicku bazu korenskog potprostora Nj.

Ako vektorima (2.2.10) dodamo sopstveni vektor koji odgovara sopstvenoj vred-

nosti Ag = —2 (N3 je jednodimenzionalni potprostor) dobijamo Jordanovu kanoni-
¢ku bazu
2 1 0 0
-2 0 -1 0
(2.2.11) B = NEREEE ol 1 ,
-2 0 1 -1

dok je Jordanov kanonicki oblik matrice A dat sa

<

Il
oo o w
o wo o
MO oo

OO W

Napomenimo da se pomocu bazisnih vektora (2.2.11) moze konstruisati matrica
transformacije sli¢nosti

2 1 0 0

-2 0 -1 0
P= 2 1 0 11’

-2 0 1 -1

Cija je inverzna matrica data sa

1 -1 -1 -1
-1_1 2 2 2 2
P 4 | -2 =2 2 2
—4 0 4 0

Najzad, primetimo da je P"1AP = J. A

Na osnovu teoreme 2.12.4 (glava II) za stepenovanje Jordanove matrice
(2.2.5) vazi:

(2.2.12) I = (Jpy M)+ (T D)™+ -+ 4 (T, (A)™,
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tj.
(Iny (A))™ )
Iny(A2))™
J" = : ;
(I, (Ar))™
gde je m nenegativan ceo broj. Za stepen Jordanovog bloka reda k
1 -
Al
(2.2.13) Jik(\) = A )
’ 1
i A
matematickom indukcijom jednostavno dokazujemo da vazi
VI A PE
AT (7711) /\mfl (kTQ) )\mfk+2
(2.2.14)  (Jy(\)™ = A () Akt
L A _

Posmatrajmo sada algebarski polinom Q(z) = > a,z¥ € C[z] i odgo-
v=0

varajuéi matri¢ni polinom
m
QA) =) a,A",
v=0

gde je A data kvadratna matrica. Kako je ova matrica slitna nekoj Jor-
danovoj matrici .J, to postoji regularna matrica P takva da je J = P~1AP,
tj. A=PJP~ %

Koriséenjem (2.2.12), matrica Q(J) se moze izraziti u obliku

QM) => a,J”
v=0

= > (s Q)" F (s Q) + o+ (T, A)")
v=0

= Q(ny (M) +Q(Jns (M2)) F+ -+ +Q(Jn, (A)),
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pa je tada

QA) =QPJP") =) a,(PJP )" =) a,PJ' P,
v=0

v=0
tj.
QA) =P (Z a,,J”P_1> = PQ(J)PL.
v=0

U sluc¢aju Jordanovog bloka (2.2.13) imamo

Q) QN A7) . QAT

QN LQM) Q2 ()

QJ(\) = Q) (=0 OOy
I Q(A) 1

Primetimo da se za Q(z) = 2™ iz ove jednakosti dobija (2.2.14).

3. ZADACI ZA VEZBU

3.1. Data je matrica

3 1 0
A=|-4 -1 0
4 -8 =2

Odrediti sopstvene vrednosti i sopstvene vektore matrice A, kao i sop-
stvene vrednosti matrice f(A), gde je f(z) = 2% — 23 + 2.

3.2. Neka je

A=

=N O
— = O
w O N

Koriséenjem Cayley-Hamiltonove teoreme odrediti A% — 2542 + 112A.
4 =2 2
3.3. NekajeA=|-5 7T =5
-6 6 —4
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Odrediti sopstvene vrednosti, sopstvene vektore i minimalni polinom mat-

rice A.

3.4. Odrediti sopstvene vrednosti i sopstvene vektore matrice

3 2
=[]

a zatim naéi A" (n € N).

3.5. Neka je data matrica

10
20
30
40
50

60

70
80
90

7 4 0 0

e 0 0
20 11 -6 -12
-12 -6 6 11

Utvrditi da je matrica A nesingularna matrica.
Odrediti sopstvene vrednosti A1, A, A3, A4 matrice A.
Odrediti sopstvene vektore matrice A.
Dijagonalizirati datu matricu.
Odrediti kavadratne matrice My, Mo, M3, My reda Cetiri, tako da
je
A =AMy + AoMy + AgMs + Ay My.

Ako je M = {M;, My, M3, My}, ispitati da li je mnoZenje matrica
unutrasnja operacija u skupu M.

Odrediti matricu A™ (n € N).

Odrediti matricu A1,

Ispitati da li se dokazano razlaganje matrice A moze iskoristiti i za
odredivanje matrica A~".

3.6. Odrediti matrice M i M’ ako je

v a=[7%00)

3.7. Odrediti sopstvene vrednosti i sopstvene vektore matrice

0 a a?
M=|1/a 0 a],
1/a®> 1/a 0
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a zatim odrediti matrice M™ (n € N) i M1

Rzezulta:,tj. Al =X = —1, A3 =2, 1 =[-al O]T, Tro = [7112 0 1]T7 r3 =
[a? a 17,
. (71)71 —2q2 a32 a;L on a? az a:
M" = — 302 a —2a a + 302 a a* a ,
a 1 a —2a2 a 1 a a?
1 7012 a3 a4
]\4_1 == 2—2 —a2 a3
a a —a?

7 1
1° Dokazati da svaka matrica B koja je komutativna sa matricom A

ima oblik
u—4v v
B= [ —7v u] ‘

3.8. Neka je A = [3 _1}

2° Dokazati da je A™ oblika
An:[un_4vn ’Un:|'

—Tv, Up,

3° Odrediti t,41 1 vp41 pomoéu u, i vy,

4° Neka je a = a+i0 kompleksan broj i neka je w,, = u,+av,. Odrediti
kompleksan broj a tako da je koliénik w1 /w, konstanta.

5° Odrediti wy,, Un,, v, 1 A™.
3.9. Odrediti minimalni polinom matrice
0 0
A=

oSO O
= OO

2 0
0 2
0 0

Rezultat. M(\) = (A — 1)(\ — 2)2.

3.10. Proveriti tvrdenje: Jordanovi kanonicki oblici matrica

L1 9 0 1 0 0 1 -1
5 1 o o 0 1 -2 3 -3
A= i B=|0 0 -1 2 -2

1 0 11
0 1 9 1 1 -1 1 0 1
1 -1 1 -1 2
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su, redom, matrice

110 0 1 1 0 0 0
010 0 01 0 0 0
Ja = i Jg=10 0 1 1 0
0 01 1
00 0 1 0 0 0 1 0
00 0 0 -1
3.11. Neka su
r4 -5 2 0 0 07 O 1 0 0 0 07
5 —7 3 0 0 O 0O 0 00O 0 O
6 -9 4 0 0 0 0O 01 0 0 O
A=10 00 o010 =10 002 0 0
0 0 0 -4 4 0 0O 00 0 21
10 0O 0 -2 1 24 LO O 0 0 0 24
date matrice.
Proveriti tvrdenje: Matrica J je Jordanova forma matrice A.
3.12. Odrediti Jordanove kanonicke oblike matrica
3 1 0 0 1 2 3 4 8 é (1) 8
—4 -1 0 0 01 2 3
A= 7 1 2 11’ B = 0 0 1 2|’ C= 8 8 8 é
—-17 -6 -1 0 0 0 0 1 100 0
Rezultat. Trazeni Jordanovi kanonicki oblici datih matrica su redom
e 0 0 0 0
010 0 011 0 0 0 0 0
Ja = , Jp= , Je=1|0 0 € 0 o0
0011 0011 .
000 1 000 1 0 0 0 = 0
0 0 0 0 &°

de i 27'r+,, 27
eje € =cos — + isin — -
gae J 5 5

O O OO



VI GLAVA

Elementi analiticke geometrije

1. VEKTORSKA ALGEBRA

1.1. Koordinatni sistemi

U ovom poglavlju posebnu paznju posvecujemo izomorfnim prostorima
Vo(E) i R?, koje smo razmatrali u odeljcima 1.1, 1.4 i 1.5 (glava II). Tom
prilikom, uveli smo pravougli koordinatni sistem sa bazisnim jedini¢nim or-
togonalnim vektorima , j, k, tako da se svaki vektor r € Vp(E) opisuje
pomocu tri koordinate: x, y, z kao

r=xt+yj+zk.

Na taj nac¢in smo uspostavili biunivoku korespondenciju izmedu ovih pros-
tora, ukljucujuéi, naravno, i sam prostor E. Sledeta Sema ukazuje na tu

korespondenciju.
E M
R? ppa—

Vo(E)

x? y7 Z)

Kao sto je navedeno u odeljku 1.1, tacke ovih prostora obi¢no pois-
toveéujemo pisuéi M = (x,y, z) ili, pak, r = (z,y, 2).

Za pravougli koordinatni sistem koristimo i termin Dekartov pravougli
koordinatni sistem ili Dekartov ortogonalni trijedar. Jedini¢éni vektori ¢, 5 i
k, postavljeni u tacki O definisu tri koordinatne (Dekartove) ose: x-osu, y-
osu i z-osu, respektivno. Pravougli koordinatni sistem oznacavamo sa Oxyz.

U dosadasnjem izlaganju, medusobni polozaj bazisnih (koordinatnih) vek-
tora nije bio bitan. Za na$ dalji rad, medutim, neophodno je precizirati ovaj
polozaj. U upotrebi su dva pravougla koordinatna sistema: desni (engleski)
i levi (francuski) (slike 1.1.1 i 1.1.2). Kod desnog sistema ili tzv. trijedra
desne orijentacije rotacija vektora ¢ prema vektoru j oko z-ose najkracéim
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Sl 1.1.1 Sl 1.1.2

putem, posmatrano sa kraja vektora k, izvodi se u smeru suprotnom kre-
tanju kazaljke na ¢asovniku. Suprotno, kod levog sistema ili tzv. trijedra leve
orijentacije pomenuta rotacija vektora izvodi se u smeru kretanja kazaljke
na ¢asovniku.

Trijedar desne orijentacije moze biti predstavljen sa tri prsta desne ruke,
pri ¢emu palcu, kaziprstu i srednjem prstu odgovaraju vektori ¢, 7 i k, re-
spektivno. Odgovarajuc¢im prstima leve ruke moze biti predstavljen trijedar
leve orijentacije. U naSem daljem razmatranju uvek é¢emo koristiti trijedar
desne orijentacije.

U odeljcima 1.3 i 1.4 definisali smo normu ili intenzitet vektora i skalarni
proizvod dva vektora. Ovde ¢emo ukazati na dva jednostavna problema:

1. Rastojanje dve tacke u prostoru. Neka su date tacke M; i Mo,
kojima odgovaraju radijus vektori r; = (z1,y1,21) 1 72 = (22,y2,22), Te-
spektivno (slika 1.1.3).

M,
M, M, y
My M, M
i g 2
1 0 |
- |
b 7 v
|
O O %) o
SL 1.1.3 SL 1.1.4 SL1.15

. % . . ~ . . .
Kako je M1 Ms = ro — 1y, rastojanje tacaka M7 i My moze se odrediti kao

—_—
d = |M1M2| = |’T‘2 —T1|,
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tj.

d= /(w2 —21)? + (y2 — 11)? + (22 — 21)2 .

2. Deoba duzi u datoj razmeri. Neka je data duz M; M, sa radijus
vektorima ry = (x1,y1,21) 1 720 = (22,y2, 22) tacaka M; i My i neka je
potrebno odrediti radijus vektor ro = (xg, o, 20) tacke My koja deli duz u
datoj razmeri, tj. tako da je

MM,

1.1.1 — =\ A > 0).
(BRY S eA 050
Kako je (videti sliku 1.1.4)
—_— —_—
MMy =ro — 7y, MoMs = re — 19,

iz kolinearnosti ovih vektora i jednakosti (1.6.1) sleduje
To —T1 = )\(’I"Q — ’I"()),

odakle dobijamo

1+ Arg
1.1.2 ==
(1.1.2) T TN
tj.

1+ )\xg Y1+ )\yg 21+ )\2’2
1.1.3 == =2 7Ie o=
(1.1.3) ETI I T TI T TI
U specijalnom slucaju, kada je A = 1, imamo deobu duzi na jednake

delove. Tada se (1.1.2) i (1.1.3) svode redom na

1
Ty = 5(7‘1 —|-’I"2)

1 1 1
Ty = 5(371 +x2), Yo = 5(?41 +1y2), 2= 5(2’1 + 22).

Osim pravouglog koordinatnog sistema u upotrebi su i drugi sistemi, koji
ponekad na jednostavniji nacin daju opis tacaka u prostoru E. Ovde ¢emo
ukazati na dva takva sistema: polarno-cilindriéni i sferni.
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Polarno-cilindri¢ni koordinatni sistem. Ve¢ u prvoj glavi (odeljak
2.2) uveli smo polarni koordinatni sistem za predstavljanje grafika funkcija
i uspostavili vezu izmedu polarnih i pravouglih koordinata u ravni (videti
sliku 1.1.5). Sada ¢emo definisati tzv. polarno-cilindricni koordinatni sistem
u prostoru F.

Izaberimo u prostoru E proizvoljnu ravan R i u njoj defini§imo polarni
koordinatni sistem, a zatim kroz pol O postavimo osu Oz normalno na ra-
van R (slika 1.1.6). Svaka tacka prostora E, tj. svaki vektor oM , moze se
potpuno opisati pomocéu polarnih koordinata o i ¢ i aplikate z. Za ove koor-
dinate kazemo da su polarno-cilindri¢ne koordinate. Njihov opseg vrednosti
je slededi:

0<p <400, 0 << 2m, —00 < 2z < 400.

Polarni ugao ¢ za tacke na z-osi nije odreden.

Dakle, polarno-cilindri¢ni sistem je kombinacija polarnog i pravouglog
sistema, sa dve polarne koordinate g i ¢ i jednom Dekartovom koordinatom
z. Prema tome, veza izmedu koordinata ovih sistema je data sa

(1.1.4) T = 0Cos @, Yy = osingp,

tj.

x
0=+Vz?2+y? cosp=—, singng.
1% %

Sl.1.1.6 Sl 1.1.7

Sferni koordinatni sistem. Uoc¢imo pravougli koordinatni sistem Oxyz
sa odgovaraju¢im polarnim sistemom u ravni Oxy. Neka je M proizvoljna
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tacka prostora razlic¢ita od tacke O i neka je M; ortogonalna projekcija tacke
M na ravan Oxy. Ako sa r oznac¢imo rastojanje tacke M od koordinatnog

pocetka O, tj. intenzitet vektora OM , sa 0 ugao koji ovaj vektor zaklapa
sa osom Oz i, najzad, sa ¢ polarni ugao tacke M; (slika 1.1.7), tada se
pomocu trojke (r, ¢, ) moze potpuno opisati polozaj tacke M. Moguéi opseg
vrednosti ovih koordinata, koje su poznate kao sferne koordinate, je:

0<r<+oo, 0 < ¢ < 2m, 0<g<mr.
Koordinata r se naziva radijus, dok se za koordinate ¢ i 6 koriste termini
duzina i $irina, respektivno.

Za sve tacke na Oz-osi koordinata ¢ nije odredena. Tacka O je odredena
samo radijusom r = 0.

Veza izmedu pravouglih i sfernih koordinata je data sa:
(1.1.4) x=rsinfcosy, y=rsinfsiny, z=rcosh.

Napomena 1.1.1. Ponekad se sfereni koordinatni sistem definiSe tako $to se
umesto ugla 6 uzima njemu komplementarni ugao ', tj. ugao koji zaklapa radijus

vektor OM sa Oxy ravni. U tom sluc¢aju, u (1.1.4) sin @ treba zameniti sa cos @',
a cosf sa sin@’. Moguéi opseg vrednosti takve koordinate je —7/2 < 6’ < 7/2.

1.2. Projekcija vektora na osu

—
Neka je dat vektor a = AB i osa u orijentisana jedini¢nim vektorom wg.
Kroz tacke A i B postavimo ravni koje su normalne na u-osu (slika 1.2.1).

—_—
Preseci ovih ravni sa osom odreduju tacke A’ i B’. Vektor A’B’ moze se
izraziti pomocu jedini¢nog vektora wug

—_—
(1.2.1) A'B" =pug =acospug,

. e . .o . . e .
gde je a = |a| = |[AB| i ¢ ugao koji zaklapaju vektori AB i wu.

B

O A=p u

OW

Sl 1.2.1 Sl 1.2.2
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Definicija 1.2.1. Za veli¢inu p = |a| cos ¢ iz (1.2.1) kazemo da je projekcija
—-—
vektora AB na osu u i oznatavamo je sa

—
p="Pr, AB.
Umesto Pr,, koristi se i oznaka Pr,,,.
Iz jednakosti Pr,, a = a cos ¢ zaklju¢ujemo da vazi
—a<Pr,a<a.
Ako vektor a lezi u ravni koja je normalna na osu u, tada je Pr, a = 0 (slika

1.2.2). Ocigledno da je Pr, a > 0 ako je ugao ¢ oStar, dok je u slu¢aju tupog
ugla projekcija negativna.

Nije tesko zakljuciti da je preslikavanje a — Pr, a linearno, tj. da vazi
slededi rezultat:

Teorema 1.2.1. Za proizvoljne vektore a i b i proizvoljni skalar A vazi
jednakost

Pr,(a+b) =Pr,a+Pr,b, Pr,(Aa) = APr,a.

U odeljku 1.4 definisali smo i razmatrali skalarni proizvod dva vektora iz
prostora Vo (FE). Koris¢enjem projekcije vektora na osu, skalarni proizvod

ab = |a||b| cos ¢
moze se predstaviti u obliku
ab = |a|Pr, b = |b|Prpa.
Na kraju ovog odeljka naglasimo da su koordinate vektora
a = ait + axj + ask,
upravo, projekcije vektora a na koordinatne ose, tj.

ay =Prya, ay=Prya, a3=Pr,a.
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1.3. Vektorski proizvod dva vektora

U odeljku 1.4 definisali smo skalarni proizvod dva vektora iz V = Vp (E).
Moguéno je, medutim, definisati i proizvod dva vektora tako da je rezultat
vektor. Drugim re¢ima, uredenom paru (a,b) € V? treba dodeliti treci
vektor c € V.

Neka su dati vektori @ = a1t + asg +ask i b=0byi+ byj + b3k.

Definicija 1.3.1. Vektorski proizvod vektora a i b, u oznaci a X b, je vektor

(131) axb= (a2b3 — (Igbg)’i + (a3b1 — albg)j + (albg — agbl)k .

Vektorski proizvod (1.3.1) moze se predstaviti u obliku determinante tre-
¢eg reda

ik
(1.3.2) axb=|a; ay a3
b by b3

Ponekad, umesto oznake a x b koristi se oznaka [ab).

Iz osobina determinanata sleduje:

Teorema 1.3.1. Za proizvoljne vektore a,b,c i svaki skalar A\ vaze jed-
nakosti

1°axb=-bxa,

2° axa=o,

3ax(b+c)=axb+taxc,

4° (a+b)xc=axc+bxc,

5° (Aa) x b=a x (Ab) = A(a x b) .

Iz osobina 2° i 5° sleduje da je vektorski proizvod dva kolinearna vek-
tora @ i b = Aa jednak nula-vektoru. Vazi i obrnuto. Ocigledno je da se
kolinearnost vektora a i b, u skalarnom obliku, moze iskazati na nacin

b
_1:b_2:b_3:)\'
a1 a2 as

Za bazisne (koordinatne) vektore ¢, j, k imamo

i X1=o0, j X j=o, kxk=o.
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Na osnovu definicije 1.3.1 imamo

ixj= =0i4+0-j+1-k=k.

O = S
— O\,
oo R

Sliéno se moze pokazati dasu j x k=14 i k x ¢ = j. Dakle, imamo
txj=—jxt=k, jxk=-kxj=1i, kxi=—ixk=j.

Teorema 1.3.2. Neka je ¢ (0 < ¢ < m) ugao izmedu vektora a i b. Tada
se intenzitet vektorskog proizvoda a X b moZe izraziti u obliku

(1.3.3) la x b| = |a]|b|sing.

Dokaz. Na osnovu (1.3.1) imamo
la x b|]? = (asbs — agby)? + (asby — a1bs)? + (ar1by — asby)?
= ai(b3 + b3) + a3 (b} + b3) + a3 (bY + b3)
— 2aga3bsbs — 2a1a3b1b3 — 2a1a9b1bo
= (af + a3 + a3) (b + b3 + b3) — (a1b1 + asbs + asbs)?,
tj.
|a x b = |af’|b]* — (ab)® = |a|?[b]* — |a|?|b]* cos® ¢
= |a|?|b|*sin?p. O
Jednakost (1.3.3) pokazuje da je intenzitet vektorskog proizvoda a x b
jednak brojno povrsini paralelograma konstruisanog nad vektorima a i b.

Zaista, sa sl. 1.3.1 vidimo da je visina paralelograma h = |b|sinp, pa je
odgovarajuca povrsina

P = |alh = |a||b|sin¢.

SN

QU

Sl 1.3.1 Sl 1.3.2
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Primer 1.3.1. Neka su a i b proizvoljni nekolinearni vektori. Za vektorski
proizvod vektora @ + b i a — b imamo

(a+b)x(a—b)=(axa)+(bxa)—(axb)—(bxb)=-2(axb).

Interpretirajuéi vektore a + b i @ — b kao vektore dijagonala paralelograma,
konstruisanog nad vektorima @ i b (sl. 1.3.2), imamo da je

di xdy=-2axb,

odakle sleduje
|di x da] = 2]a x b],

tj. povrsina paralelograma &ije su stranice dijagonale di i d2 nekog drugog para-
lelograma jednaka je dvostrukoj povrsini tog drugog paralelograma. A

Da bismo ustanovili pravac i smer vektorskog proizvoda ¢ = a x b u
odnosu na vektore a i b, primetimo, najpre, da je skalarni proizvod vektora
c i a jednak nuli. Zaista,

ca = (a2b3 — agbg)al + (a3b1 — albg)ag + (albg — agbl)ag =0.

Kako je, takode, ¢b = 0, zaklju¢ujemo da je vektor ¢ ortogonalan i na
vektor a i na vektor b. Dakle, geometrijski posmatrano, pravac vektorskog
proizvoda a X b je upravan na ravan u kojoj leze vektori a i b.

Najzad, ostaje otvoreno pitanje smera vektorskog proizvoda. Od dva
moguéa smera, pravi smer je onaj koji obezbeduje da vektori a,b,c Cine
trijedar desne orijentacije. Da je ovo zaista tako, dovoljno je konstatovati
ovu Cinjenicu za bazisne vektore 2, 7, k, koji ¢ine trijedar desne orijentacije.

Na osnovu prethodnog, moguce je vektorski proizvod ekvivalentno defini-
sati i na sledeéi nacin:

Definicija 1.3.2. Vektorski proizvod a x b je vektor ¢ takav da vazi:

1° intenzitet vektora ¢ je brojno jednak povrsini paralelograma konst-
ruisanog nad vektorima a i b;

2° pravac vektora c je normalan na ravan ovog paralelograma;

3° vektori a i b i njihov vektorski proizvod ¢ obrazuju trijedar desne
orijentacije.

Na slici 1.3.3 prikazan je vektorski proizvod ¢ kao vektor koji je normalan
na ravan paralelograma konstruisanog nad vektorima a i b i sa njima obra-
zuje trijedar desne orijentacije.
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oy

a
Sl 1.3.3 Sl 1.3.4

U opStem slucaju, svakoj ravnoj figuri moze se korespondirati tzv. vektor
povrsine. U tom cilju, potrebno je najpre utvrditi smer obilazenja po konturi
ravne figure (slika 1.3.4). Vektor povrsine je tada onaj vektor koji je nor-
malan na ravan figure i s ¢ijeg kraja se usvojeni smer obilazenja konture vidi
kao suprotan smeru kretanja kazaljke na ¢asovniku®?). Za ovako definisani
smer vektora povrSine kazemo da je saglasan orijentaciji konture.

Vektorski proizvod a X b je, prema tome, vektor povrsine paralelograma
konstruisanog nad vektorima a i b, pri ¢emu se za smer obilazenja po konturi
paralelograma uzima smer prvog vektora a u vektorskom proizvodu.

Definicija 1.3.3. Vektor povrsine ravne figure je vektor Ciji je:

1° intenzitet brojno jednak veli¢ini povrsine ravne figure;
2° pravac normalan na ravan figure;
3° smer saglasan orijentaciji konture ravne figure.

Primer 1.3.2. Odrediéemo povrsinu trougla ¢ija su temena u nekolinearnim
tackama My, sa radijus vektorima 7y = (xk, Yk, 2x) (K =1,2,3) (slika 1.3.5).

Kako je povrsina trougla AM; M M3, u oznaci Pa, jednaka polovini povrSine
paralelograma konstruisanog nad vektorima My Ms i My M3 i kako je

MMy =7e — 11 i MyM3 =173 — 11,
imamo
1, — — 1
PA=|P|=§ | M1 Mo x My Ms |=§ | (ra—m1) x (r3—71) |-

Koriséenjem koordinatnih reprezentacija vektora i jednakosti (1.3.2), dobijamo
i j k
1
Pp = 5 |det |zo—21 y2—y1 22—21 | |,
r3 — 1 Y3 —Yr 23— 21

82) U fizici i elektrotehnici se ovo interpretira kao pravilo desne zavojnice. Naime,
okretanjem desne zavojnice u smeru obilazenja po konturi, njeno pravolinijsko kretanje je
u smeru vektora povrsine.
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tj.

1
Pp ==
a=3(

T2 —T1 22— 21 r2 —r1 Y2 —y1

r3 —Tr1 Y3 —y1

2
Y2 —yr 22— 21
Ys —yir 23— 21

2) 1/2

r3 —T1 23— 21

Sl 1.3.5 Sl 1.4.1

Ako su sve tri tacke, na primer, u ravni Ozy, tada je z1 = z0 = z3 = 0, pa se
prethodna formula svodi na

Pp == | (z2 —21)(y3 —y1) — (y2 — y1)(z3 — 21) |

DN = N =

| z1(y2 —y3) + @2(y3s — 1) +x3(y1 —w2) | . A

Napomena 1.3.1. Pomocéu vektorskog proizvoda veoma cCesto se u fizici i
tehnici iskazuju izvesne fizicke veli¢ine. Nave§éemo samo neke od njih:

1° Neka sila F' deluje u tacki M (M je tzv. napadna tacka). Moment sile F'
u odnosu na tacku O, u oznaci M, izrazava se vektorskim proizvodom vektora

polozaja r = OM isile F', tj. m=r x F.

2° Kod krivolinijskog kretanja materijalne tacke M u ravni sa ugaonom brzinom
w, njena periferna brzina v se izrazava u obliku v = w x 7, gde je 7 radijus vektor
—

r=O0DM.

3° Neka se provodnik nalazi u homogenom magnetskom polju indukcije B.
Ako struju u provodniku obrazuju pokretna optereéenja q koja se kreéu srednjom
brzinom v, onda je elektromagnetska sila (po jednom opterecéenju ¢) koja dejstvuje

83)

na provodnik jednaka F' = qv x B (Lorentzova® sila).

83)  Hendrik Antoon Lorentz (1853-1928), Guveni holandski fizicar, tvorac klasiéne
elektronske teorije i dobitnik Nobelove nagrade za fiziku 1902. godine.
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1.4. Mesoviti proizvod tri vektora

Definicija 1.4.1. Skalarni proizvod vektorskog proizvoda a x b i vektora
¢, u oznaci (a x b)c, naziva se mesoviti proizvod vektora a, b, c.

Neka su dati vektori a, b, c¢. Konstruis§imo paralelopiped nad ovim vek-
torima i stavimo a x b = d (slika 1.4.1).
Kako je
(a xb)c=dc=dPrgc

id=|d| = l|a x b| povrina paralelograma konstruisanog nad vektorima a
i b, tj. povrSina osnove prethodno konstruisanog paralelopipeda, i kako je,
u nasem slucaju, Prgc = h > 0 visina paralelopipeda koja odgovara ovoj
osnovi, zaklju¢ujemo da

(a x b)e = dh

predstavlja zapreminu V paralelograma konstruisanog nad vektorima a, b, c.

Moguca je, medutim, i takva situacija da je Prqc < 0. Tada je meSoviti
proizvod vektora jednak —V.

U svakom sluc¢aju, meSoviti proizvod tri vektora po apsolutnoj vrednosti
jednak je zapremini paralelopipeda konstruisanog nad ovim vektorima

(@ x b)e| =V

Ako suredom a = a1i+asj+ask, b= b1i+bsj+bsk, c=cri+cog+csk,
tada se mesSoviti proizvod moze izraziti u obliku

1 _] k C1 C2 C3
(1.4.1) (axbe=|a1 ay az|(c1t+coj+csk)=|a1 ay as|,
by by b3 by by b3
s obzirom da je
ic = cq, jc=ca, kc=c3.

Ako u determinanti na desnoj strani jednakosti (1.4.1) zamenimo, najpre,
prvu i drugu, a zatim drugu i treéu vrstu, vrednost determinante se nece
promeniti®¥). Na taj nacin, (1.4.1) svodi se na

ap a2 as
(142) (a X b)C = bl bg b3
C1 C2 C3

84) Pri ovakvoj permutaciji vrsta, samo je znak determinante dva puta bio promenjen.
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Interpretirajué¢i dobijenu determinantu kao mesSoviti proizvod, na osnovu
(1.4.1) i (1.4.2), zakljuCujemo da je (a x b)c = (b x ¢)a. Dakle, pri ovakvoj
permutaciji vektora, koju nazivamo ciklicka permutacija, vrednost mesovitog
proizvoda se ne menja. Tako, u stvari, imamo

(1.4.3) (a xb)e= (bxc)a=(cxa)b.

Primetimo da, na osnovu (1.4.3) i osobine skalarnog proizvoda, vaze jed-
nakosti (a x b)e = (¢ x a)b i (a x b)c = ¢(a x b), odakle zaklju¢ujemo da
je ¢(a x b) = (¢ x a)b, sto kazuje da, u meSovitom proizvodu, skalarni i
vektorski proizvod mogu uzajamno da promene mesta.

Medutim, ako permutujemo samo dva vektora, iz osobine determinanata
sleduje da mesoviti proizvod menja znak. Dakle, imamo

(axb)e=—(axc)b=—(bxa)c=—(cxb)a.

Jednostavno se dokazuju i slede¢e osobine mesovitog proizvoda:

Teorema 1.4.1. Za proizvoljne vektore a, b, c,d i proizvoljne skalare X\ i p,
vaZe jednakosti

1° AMa x b)e = (Aa x b)c = (a x Ab)c = (a x b)Ac,
2° (axb)(c+d)=(axb)c+ (axbd,
3° ((Aa+ pb) x e)d =\ a x c)d + u(b x c)d.

Iz osobina determinanata sleduje da je meSoviti proizvod tri vektora jed-
nak nuli ako i samo ako postoji linearna zavisnost medu vrstama determi-
nante. Poslednji uslov se svodi na linearnu zavisnost vektora a, b, c, tj.
na njihovu komplanarnost. Prema tome, komplanarnost vektora izrazena
pomocu (videti odeljak 1.1) ¢ = Aa + pb (A, p skalari) moze se iskazati i
pomodcu mesovitog proizvoda

(axb)c=0.

Ovo se, takode, moze zakljuciti i iz geometrijske interpretacije mesovitog
proizvoda. Zaista, zapremina paralelopipeda konstruisanog nad vektorima
a, b, c jednaka je nuli ako i samo ako su vektori komplanarni.

Napomena 1.4.1. Neke skalarne veli¢ine u fizici i tehnici mogu se predstaviti
meSovitim proizvodom tri vektorske veli¢ine. Navodimo dva primera:

1° Neka se pravolinijski provodnik duZine ¢, orijentisan kao vektor £, kreée
brzinom v u homogenom magnetskom polju indukcije B. Tada se na krajevima
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tog provodnika indukuje elektromotorna sila odredena mesovitim proizvodom e =

L(v x B).

2° Pomoéu mesovitog proizvoda vektora osnovne translacije a1, as, as, izra-
¢unava se zapremina primitivne éelije kristalne resetke (videti: S. M. STOILKOVIC,
Materijali za elektroniku, Naucna knjiga komerc, Beograd, 2000).

1.5. Dvostruki proizvod tri vektora

Definicija 1.5.1. Za vektorski proizvod vektora a i vektorskog proizvoda
b X ¢, u oznaci a x (b x ¢), kazemo da je dvostruki proizvod vektora a, b, c.

Za dvostruki proizvod tri vektora koristi se i termin dvostruki vektorski
Proizvod.

Na osnovu osobine vektorskog proizvoda mogucée je zakljuciti da su vektori
b, ¢, a x (b x ¢) komplanarni, $to znaci da je dvostruki vektorski proizvod
moguce izraziti kao linearnu kombinaciju vektora b i ¢, tj.

ax (bxec)=Ab+ puc,

gde su A i p neki skalari.

Preciznije, vazi sledeéi rezultat:

Teorema 1.5.1. Za tri vektora a, b, ¢ vazi
(1.5.1) a x (bxc)=(ac)b— (ab)c,

gde su ac i ab skalarni proizvodi vektora a i c, i a i b, respektivno.

Dokaz. Neka su redom a = a1t + asj + azk, b = byt + byg + b3k, ¢ =
c1t+coj +c3kinekajed=0bx c=dit+ dyg + dsk.

Kako je
i j k
ax(bxc)=axd=|ay ay az|,
di dy dz
imamo

a X (b X C) = (agdg — agdg)’i + (agdl — a1d3)j + (CleQ — agdl)k.

Odredi¢emo, najpre, prvu koordinatu dvostrukog vektorskog proizvoda.
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Kako je
i 3 k
d=1b b b3:g2 g?,i_lc)l isj—"il Z;Qk’
1y s 2 C3 1 €3 1 C2
imamo

a2d3 — (Igdg = ag(blcz — bgCl) — (Ig(bgcl — b163)

= bl (CLQCQ + CL363) — C1 (a2b2 + a3b3),
odakle, dodavanjem i oduzimanjem ¢lana a1bic;, dobijamo

a2d3 — a3d2 = bl(a161 “+ agco + (1363) —C1 (a1b1 + a2b2 + a3b3)
= bi(ac) — c1(ab).

Sliéno, nalazimo

(Igdl — a1d3 = bQ(CLC) — Cg(ab),

a1d2 — a2d1 = bg(ac) — Cg(ab).

Prema tome,
ax (bxc)=(ac)b— (ab)e. O

Jednakost (1.5.1) moze se predstaviti u obliku determinante

b c

ax(bxe)= ab  ac

2. RAVAN I PRAVA

2.1. Razni oblici jednacine ravni

Neka je u prostoru Vo (FE) definisan pravougli koordinatni sistem. Koor-
dinate tacaka koje leze u nekoj ravni ne mogu biti proizvoljne, ve¢ moraju
zadovoljavati izvesne uslove date tzv. jednacinom ravni.

Pretpostavimo da ravan R prolazi kroz tacku M; i da je normalna na

dati vektor n (slika 2.1.1). Odredi¢emo jednacinu skupa svih tacaka M koje
leze u ravni R. Neka su radijus vektori tacaka M7 i M redom ry i r. Kako
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Sl 2.1.1 Sl 2.1.2

—
vektor My M = r —r; lezi u ravni R to je on normalan na dati vektor n, pa

je njihov skalarni proizvod jednak nuli, tj.
(2.1.1) (r—ri)n=0.

Ocigledno, vazi i obrnuto, tj. ako radijus vektor r proizvoljne tacke M € E
zadovoljava jednacinu (2.1.1), tada tacka M pripada ravni R.

Ovim smo dobili jedna¢inu ravni koja prolazi kroz datu tacku M; i koja
je normalana na dati vektor n. Za vektor n kazemo da je vektor normale.

Ako stavimo rim = —D, (2.1.1) se svodi na tzv. opsti oblik jednacine
ravni
(2.1.2) rm+D=0.

Ako uzmemo da su koordinate vektora normale redom A, B,C, tj. n =
(A, B, (), odgovarajuéi skalarni opsti oblik jednacine ravni je

Ar+By+Cz+D =0,

§to se dobija iz (2.1.2) stavljanjem r = (z,y, z). Takode, za ry = (z1,y1,21)
iz (2.1.1) dobijamo odgovarajuéi skalarni analogon

Alx —21)+ By —y1) + C(z — 21) = 0.

Kako je ravan potpuno odredena pomocu tri nekolinearne tacke Mj, sa
koordinatama xg,yk, 2z (kK = 1,2,3), koriséenjem (2.1.1) moguce je nadi
jednac¢inu te ravni R ako se prethodno odredi vektor normale n. Kako
vektori

— i —_—
MlMQ =T2—"T 1 M1M3 =7Tr3—"T
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leze u ravni R (slika 2.1.2), za vektor normale se moze uzeti njihov vektorski
proizvod. Dakle,

n = MlMQ X M1M3 = (’T‘Q — ’I"l) X (’1“3 — ’l"l),
pa je odgovarajuca jednacina ravni data mesovitim vektorskim proizvodom

(2.1.3) (r—r1)[(ro —71) x (r5 —r1)] = 0.

Interpretirajuéi mesoviti vektorski proizvod u (2.1.3) kao determinantu
tre¢eg reda, dolazimo do skalarne jednacine

r—r1 Y-y =z—z2
(214) Ty —T1 Y2 — Y1 <R — 21| = 0.
T3 —T1 Y3 — Y1 23— %1

Ako tacke My (k =1,2,3) odaberemo na koordinatnim osama, tj. uzme-
mo 71 = at, ro = bj, rs = ck, na osnovu (2.1.3) dobijamo

(r —ai)[(bj — ai) x (ck —ai)] =0,
tj.
(r —ai)(bci + acj + abk) = 0.
Iz ove jednacine, ili direktno iz (2.1.4), sleduje tzv. segmentni oblik jedna-
¢ine ravni

Y

(2.1.5) Ty¥iiog,
a C

S

gde su a, b, c odgovarajuéi odsecci na koordinatnim osama (slika 2.1.3). Do
segmentnog oblika mozemo dodi i iz opSteg oblika (2.1.2) deljenjem sa —D #
0. Tako dobijamo

(2.1.6) P =1,
Ako stavimo A/(—D) =a, B/(—D) =b, C/(—D) = ¢, imamo
% = ai + bj + ck,

pa se (2.1.6) svodi na (2.1.5). Napomenimo da slucaj D = 0 odgovara ravni
koja prolazi kroz koordinatni pocetak.
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J

xr

Sl 2.1.3 Sl 2.14
Od interesa je prouciti i tzv. normalni oblik jednacine ravni. Neka je p

odstojanje pola O od ravni R, tj. ON = p > 0, i neka je ng jedini¢ni vektor
normale za ravan R (slika 2.1.4). Kako je

. ‘
ON = png i Ing| =1,

imamo

(r —png)ng =0,
tj.
(2.1.7) rnyg—p=0.

Ovo je normalni oblik jednacine ravni.

S obzirom da svaki vektor moze da se izrazi pomocu kosinusa uglova c«,
B, v, koje ovaj vektor zaklapa redom sa vektorima ¢, j, k (videti (1.5.7)), to
za jedini¢éni vektor ny imamo

ny = (cos a, cos (3, cos ).
Kako je r = (z,y, 2), iz (2.1.7) sleduje odgovarajuéi skalarni oblik
xcosa+ycos3+ zcosy—p=0.

Normalni oblik jedna¢ine ravni mozemo dobiti i iz opsteg oblika (2.1.2),
deljenjem sa n = |n| ili sa —n, pri ¢emu u jednacini

PPy
+n +n
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treba izabrati znak + ili — tako da je

D
— =-p<0.
+n P

Odgovarajuéi skalarni analogon ima oblik

(2.18) Az +By+Cy+ D _0,
+VA? + B2 4 C?
gde je

D
— p<0.
T/ yBrrcz

Normalni oblik jednacine ravni je veoma pogodan za odredivanje odsto-
janja neke tacke M; od date ravni R, tj. za nalazenje intenziteta vektora

d = |MyM;|, gde je My ortogonalna projekcija tacke M; na ravan R. Kako
tacka M, pripada ravni R, njen radijus vektor rs zadovoljava jednacinu
(2.1.7), tj. vazi

(2.1.9) rong —p = 0.

—_— —_—
Vektor My M je kolinearan sa ng, tako da se moze izraziti u obliku MyM; =
Ang. Kako je r1 — ro = Ang (slika 2.1.5), na osnovu (2.1.9) dobijamo

(r1 — Ang)ng —p =0,

tj.
A= TIMyg—p.

Dakle, trazeno odstojanje je
d= ’)\’ = "I"lno —p’ .
Ako je 71 = (x1,y1, 21), iz skalarnog oblika (2.1.8) sleduje

. Axl +By1+Cy1+D
VAT B2 1 C2
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Sl 2.1.5 Sl 2.1.6

Na kraju ovog odeljka razmotrimo sluc¢aj dve ravni
(2.1.10) (Rl) rn; + D, =0, (RQ) rng + Dy = 0.

Ravni R; i Ry su paralelne ili se poklapaju ako su im vektori m; i ng
kolinearni, tj. ako je mo = Any, gde je X\ skalar. Ovaj uslov paralelnosti
moze biti izrazen i u obliku

1 X Ngo = 0.

Kada se ravni Ry 1 Ry seku (slika 2.1.6), ugao ¢ izmedu ovih ravni je, u
stvari, ugao izmedu vektora narmala 11 i ny. Dakle,

ning

cos p = (n1 = |nq|, ny = |na).

ning
Uslov ortogonalnosti ravni Ry i R moze se izraziti u obliku
ning =0.
Ako su ravni date skalarnim jednacinama
(2.1.11) Az + Biy+Ciz+ Dy =0, Asx 4+ Boy+ Coz+ Dy =0,
tada se uslov ortogonalnosti svodi na
A1Ay + BBy + C1C3 = 0,

a uslov paralelnosti na
A1 B Oy

A4, By Gy
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2.2. Razni oblici jednacina prave

Neka su date ravni R; i Ry kao u (2.1.10) i neka je n; X ny # o, tj. neka
se ravni seku. Tada njihov presek odreduje pravu p, koja se moze predstaviti
skupom jednacina
(221) rny, + D1 = 0, rNno + DQ =0.

Za jednacine (2.2.1) kazemo da predstavljaju opsti vektorski oblik jednaci-
na prave u prostoru. Odgovarajuce skalarne jednacine su date sa (2.1.11).

Skup svih ravni koje prolaze kroz presek ravni R; i Ry naziva se pra-
men ravni. Svaka ravan koja pripada ovom pramenu moze se definisati
jednacinom

rny + D1 + A(rny + Da) =0,
t].
(222) ’T‘(’I’Ll + Ang) + (Dl + ADQ) = 0,
i dobija se iz (2.2.2) za neku konkretnu vrednost A\. Napomenimo da se

ravan Ry moze dobiti iz (2.2.2) deljenjem sa A # 0, a zatim prelazenjem na
grani¢nu vrednost kada A — +oo (ili —o0).

Prava p se moze definisati i pomo¢u dve proizvoljne ravni pramena (2.2.2).

Prava p se daleko ¢es¢e zadaje pomocu tacke M kroz koju ona prolazi i
vektora a kome je paralelna.

Neka je M proizvoljna tacka prave p i neka su r i r; radijus vektori
—_—
tacaka M i My, respektivno (slika 2.2.1). Kako su vektoria i M1 M =r—17;
kolinearni, imamo da je r — r; = Aa, gde je X skalar. Dakle,
(2.2.3) =71+ \a

predstavlja vektorsku jednacinu prave kroz datu tacku. Za a kazemo da je
vektor pravca prave p.

M

Sl 2.2.1 Sl 2.2.2
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Kako se uslov kolinearnosti moze izraziti i pomoc¢u vektorskog proizvoda,
imamo
(r—r1)xa=o,
tj.
(2.2.4) r X a=b,

gde smo stavili r; X @ = b.

Ako uzmemo r = (z,y,2), 11 = (x1,91,21), @ = (a1,a2,a3), iz (2.2.3)
sleduju tzv. parametarske jednacine prave:

(2.2.5) r=2x1+ a1, Yy=y1+ Aas, z=21+ Aag.

Eliminacijom parametra X iz (2.2.5) dobijamo tzv. simetriéni oblik jednacina
prave:
(2.2.6) Tt _ YT A

a1 ag as

Simetri¢ni oblik (2.2.6) moze se izraziti i u obliku

T—Z1 _Y—-4% _z2—*2A

cos cos 3 cos 7y

Y

gde su a, 3,7 uglovi koje zaklapa vektor a sa koordinatnim vektorima , 3,
k, respektivno.

Prava p je potpuno odredena dvema tackama M; i My. Neka su radijus
vektori ovih tacaka redom r = (z1,y1,21) 1 T2 = (22,¥2, 22) (slika 2.2.2).

—_—
Kako se vektor M;M>; = ro — 1 moze uzeti kao vektor pravca prave p, na
osnovu (2.2.3), dobijamo vektorsku jednacinu

(2.2.7) r=r1+ Nres —r1),
t.

(r—mry) x (re —ry) = o,
odakle sleduje

rX(ro—7r1) =7 Xrs.

Odgovarajuéi simetri¢ni oblik jednac¢ina prave kroz dve tacke je

r—r1 _ Yy—-yn _ 2—xA

T2 — X1 Y2 — Z2 — 21
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Primer 2.2.1. Simetri¢ni oblik jednac¢ina prave koja prolazi kroz date tacke
(1,-1,3) i (5,—4,3) je
r—1 y+1 z-3

5—1 —4+41 3-3’

tj.
z—1 y+1 2-3
4 =3 0
Vektor 42—37 je vektor pravca ove prave. Odgovarajuce parametarske jednacine
prave su:

r=144\, y=-1-3\, z=3,
gde je A proizvoljan skalar. A

Sada ¢emo razmotriti problem svodenja jednog vektorskog oblika jedna-
¢ina prave na drugi. To su, u stvari, oblici (2.2.1), (2.2.3) i (2.2.4).

1. (2.2.3) = (2.2.4). Ovo je pokazano ranije, gde je b =17 X a.
2. (2.2.4) = (2.2.3). Ako (2.2.4) pomnozimo vektorski sa @, imamo

ax(rxa)=axb,
odakle, razvijanjem dvostrukog vektorskog proizvoda, dobijamo

(aa)r — (ar)a=a x b,

tj.
axb ar
2.2.8 = —+ —
(228) "= o T eE*
Sto predstavlja oblik (2.2.3) sa
axb ar
= A= —.
T e af?

3. (2.2.1) = (2.2.4). Mnozenjem druge jednacine u (2.2.1) sa n i prve
sa —ng, a zatim sabiranjem tako dobijenih jednacina, imamo

(’I"ng)’l’ll — (’I"nl)’l’lg = DlTLQ — Dg’l’ll .
Koriséenjem dvostrukog vektorskog proizvoda, poslednja jednacina postaje

(229) T X (’I’Ll X ’ng) = D1n2 — D2n1 s
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§to predstavlja oblik (2.2.4), pri ¢emu je
a="nnj; X Ny, b:Dlng—Dgnl.

4. (2.2.3) = (2.2.1). Mnozenjem (2.2.3) bilo kojim vektorima m; i no
(n1 # m2) koji su ortogonalni na a, dobijamo

rny = rin; + Aang i TNy = TNy + Aans,
tj.
’T"I’L1+D1:0 i T?’L2+D2:0,
gde smo stavili D; = —rinm; i Dy = —riny. Napomenimo da ova

reprezentacija nije jedinstvena. Obicno se kao n; i ny uzimaju dva od vek-
tora (a27 —az, 0)7 (a37 07 —(11), (07 as, _a2)7 gde je a = (a17a27 (13), a sto je u
skladu sa (2.2.6).

Primer 2.2.2. Neka su date dve ravni
(2.2.10) z+2y—z+1=0, r—y+z+3=0.

Ove ravni se seku jer je

i g k
ny xng=(1,2,-1)x (1,-1,1) = |1 2 —-1|=(1,-2,-3)#o0.
1 -1 1

Njihov presek odreduje pravu p ¢iji je vektor pravca
a=mn; xny=(1,-2,-3).
Kako je
b=Diny — Dang = (1,—-1,1) — 3(1,2,—1) = (-2,-7,4),
na osnovu (2.2.9), jednacina
rx(t—23—3k)=-21—7j +4k

predstavlja pravu p.
Kako je |a| = V14 i
axb=| 1 -2 -3|=-29%+25—11k,
-2 -7 4
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na osnovu (2.2.8), dobijamo

= %(—291’ 425 — 1K) + A — 2§ — 3K).
Odgovarajuéi simetri¢ni oblik jednacina prave je
r+29/14  y—1/7 z+11/14

(2.2.11) . — -

Do simetri¢nog oblika jednacina prave mogli smo doéi jednostavnije uzimajuéi
proizvoljnu tacku prave p. Ako, na primer, stavimo z = 0, iz (2.2.10) sleduje
x = —T7/3 1y = 2/3, sto znaci da tacka (—7/3,2/3,0) lezi na pravoj p, ¢iji je
simetri¢ni oblik
x+7/3 y—2/3 =z

1 -2 =3

(2.2.12)

Moze se pokazati da su jednacine (2.2.11) i (2.2.12) ekvivalentne. Zaista, odgo-
varajuce parametarske jednacine
29 1 11

x:—ﬁ—l—)\, y:?—2)\, z=———3A

7 2
= —— :——2 = —
x 3 T y=3~2m z 3

su ekvivalentne jer se za u = X + 11/42 svode jedne na druge. A

Razmotrimo sada slu¢aj dve prave
(2.2.13) (p1) r=r1+Aa, (p2) 7T =12+ ub.

Za ugao ¢ koji zaklapaju vektori a i b kazemo da je ugao izmedu ove dve

prave. Dakle,
ab
cosp = — a = |al|, b=1b|).
p=2 (a=lal, b=|b)
Uslov normalnosti pravih moze se iskazati pomocu ab = 0, dok se uslov

paralelnosti iskazuje kolinearnoséu vektora a i b ili pomoc¢u a x b = o.

Primer 2.2.3. Neka su jedna¢inama (2.2.13) date dve mimoilazne prave p;
i pp. Odrediéemo najkraée rastojanje izmedu ovih pravih. Stavise, odrediéemo
jednacine zajednicke normale, tj. jednacine prave p koja prolazi kroz najkrace
rastojanje pravih p1 i ps. Vektor pravca prave p je, ocigledno, vektor a x b.

Postavimo, najpre, ravan R koja prolazi kroz pravu ps i paralelna je pravoj pi,
a zatim konstruisimo dve ravni R i Rg koje su normalne na R i prolaze kroz prave
p1 1 pa, respektivno (slika 2.2.3).
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Vektor normale ravni R je, u stvari, vektor pravca prave p, pa je jednacina ravni
R data sa

(2.2.14) (r—7r2)(a xb)=0.

Kako je ravan R; normalna na ravan R i prolazi kroz pravu pi, to se za njen
vektor normale moze uzeti vektor 1 = (@ x b) x a. Sli¢no, za vektor normale
ravni Ro moze se uzeti gy = (@ x b) x b. Imajuéi u vidu da ove ravni prolaze kroz
prave py i pa2, tj. kroz tacke M7 i Mo sa radijus vektorima 77 i 79, respektivno,
jednostavno dobijamo njihove vektorske jednacine:

(R1) (r—7r1)[(axb)xa]l=0, (R2) (r—r7r2)[(axb)xb=0.

Ovaj skup jednacina predstavlja jednacine zajednicke normale p pravih p; i ps.
Jasno je da je prava p normalna na ravan R i da sece obe prave p; i p2. Rasto-
janje izmedu prese¢nih tacaka je, u stvari, najkrace rastojanje izmedu mimoilaznih
pravih. Ono se, medutim, moze odrediti i kao odstojanje bilo koje tacke prave p;
od ravni R jer je prava p; paralelna sa njom, a prava ps lezi u njoj. Prema tome,
ako uzmemo, na primer, tacku Mj i normalni oblik jednacine (2.2.14), dobijamo
najkrace rastojanje

|(r1 —T2)(a x b)]

(2.2.15) d= @b

A

Na osnovu (2.2.15) zaklju¢ujemo da se uslov preseka dve prave moze
iskazati u obliku

(2.2.16) (ro —71)(a xb) =0.

Do ovog uslova moze se doéi i jednostavnije. Naime, ako se prave p; i po
—_
seku, to su onda vektori a, b i M;Ms = ro — r; komplanarni, pa je njihov
mesSoviti proizvod jednak nuli.

Sl 2.2.3 Sl 2.3.1
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Uslov (2.2.16) se moze predstaviti i u skalarnom obliku

T2 — X1 Y2 — Y1 22— 21
ajq as as = 0,
by bo bs

gde smo uzeli da su vektori pravaca pravih p; i po redom a = (a1, az,a3) i
b = (b1,b2,b3), kao i r1 = (z1,y1,21) i T2 = (T2, Y2, 22).

2.3. Uzajamni odnos prave i ravni

Posmatrajmo pravu p i ravan R ¢ije su jednacine
(2.3.1) r =71+ \a, rm+D=0.

Ako je an = 0, prava p je paralelna ravni R ili lezi u njoj.

Ako je a = A\n, tj. ako je @ X n = o, prava je normalna na ravan R.

U opstem slucaju, kada je an # 0, prava seCe ravan. Za ugao 6 koji
zaklapa prava p sa svojom projekcijom u ravni R kazemo da je ugao izmedu
prave i ravni. To je, u stvari, ugao koji je komplementaran uglu izmedu
vektora pravca prave p i vektora normale ravni R (slika 2.3.1). Dakle,

sinf = cos(m/2 —0) = % (a = |al, n = |n|).

Kako radijus vektor tacke preseka prave i ravni mora zadovoljavati obe
jednacine u (2.3.1), imamo

(ri1+Xa)n+ D =0,
tj.
rim+ D
an

A=
Dakle, radijus vektor tacke preseka je

rimn+D
—a.
an

rTr=7r1—

Primer 2.3.1. Neka su date prava p i ravan R pomodéu

z—1 y—2 =z-3

(R) z+5y—2z—10=0.
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Ovde je a = (1,2,3) i m = (1,5, —1).

Kako su parametarske jednacine prave p
(2.3.2) r=14+A y=24+2\ z=3+43\,
iz jednacine ravni dobijamo
1+X+5(242)\)—(3+3)\)—-10=0,
tj. A = 1/4. Sada, zamenom ove vrednosti u (2.3.2), nalazimo

5 5 _ 1
2 47
Dakle, presek prave p i ravni R je u tacki (5/4,5/2,15/4).
Kako je a = |a|] = V14, n = [n| = V27 i an = 8, za ugao 6 izmedu prave i
ravni vazi
an  4v42

inf = — = . A
St an 63

Primer 2.3.2. Neka je data ravan R pomo¢u x+ 2y —z—5 = 01 tacka M7 sa
koordinatama (1,2, 3). Odredi¢emo pravu p koja je normalna na ravan R i prolazi

kroz tacku M;. Za vektor pravca takve prave moze se uzeti vektor normale ravni
R, tj. a =n = (1,2,—1). Dakle, simetri¢ni oblik jednac¢ina prave p je

Prema tome, presek prave p i ravni R je u tacki (3/2,3,5/2). A

3. POVRSI DRUGOG REDA

3.1. Kvadratne forme i hiperpovrsi drugog reda

U odeljku 2.6, glava II, definisana je kvadratna forma F:V,, — R pomoéu

n n
(3.1.1) Flw) = (Az, @) =Y > iz,
i=1 j=1
gde je V,, = C™ i matrica A = [a;;]{ hermitska.
U daljem izlaganju, uzeéemo da je A simetri¢na realna matrica i da je V,

skup realnih vektora & = [2; x5 --- 2,] . U tom sluéaju, Z; u (3.1.1)
treba zameniti sa x;.
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Osnovni zadatak vezan za kvadratne forme sastoji se u transformaciji
forme na najprostiji moguéi oblik primenom linearne transformacije koor-
dinata x1, 2, ..., Tp U Y1, Y2, ..., Yn, pomocu regularne transformacione
matrice P = [p;;|7 (videti odeljak 1.2, glava IV).

Dakle, neka je * = Py. Tada je
F(x) = (Az,x) = (APy, Py) = (PT APy.y),
tj.
F(z) = (By,y) =G(y),

gde je B = PT AP matrica transformisane kvadratne forme G(y). Ocigledno,
izborom matrice P mogudée je menjati oblik matrice kvadratne forme.

Matrica kvadratne forme je simetriéna i moze se predstaviti u obliku
proizvoda

A=QTAQ,

gde je Q ortogonalna matrica (QTQ = I), a A = diag(\1, A2, ..., \,) dija-
gonalna matrica. Ako stavimo y = Qx, imamo

F(z) = (Az,z) = (Q"AQz, z) = (AQz, Qz) = (Ay,y),
tj.
(3.1.2) K(y) = My? + Xoys + - + Ay

Za dobijenu kvadratnu formu (3.1.2) kazemo da je kanonicka. Svaka
kanonicka kvadratna forma moze se dalje svesti na tzv. normalnu kvadratnu
formu kod koje koeficijenti A\; € {—1,0,1}. Takva forma ima oblik

(3.1.3) N(z) = 24t 2222y e 22

Ne umanjujuci op$tost razmatranja, mozemo pretpostaviti da su koeficijenti
Aty ooy A u (3.1.2) pozitivni, Apgq, ..., Ay negativni, a ostali Apyyq, ..,
A jednaki nuli. Tada, stavljanjem

Vi Yi, 1<i<mr,
zi=9 V=AY, r+l<i<m,
Yi, m+1§2§n7

(3.1.2) se redukuje na (3.1.3).
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Definicija 3.1.1. Hiperpovrs drugog reda u prostoru V,, = R™ predstavlja
geometrijsko mesto tacaka, Cije koordinate zadovoljavaju jednacinu

(3.1.4) (Az,z) — 2(b,xz) +c =0,

gde je A = [a;;]] realna simetri¢na matrica, b = [by by --- b,]" realni
vektor i ¢ realna konstanta.

U slucaju n = 3, (3.1.4) predstavlja povrs drugog reda, a u slucéaju n = 2
krivu drugog reda.

Kao i u slucéaju kvadratne forme, (3.1.4) moze se transformisati na kano-
nicku formu. Ne ulazeéi u detalje, ovde dajemo samo pregled kanonickih
formi u sluéaju n =21in = 3.

1° SLUCAJ n = 2. Ovde se (3.1.4) svodi na jedan od kanonickih oblika®®)

)\1%2 + )\2y2 +ag = 0,
Xoy? + bor = 0,
)\1%2 +ag = 0,

pri ¢emu smo za koordinate uzeli x i y.

2° SLuCAJ n = 3. Povrsi drugog reda (3.1.4) transformisu se na jedan
od slede¢ih kanonickih oblika

Mz 4+ Xoy? + X322 + a9 =0,
)\1%2 + )\2y2 + b()Z = 0,

(315) /\13)2 + )\22/2 + ag =0,
/\2y2 + bol’ = 0,
)\11’2 +ag = 0.

U sledeé¢em odeljku razmatracemo kanonicke oblike povrsi drugog reda
(3.1.5).

3.2. Povrsi drugog reda u R3

Analizijamo najpre jednacinu
(321) /\1!172 + /\2y2 + /\322 + ag = 0.

85) Krive drugog reda (elipsa, hiperbola, parabola) izu¢avaju se u srednjoj skoli.
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Razlikovaéemo vise slucajeva:

(1) SLUCAJ ag # 0, sgn(A\1) = sgn(A2) = sgn(A3) = —sgn(ap). Tada,
stavljajuéi A\ja® = \b? = X3¢ = —ag, (3.2.1) se svodi na kanonicku
jednacinu elipsoida

22 g2 2
(3.2.2) STt a1l

z
2
Povrs poznata kao elipsoid ima centar simetrije u koordinatnom pocetku
(videti sl. 3.2.1). Brojevi a, b, ¢ nazivaju se poluose elipsoida. Presek elip-
soida sa bilo kojom ravni daje elipsu.

"
iy
711

Sl 3.2.1

Zaa=0b=c=R, (3.2.2) se svodi na jednacinu sfere

z? +y? + 2% = R?,

ima sledeéu jednacinu

(z—p)?+ Wy —aq)’+(z—r)> =R
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(2) SLUCAJ ag # 0, sgn(A;) = sgn(A2) = sgn(A3) = sgn(ap). Standardna
zamena koeficijenata daje

2 2 2
T Y z
atpta="b

odakle zaklju¢ujemo da nijedna tacka iz R? ne zadovoljava jednacinu.

(3) SLucCAl ap = 0, sgn(A;) = sgn(A2) = sgn(A3). Ovde dobijamo
jednacinu
22 2 22
2tpta=0

koju zadovoljava samo jedna tacka — koordinatni pocetak (0,0, 0).

Sl 3.2.2

(4) SLUCAJ ag # 0, sgn(Ay) = sgn(A2) = —sgn(A3) = —sgn(ap). Stan-
dardna zamena koeficijenata daje jednacinu

(3.2.3) 4+ -5 =1,
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koja opisuje povrs poznatu kao jednograni hiperboloid (sl. 3.2.2). Presek
(3.2.3) sa ravni z = h daje elipsu

:L‘2 y2

gde su

Sl 3.2.3

(5) SLUCAJ ag # 0, sgn(\;) = sgn(A2) = sgn(ag) = —sgn(A3). Ovde
dobijamo jednacinu
2?2 2 22

2 e et
koja opisuje tzv. dvograni hiperboloid (sl. 3.2.3). Presek takvog hiperboloida
sa ravni z = h mogu¢é je samo za |h| > ¢, i pritom daje elipse

2?2

?4_@:1, Z:h,
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[ h? [ h?
a=a g—l, B=0 g—l.

Za |h| < ¢ ne postoji presek. Presek dvogranog hiperboloida sa ravni Ozz
ili Oyz daje hiperbole.

¢ije su poluose

Sl 3.2.4
(6) SLUCAJ a9 = 0, sgn(A1) = sgn(A2) = —sgn(A3). Ovde imamo
jednacinu
22 2 2

SIS R
a? b2 2 ’

koja odreduje povrs poznatu kao elipticki konus (sl. 3.2.4). Presek takvog
konusa sa ravni z = h daje elipsu.

Razmotrimo sada drugu jednac¢inu u (3.1.5), tj.
)\1:1,‘2 + )\2]/2 + bOZ =0.

Nastavljajuéi analizu na istovetan nacin, dobijamo sledeée slucajeve:
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Sl 3.2.5
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(7) SLUCAJ sgn(A1) = sgn(A2). Ovo daje

(3.2.4) ="+ il a=——

Dovoljno je razmotriti samo prvu jednacinu, koja opisuje tzv. elipticki
paraboloid (sl. 3.2.5). Preseci ovog paraboloida sa ravni z = h > 0 su elipse
72 Y2 .

a?h  b2h
Sa porastom h, poluose tih elipsi se povecavaju. Presek eliptickog para-
boloida sa ravnima y = h i x = h daje parabole.

Druga jednacina u (3.2.4) se odnosi na elipticki paraboloid koji je simet-
rican sa prethodnim u odnosu na ravan Ozxy.

(8) SLUCAJ sgn(A;) = —sgn(A2). Kao tipi¢na jednac¢ina u ovom sluéaju
je
2 2
o
a? b’

koja opisuje tzv. hiperbolicki paraboloid (sl. 3.2.6).

Presek ovakvog paraboloida sa ravni z = h daje hiperbolu

2 2
€z Y
?—@:1 zZa h>0,

gde su a = avh, f = bVh. Za h < 0 imamo, takode, hiperbole

gde su a = av/—h, 8 =bv—h.

4. ZADACI ZA VEZBU

4.1. Odrediti ravan () koja prolazi kroz tacku M (1, —2,3) i upravna je na
ravnima

B 22+y—2-2=0 i (y) xz—-y—2z-3=0.



POVRSI DRUGOG REDA 375
4.2. Date su prave p; i ps jednac¢inama:

(p1): 7x (20445 +3k) = —297 + 7] + 10k

(p2):  7x (50 —j+2k) = 3i — 5] — 10k.

1° Da li se prave py i po seku?
2° Kroz tacku A(4,0,—1) postaviti pravu p koja sece date prave.

4.3. Date su prave p; i ps jednac¢inama:

() {:E—y—z—7:0, ) (p2) {:E—I—Zy—z—l:O,
: i :
PUS U se—ay—11=0 P s ry+1=0

1° Ne trazedi prese¢nu tacku, dokazati da se prave p; i ps seku.

2° Odrediti prese¢nu tacku A pravih p; i ps.

3° Odrediti jednacine ravni o i ag koje prolaze kroz tacku A i normalne
Su na pravama pi i po, respektivno.

4.4. Odrediti pravu p koja prolazi kroz tacku M (2,2, —2) i seCe prave

y+3z—-5 = 0, . z+2 y—-1 243
(9) : 3 i) —— = =272,
r+22-7 =0 3 2 2

4.5. Odrediti tacku B simetri¢nu tacki A(1,3,—4) u odnosu na ravan

3x+y—22=0.

4.6. Date su ravni Ry i Ry i prava p jednacinama

(R1): ©=0, (Ry): y=2, (p) : _y—_z

Ako su P; i P, tacke prodora prave p kroz ravni Ry i Ro, odrediti tacku
P; € Ry N Ry tako da povrsina trougla Py P, P3 bude minimalna.

4.7. Data je prava p jednacinama
or — 4y + 32+ 20 = 0, 3v—4y+2—-8=0

i tacka C(2,3,—1). Odrediti jednacinu sfere ¢iji je centar u tacki C' i koja
na pravoj p odseca odsecak duzine d = 16.



376 ELEMENTI ANALITICKE GEOMETRIJE
4.8. Tacke M;(4,0,4), My(4,4,4), M3(4,4,0) i tacka S na sferi
2 +y? + 2% =4,

odreduju tetraedar SMy Mo Ms.

Odrediti tacku S tako da zapremina tetraedra bude: (a) najvecéa; (b)
najmanja.

4.9. Prave p i g date su jednac¢inama

1° Proveriti tvrdenje: Prave p i ¢ se ne seku.

2° Odrediti paralelne ravni « i 3 tako da ravan « sadrzi pravu p a da
ravan 3 sadrzi pravu q.

3° Odrediti odstojanje izmedu pravih p i q.

4.10. U Descartesovom koordinatnom sistemu, date su prave p; i po jednaci-
nama

r—y—z+8=0, . r+y+z2—2=0,
(p1) : i (p2):
ox+y+z+10=0 20 +y—32+9=0.

Ako je M tacka njihovog preseka i My, Ms, M3 njene projekcije na ko-
ordinatne ose, odrediti zapreminu tetraedra OM;MsMj3 i povrSinu trougla
My MsMs.

4.11. Ako je ta¢no tvrdenje: Sve ravni
4+ 4+ —t+Dy+E +1)z=0

sadrze jednu fiksnu pravu p, odrediti tu pravu.

Uputstvo. Konstatovati da za svako t mora da vazi jednakost

(P +1)(x+y+2)+t(2z—y)=0.
4.12. Od svih sfera koje prolaze kroz tacke
A(1,-2,8), B(3,2,—-2) i C(-1,0,4),

odrediti onu koja ima najmanji polupreénik.
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4.13. Na krugu K, odredenog jednac¢inama
(K): 2*+y*=1 i z =0,
odrediti tacku koja je najbliza ravni « c¢ija je jednacina
() : z+2y+3z=12.

4.14. Ako je ABC ostrougli trougao, odrediti u njegovoj ravni tacku M
tako da zbir

AM +BM +CM

ima najmanju vrednost.
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