Gradimir V. Milovanovié
Predrag S. Stanimirovié

SIMBOLICKA IMPLEMENTACIJA
NELINEARNE OPTIMIZACIJE

Predgovor

Motivacija za izradu ove knjige je odsustvo slicne literature, kako na srp-
skom jeziku, tako i u svetskim razmerama. Glavni cilj ove knjige jeste sim-
bolicka implementacija osnovnih metoda nelinearnog programiranja. U nave-
denoj literaturi se moZe naci implementacija optimizacionth metoda koji
su opisani u ovoj knjizi. Medutim, ti programi su pisani u proceduralnim
programskim jezicima, najvise u jezicima FORTRAN ¢ C. U ovoj knjizi je
pokazana efikasnost implementacije tih metoda pomodéu neproceduralnih pro-
gramskih jezika MATHEMATICA ¢ LISP. Ideja da se minimum i+ maksimum
ciljne funkcije izracunavaju u funkcionalnim programskim jezicima zaista je
prirodna. Takode, u funkcionalnim programskim jezicima odsustvuje imple-
mentacija vecine metoda matematickog programiranja.

Prva glava je uvodnog karaktera i sadrzi neophodne pojmove, definicije i
poznate stavove. Druga glava sadrzi implementaciju glavnih metoda bezuslov-
ne optimizacije, kako negradijentnih, tako i gradijentnih metoda. Takode,
u drugoj glavi je opisana i implementacija osnovnih metoda globalne opti-
mizacije. U trecoj glavi opisana je implementacija metoda uslovne nelin-
earne optimizacije i visekriterijumske leksikografske optimizacije. U Cetvrto]
glavi je opisana primena metoda gradijentne optimizacije prvog i drugog reda
u izracunavanju najmanje-kvadratnog reSenja i najmanje-kvadratnog resenja
meinimalne norme.

Izrada programa koji su mavedeni u knjizi zahtevala je mmnogo napora i
vremena. U tome smo imali pomoé velikog broja saradnika kojima se ovom
prilikom zahvaljujemo. Veliki broj programa u LISPu napisao je mr Sve-
tozar Rancic, asistent Prirodno-matematickog fakulteta uw Nisu, koji je mag-
istrirao iz ove oblasti [40]. Takode, mr Milan Tasié, asistent Tehnoloskog
fakulteta u Leskovcu, napisao je i testirao veéi broj programa. Neki od ovih
programa mogu se naci i u njegovoj magistarskoj tezi [63]. Dr Miroslav
Ristié, asistent Prirodno-matematickog fakulteta u Nisu, izradio je neke pro-
grame 1 razradio njihovu graficku ilustraciju. U ovoj knjizi ugradeni su i
neki plodovi visesatnih konsultacija sa dr Nebojsom Stojkovicem, asistentom
Ekonomskog fakulteta uw Nisu. U pisanju programa u implementaciji sim-
pleks metoda linearnog programiranja veliki doprinos dali su Ivan Stankovié
i Marko MiloSevié, asistenti pripravnici Prirodno-matematickog faokulteta
w Nisu. U izradi cetvrte glave posebnu zahvalnost dugujemo dr Draganu
Dordevi¢u, docentu Prirodno-matematickog fakulteta u Nisu, koji je pomo-
gao da se navedeni rezultati, prvobitno formulisani za kompleksne matrice,

vi PREDGOVOR

prosire na Hilbertove prostore. Takode smo zahvalni i dr Zoranu Budimcu,
profesoru Prirodno-matematickog fakulteta v Novom Sadu, na korisnim sug-
estijama u vezi implementacije metoda na programskom jeziku LISP.

Ova knjiga moze biti korisna svima onima koji se bave matematickim
programiranjem, a posebno studentima redovnih i poslediplomskih studija na
prirodno-matematickim, tehnickim i drugim fakultetima na kojima se izucava
ova problematika. Knjiga sadrzi i niz novih rezultata dobijenih u poslednje
vreme u radovima [48-59]. Nadamo se da ée ova knjiga pomoéi mnogima
koji Zele da se naucno bave ovom problematikom, kao i onima koji resavaju
probleme optimizacije realnih sistema.

Profesort Vera Vujéié-Kovacevié i Ljubisa Kocic¢, u svojstvu recenzenata,
pomogli su svojim sugestijama u poboljsanju kvaliteta knjige. Koristimo ovu
priliku da im se najsrdacnije zahvalimo za trud koji su uloZili.

Nis, avgust 2002. godine Autori

Sadrzaj

I GLAVA
UVvOD

1. MATEMATICKA PRIPREMA ccciiiie.... 1
1.1. Matematicki model i 1
1.2. Formulacija optimizacionog zadatka 4
1.2.1. Linearno programiranje oeueeeonmuiieeennueeeennnn.. 6
1.2.2. Nelinearno programiranje c.ooeuueeennuineeennnneeenn. 10
1.3. Metodi optimizacije i njihove osobine 14
1.4. Uslovi za postojanje ekstreumma 17
1.5. Konveksni konus i konveksni poliedar 20

2. SIMBOLICKA OPTIMIZACIJAcccciiiin... 22
2.1. Globalno o simboli¢koj implementaciji 22
2.2. Primena mappinga funkcija 26

I GLAVA
BEZUSLOVNA OPTIMIZACIJA

1. NEGRADIJENTNI METODI

1.1. Prednosti simbolicke implementacije negradijentnih metoda 30

1.2. Jednodimenzionalna negradijentna optimizacija 33
1.2.1. Skeniranje sa konstantnim korakomo ool 35
1.2.2. Skeniranje sa promenljivim korakom oL 38
1.2.3. Jednodimenzionalni simpleks metodl 40
1.2.4. Metod dihotomije 46
1.2.5. Metod zlatnog preseka 49
1.2.6. Metod Davies-Swann-Campey (DSC), 54
1.2.7. Jednodimenzionalni Powellov metod, 59

1.2.8. DSC-Powellov metod ... i 62

viii

SADRZAJ

1.2.9. Metod parabole ... 66
1.3. ViSedimenziona negradijentna optimizacija 68
1.3.1. Skeniranje sa konstantnim i promenljivim korakom 70
1.3.2. Skeniranje po spirali ... 72
1.3.3. Gauss-Seidelov metod i 74
1.3.4. Hooke-Jeevesov metod ... 76
1.3.5. Slucajno pretrazivanjec.iiiiiit i 86
1.3.6. Slucajno trazenje sa veéom gustinom, 88
1.3.7. Metod slucajnih smerova i 90
1.3.8. Sluc¢ajno trazenje sa obrnutim korakom 95
1.3.9. Metod nametnute slu¢ajnosti ool 96
1.3.10. Kompleks metod ...t 99
1.3.11. Powelov visedimenzionalni metod 103

2. GRADIJENTNI METODI 106
2.1. OpSte NapOMeNe oiiiiiiiit ittt 106
2.2. O simbolickoj implementaciji 112
2.3. Formiranje gradijenta il 113
2.4. Algoritmi za gradijentne metode prvog reda 120
2.4.1. Osnovni gradijentni metod L. 120
2.4.2. Modifikacija osnovnog gradijentnog metoda 123
2.4.3. Gradijentni metodi sa automatskom korekcijom koraka 126
2.4.4. Cauchyev metod najstrmijeg pada 131
2.4.5. Metod relaksacije 139
2.5. Gradijentni metodi drugog reda oL 141
2.5.1. Newtonov metod ... 141
2.5.2. Modifikacija Newtonovog metoda 145
2.6. Metodi promenljive metrike il 148
2.6.1. Metod Markuarda ...t e 149
2.6.2. Metod Davidon-Fletcher-Powell (DFP) 154
2.6.3. Metod konjugovanih gradijenataol 157
2.7. Poredjenje gradijentnih negradijentnih metoda 161

3. GLOBALNA OPTIMIZACIJA ... i 162
3.1, Uvod o 162
3.2. Metodi i implementacija i 163
3.2.1. Slucajno pretrazivanje sa skeniranim pocetnim tackama 163
3.2.2. Slucajno pretrazivanje iz skupa slucajnih pocetnih tacaka 168
3.2.3. Priceov metod ... 170
3.2.4. Metod “teSkog topa” ... 174
3.2.5. Metod tunela 176

SADRZAJ ix

IIT GLAVA

USLOVNA OPTIMIZACIJA

1. O SIMBOLICKOJ IMPLEMENTACIJI 179
1.1. Postojeéi programi ... 180
1.2. Osnovne prednosti 181

2. OGRANICENJA DATA JEDNAKOSTIMA 183
2.1, Uvod oo 183
2.2. Metodi eliminacije promenljivih 184
2.3. Metodi lagrangeovih mnozitelja, 184
2.3.1. Newtonov metod ... 187
2.3.2. Minimizacioni metodi 189

3. OPSTI ZADATAK OPTIMIZACIJE 190
3 L. Uvod oo 190
3.2. Neki osnovni metodi i 191
3.2.1. Kompleks metod za funkcionalna ograni¢enja 191
3.2.2. Dodavanje ograniCenjaueuiiiiiiiiiiiiii., 196
3.3. Metodi kaznenih funkcija L 197
3.3.1. Metodi spoljasnjih kaznenih funkcija o . 200
3.3.2. Metodi unutrasnjih kaznenih funkcija 203
3.3.3. Generalisani Lagrangeovi mnozitelji 206
3.3.4. Jo§ jedan metod kaznenih funkcija il 212

4. POSEBNI SLUCAJEVI USLOVNE OPTIMIZACIJE213
4.1 Konveksno programiranje i, 213
4.1.1. Gradijentni metod ... 213
4.1.2. Metod dopustivih smerova 214

IV GLAVA

OPTIMIZACIJA I LINEARNI SISTEMI

1. Uvod o 217
1.1. Norme vektora i matrica 217
1.2. MoOOre-penroseoVv INVEIzZceeeeeiieeeeaanannnnnnnnn. 218
1.3. Aproksimativna svojstva generalisanih inverza 219

SADRZAJ

2. PRIMENA OPTIMIZACIONIH METODA 220
2.1. Primena gradijentnih metoda drugog reda 220
2.2. Implementacija 225

LITERATURA e 227

INDEK S 233

I GLAVA
Uvod

Ova glava sadrzi uvodna razmatranja u dva razli¢ita smisla. U prvom
poglavlju je ukratko opisan neophodan matematicki aparat za razumevanje
sustine opisanih i implementiranih metoda. Takode, prvo poglavlje sadrzi
globalne aspekte o sustini optimizacionog zadatka, podelama i osobinama
metoda optimizacije. Drugo poglavlje predstavlja uvod za jedan sasvim
novi pristup u implementaciji metoda optimizacije - pristup baziran na
funkcionalnom stilu programiranja.

1. MATEMATICKA PRIPREMA

1.1. Matematicki model
U procesima upravljanja postoje tri osnovna pojma [34]:

1. funkcija cilja ili kriterijum upravljanja;

2. skup ogranicenja;

3. matematicki model.

Razmotri¢éemo ukratko svaki od ovih pojmova.

1. Osnovni preduslov svakog upravljackog zadatka jeste postojanje de-
finisanog cilja. U opsStem sluc¢aju jedan problem se moze sastojati iz viSe
razli¢itih celina. ReSavanje takvog programa u celini naziva se ostvarivanje
globalnog cilja. Vreme, kvalitet, troskovi ili efikasnost jesu najceséi cilje-
vi. U veéini slucajeva postavljeni ciljevi na prvi pogled izgledaju paradok-
salno. Preciznije, obi¢no izmedu postavljenih ciljeva postoje suprotnosti,
protivurec¢ni zahtevi i ogranicenja, pa se udovoljavanje globalnom cilju svodi
na reSavanje tih protivure¢nosti. Drugim re¢ima, ako se moze naéi prakti¢no
reSenje tih protivurecnih uslova, tada je moguce i ostvarenje postavljenog
cilja. Potrebno je da globalni cilj ostavi odredenu slobodu ciljevima nizih
hijerarhijskih nivoa. Glavni cilj bi trebalo da odredi opste pravce, a ne i da
reguliSe najsitnije detalje.

2 Uvod

Kod definisanja funkcije cilja najcesée se polazi od verbalnog opisa cilja
a zatim se postepeno prelazi na analiticko formulisanje, sve dok se ne do-
bije njen potpun matematicki oblik. Nije uvek lako naé¢i matematicki oblik
funkcije, narocito kada su u pitanju slozeni upravljacki zadaci.

U matematickom obliku funkcija cilja se izrazava nekom funkcijom Q(x),
gde je x = (x1,... ,x,) n-dimenzionalni vektor. U ovom sluc¢aju, Q(x) je
funkcija vise promenljivih, za koju potrebno odrediti ekstremnu vrednost.
U nekim slu¢ajevima, umesto funkcije Q(x) koristi se funkcional, $to je u
praksi redi slucaj.

Funkcija cilja se minimizira ako su njome izrazeni troskovi, utroSak ma-
terijala, vreme izvrSenja zadatka, gubitak u proizvodnji, vreme transporta,
utroSak goriva, itd. Ako funkcija cilja odrazava dobit, pouzdanost, dohodak,
itd, ona se maksimizira.

2. Skup ogranic¢enja, oznacen sa L, utvrduje se za svaki upravljacki
zadatak posebno. Skup ogranicenja je sistem od m jednacina i (ili) ne-
jednacina od promenljivih zq,...,z, (koje se koriste i u funkciji cilja).
Generalno, skup ogranicenja predstavlja skup hiper povrsina i (ili) hiper
ravni n-dimenzionalnog prostora, kojima je ograni¢en domen (oznacen sa
D). Iz domena D se bira onaj vektor x koji inicira ekstremnu vrednost
ciljne funkcije Q(x). Sve moguée vrednosti za x iz domena D nazivaju se
dopustivim planom, a onaj vektor x koji obezbeduje da funkcija Q(x) ima
ekstremnu vrednost naziva se optimalnim planom.

Pored skupa ogranicenja L postoji i prirodni skup ogranicenja koji se
sastoji u tome da komponente vektora x moraju biti nenegativne veli¢ine tj.
x; > 0,7=1,... ,n. U sistemu ograni¢enja mogu nastupiti sledeéi slucajevi:
(a) Sistem L moze biti protivurecan, $to znac¢i da ne postoji dopustiv plan
x koji zadovoljava sva ogranicenja.

(b) Sistem L nije protivurecan, ali je oblast D neograni¢ena. Tada pos-
toji moguénost odredivanja optimalnog plana x samo ako je funkcija Q(x)
ograni¢ena u neograni¢enoj oblasti D.

(c) Sistem L nije protivurecan i oblast D je ogranicena. Tada se optimalni
plan moze odrediti u svim slu¢ajevima, sem ako je funkcija Q(x) neograni-
¢ena u ogranicenoj oblasti D.

3. Pravilna postavka zadatka je slozen zadatak, i samo u retkim sluca-
jevima se zadatak moze postaviti u prvom pokusaju. Cesto se vrSe izmene
i dopune pa ¢ak i forma i priroda modela. OlakSavajué¢a okolnost je Sto za
odreden broj zadataka ili za neke njihove delove postoje gotovi modeli tako
da se kod novih zadataka moze koristiti modifikacija takvih gotovih modela.

Matematicka priprema 3

Postoje dva postupka za nalazanje reSenja matematickih modela:

(a) Analiticko resenje.

(b) Numericko resenje (primenom pribliznih numerickih metoda).

Numericko resavanje se mnogo viSe primenjuje u praksi.

Konstrukcija matematickog modela M za neki proces upravljanja sastoji
se u definiciji funkcije cilja Q(x), skupa ogranicenja L kao i prikupljanje i
sredivanje potrebnih polaznih podataka. Kaze se da trojka (Q, L, M) karak-
teriSe odredeni upravljacki zadatak.

Primena matematickih metoda u procesu primene odluka i njegovih iz-
vrSenja moze se podeliti u tri faze: U prvoj fazi se konstruise matematicki
model problema. U drugoj fazi se vrsi izbor algoritma za implementaciju
matematickog modela, izrada programa za racunar i njegovo testiranje. U
okviru druge faze matematicki model se usavrsava, a ako nedostaju potrebni
podaci vraé¢a se prvoj fazi na doradu i proveru da li su predlozene promene
saglasne sa suStinom zadatka. U trecoj fazi se ispituje opravdanost ili neo-
pravdanost predlozenog resenja. Neopravdanost moze da nastupi npr. ako
neki na izgled sporedni, a u suStini bitni faktori nisu uzeti u obzir. Ako u
trecoj fazi postoje primedbe one se vra¢aju na otklanjanje prvoj i drugoj fazi.
U svim ovim fazama rad se odvija po grupama koje sacinjavaju struc¢njaci
razli¢itih profila.

Odluke koje se donose na razli¢itim nivoima upravljanja mogu se klasi-
fikovati na razli¢ite nacine. Jedna od klasifikacija odluka je sledeca:

(a) Ako pri upotrebi odredenog algoritma dobijamo potpuno odredeni rezul-
tat, sa verovatnocom koja je jednaka jedinici, kazemo da je odluka deter-
ministicka.

(b) Ako su pri postavci zadatka neki parametri slu¢ajne veli¢ine sa poznatom
raspodelom, tada i rezultat koji se dobija ima odredenu verovatnocu svoje
verodostojnosti. Takva upravljacka odluka naziva se probabilistickom.

(¢) Ako na donosenje odluke uti¢u velicine koje zavise od okruzenja ili od
protivnika koji ugrozavaju donosioce odluka, takve odluke se nazivaju
strategijskim.

(d) Ako se odluke zasnivaju na resavanju zadataka ¢iji su parametri priblizno
procenjene veli¢ine ili su to slucajne veli¢ine sa nepoznatom raspodelom,
tada se takve odluke nazivaju statistickim.

Nekada su u mnogim nau¢nim disciplinama, kakve su na primer ekonomija
ili biologija, eksperimenti bili nedopustivi. Medutim, primenom odgovara-
juéih matematickih modela koji definisu problem i razvojem metoda opti-

4 Uvod

mizacije, stvara se mogucénost primene eksperimenata i u ovim oblastima.
Tako se analizom matematickog modela mogu pratiti uticaji promene bilo
kog parametra na krajnji rezultat i traziti optimalno reSenje. Na taj nacin se
eksperiment u praksi svodi na eksperiment na modelu. Slozenost i priroda
matematickog modela ima veliki uticaj na smanjenje (povecanje) dimenzije
zadatka. Pod dimenzijom zadatka se podrazumeva ukupan broj jedna¢ina i
(ili) nejednacina u skupu L i broj nepoznatih.

1.2. Formulacija optimizacionog zadatka

Optimizacija je postupak nalazenja najboljeg reSenja nekog problema u

odredenom smislu i pri odredenim uslovima [60].

Neophodne pretpostavke za ostvarenje zadatka optimizacije su:

1) Objekat optimizacije. Moze biti proizvoljni proces, aparat, ljudska delat-
nost itd.

2) Kriterijum optimalnosti, koji se drugacije naziva efikasnost ili funkcija
ctlja. Funkcija cilja moze biti, na primer, tehnicki rashod, dobit ili
Cistoca materijala. Najbolja vrednost kriterijuma optimalnosti naziva se
ekstremum ili optimum.

3) Upravljivost objektom optimizacije. Za izvrSenje procesa optimizacije pot-
rebno je da objekat optimizacije bude upravljiv, odnosno da ima izvestan
stepen slobode. Da bi se osiguralo upravljanje objektom optimizacije
neophodno je da on ima upravljacke parametre, koji mogu da se menjaju
nezavisno jedan od drugih. Time se moze definisati skup razli¢itih stanja
objekta optimizacije, iz koga se odabira optimalno stanje.

4) Metod optimizacije. Za zadati upravljacki objekat i formulisani cilj, iz-
razen kroz kriterijum optimalnosti, neophodno je da se izabere metod za
izracunavanje optimuma. Nije moguée da se preporuci jedan univerzalni
metod za reSavanje svih optimizacionih zadataka. Izbor konkretnog meto-
da se vrsi na osnovu postavljenih ciljeva kao i prirode objekta optimizacije.

Jedna od najvaznijih pretpostavki za reSavanje optimizacionog zadatka je
formulacija cilja, §to se bazira na subjektivnoj pretpostavci. Pravilno for-
mulisanje cilja neophodno je za pravilno reSavanje optimizacionog zadatka.
U praksi se proces optimizacije izvrSava na osnovu uproséenog matematickog
modela procesa. Na osnovu tog modela formira se ciljna funkcija.

Svaki upravljiv objekat se karakteriSe parametrima, i to: ulaznim x =
(x1,...,xy) 1izlaznim y = (y1,... ,Ym). Matematicki model ovog objekta
povezuje njegove parametre sistemom funkcija sledeéeg oblika:

(1.2.1) yi = f;(x), j=1,...,m.

Matematicka priprema 5

Kriterijum optimalnosti upravljivog objekta ili sistema je funkcija ulaznih
i izlaznih parametara: @ = Q(x,y). Medutim iz (1.2.1) sledi da ciljna
funkcija @) zavisi samo od upravljackih parametara

Q=0Q(x) =Q(z1,... ,zn).

U primenama je skup upravljackih parametara r;, ¢ =1,... ,n ogranicen,
tj. upravljacki parametri se menjaju unutar dozvoljenog prostora D, up-
ravljackih parametara. Na taj nacin, upravljacki parametri ispunjavaju
uslove:

(1.2.2) xmin; < x; < xmazx;, 1=1,...,n

(1.2.3) xeD,.

Zadatak optimizacije definiSe se na slede¢i nacin: trazi se maksimum ciljne
funkcije Q(x) = Q(x1,... ,x,), pod uslovom x € D,.

Ponekad se upravljackim parametrima mogu nametnuti uslovi definisani
drugim funkcijama:

(1.2.4) oi(T1,. .. o) =0, l=1,... ,m <mn,

(125) ¢j(1’1,... ,Jjn) S ’l/)oj,]: 1, ,Mo.

Uslovi (1.2.4) se nazivaju funkcionalna ogranic¢enja tipa jednakosti, dok se
uslovi (1.2.5) nazivaju funkcionalna ograni¢enja tipa nejednakosti, ili ogra-
nic¢enja zadata oblastima.

Ciljna funkcija koja u dozvoljenoj oblasti upravljackih parametara ima
samo jedan ekstremum naziva se jednoekstremalna ili unimodalna, a u sup-
rotnom se naziva mnogoekstremalna odnosno multimodalna.

U slu¢aju mnogoekstremalnih ciljnih funkcija, globalni ekstremum je naj-
bolja vrednost ciljne funkcije izmedu svih lokalnih ekstremuma. Ciljna fun-
kcija moze da bude linearna ili nelinearna, zavisno od toga da li je zavisnost
Q(x) = Q(x1,... ,x,) linearna ili nelinearna.

Zadatak matematickog programiranja se sastoji u odredivanju vektora

x* = (z7,...,2}) koji predstavlja resenje sledeéeg zadatka:

Minimizirati Q(x)
(1.2.6) P.O. gi(x) >0, i=1,...,m,
hi(x) =0, j=1,....p.

6 Uvod

Ako je ciljna funkcija @ linearna i kao su linearne i funkcije {g;, ¢ =
1,...,m} i{h;, j =1,...,p}, sadrzane u ogranicenjima, tada zadatak
(1.2.6) predstavlja zadatak linearnog programiranja. Ako je bar jedna od
tih funkcija nelinearna, tada se dobijeni problem naziva zadatak nelinearnog
programiranja. Ako uslovi u (1.2.6) odsustvuju radi se o bezuslovnoj opti-
mizaciji, a inace se reSava problem uslovne optimizacije.

Algoritam za nalazenje maksimuma moze da se iskoristi za nalazenje mi-
nimuma:

min Q(x) = — max(—Q(x)).

Vazi 1 obrnuto:

max Q(x) = —min(—Q(x)).

1.2.1 LINEARNO PROGRAMIRANJE

Linearno programiranje je jedna od najjednostavnijih metoda za odre-
divanje optimalnog reSenja u raznim zadacima optimizacije. Takvi zadaci
se javljaju u razli¢itim granama privrede, u ekonomiji, proizvodnji, obrazo-
vanju, istrazivanju itd.

Kao §to je ve¢ napomenuto, za zadatke linearnog programiranja karakter-
isti¢na je linearna funkcija cilja Q(x) i skup linearnih ograni¢enja L. Funkcija
Q(x) predstavlja linearnu kombinaciju nepoznatih a L je sistem linearnih
jednacina i (ili) nejednac¢ina. Problem se svodi na nalazenje minimuma ili
maksimuma linearne funkcije Q(x) pri odredenim linearnim ograni¢enjima.
Broj nepoznatih i ogranicenja moze da bude veoma razlicit.

U zadacima linearnog programiranja postoje tri kategorije faktora koji
ucestvuju pri odredivanju optimalnog resenja [34]:

(a) ulazni faktori;

(b) izlazni faktori;

(c) strukturalni faktori.

Ulazni faktori su zadati uslovima privredivanja, proizvodnje, potrebama
i troskovima.

Izlazni faktori karakterisu rezultat delatnosti.

Strukturalni faktori karakterisu proces rada, tehnologiju, resurse, itd.

Linearno programiranje je metod odredivanja takve kombinacije uzajam-
no povezanih faktora, koja od niza moguéih kombinacija predstavlja najpo-

voljniju tj. trazi se takva kombinacija koja ¢e pored uslova L zadovoljiti i
kriterijum optimalnosti ciljne funkcije.

Matematicka priprema 7

Formulacija zadatka linearnog programiranja. [8], [23], [34], [63],
[65]. Neka je A = (a;j)mxn matrica sa vrstama V1,...,V,, i neka su b € R™
i c € R™ dati vektori. Matematicka formulacija zadatka linearnog programi-
ranja u opstem obliku sastoji se u sledeéem: Odrediti komponente n-dimen-
zionalnog vektora x iz oblasti D za koje funkcija cilja Q(x) dostize mak-
simalnu (minimalnu) vrednost. Pri tome je vektor x = (z1,... ,z,) zadat
svojim koordinatama, oblast D je zadata sistemom linearnih jednacina i (ili)
nejednacina

Vix=10b;, icl,
Vix>b;, i€l

V;;TX < bia (XS I37
x>0, ke,

(1.2.7)

gde je

L+L+I3={1,... m}, [NIL=0, [NI3=0, LNI3=0, 7 C{1,...,n}
Funkcija cilja Q(x) predstavlja linearnu kombinaciju nepoznatih zy:

(1.2.8) Q(x)=Q(x1,...,o,) =121 + -+ oy = c'x

U slucaju I; = {1,... ,m}, J = {1,... ,n}, ogranicenja (1.2.7) i (1.2.8)
svode se na tzv. standardni oblik linearnog programiranja:

Maksimizirati ¢’ x,
(1.2.9) P.O. Ax =1,
x>0

Analogno, u slucaju I = {1,... ,m}, J ={1,... ,n}, ogranicenja (1.2.7)
i (1.2.8) svode se simetric¢ni oblik linearnog programiranja:

Maksimizirati ¢’x,
(1.2.10) P.O. Ax >,
x>0

Problem zadat u opstem obliku uvek se moze transformisati u eqvivalentan
problem u standardnom i simetri¢nom obliku. Iz opsteg oblika (1.2.7)-(1.2.8)

8 Uvod

dobija se standardni oblik (1.2.9) dodavanjem, odnosno oduzimanjem tzv.
izravnavajuéih promenljivih s; > 0, i € IoUI3. Nejednagine oblika V.'x > b;,
i € I svode se na ekvivalentne jednacine V.'x — s; = 0, i € I5. Analogno,
nejednacine oblika VI'x < b;, i € I3 svode se na jednacine V.I'x + s; = 0,
1€ I3.

Takode, problem zadat u opstem obliku (1.2.7)-(1.2.8) moze se prevesti
u simetrican oblik. Ogranicenja tipa jednakost V;x = b; zamenjuju se ne-
jedna¢inama V;'x > b;, odnosno —V.I'x < —b;, i € I;. Takode, mnozedi
proizvoljno ograni¢enje oblika V.Ix < b; sa —1 dobija se ekvivalentno ogra-
ni¢enje u obliku —V,'x > —b;.

Na osnovu recenog zakljucuje se da se linearni program moze zadati ravno-
pravno u opStem, standardnom ili simetri¢cnom obliku.
Skup jednacina (1.2.9) se najcesée piSe u razvijenom obliku na sledeéi nacin:

1171 + a12T2 + - - + a1 Ty = by,

Am1T1 + a2+ + A Tp = by,

mkzo, k:zl,...,n.

Tada je konacna oblast D konveksna i ograni¢ena skupom hiper ravni
oblika:

n
(1211) Pj=> apzr—b; =0, j=1,....,mm+1,... . m+n.
k=1

Ako je skup ogranic¢enja L zadat nelinearnim vezama kaze se da je oblast
D ogranic¢ena hiper povrsima. U nekim slucajevima oblast D moze biti i
neogranicena.

Posmatrajmo jednacine (1.2.11) inekaje j=1,... ,r, (m<r<m+n). Bilo
kojih n jednacina iz skupa (1.2.11) odreduje u n-dimenzionalnom prostoru
koordinate jednog vrha poliedra.

Ako pretpostavimo da hiper ravan Q(x) = Q(z1,...,x,) = ¢ nije para-
lelna ni sa jednom od hiper ravni P; i ako je oblast D ogranicena, onda
funkcija cilja Q(z1,...,x,) dostize maksimum (minimum) u jednom od
vrhova poliedra. Ako je hiper ravan Q(z1, ... ,z,) = ¢ paralelna bar sa jed-
nom hiper ravni P;, tada problem moze imati beskonacno mnogo resenja. U
tom slucaju, funkcija cilja Q(x) dostize maksimum (minimum) u odredenoj
hiper ravni P;.

Matematicka priprema 9

Cesto se funkcija Q(x) takvog oblika naziva linearnom formom promen-
ljivih x = (21,... ,2,) koje zadovoljavaju uslove (1.2.7) i (1.2.8). Sistem
nejednacina i (ili) jednacina (1.2.7) naziva se skupom ogranicenja L.

Matrica

aiq ai2 . A1n
A=
am1 Gm2 Qmn
koja je sastavljena od koeficijenata skupa ogranicenja,naziva se matrica og-
ranicenja.
Vektor
a1k

A =
Amk
¢ije su komponente koeficijenti iz skupa ograni¢enja L uz promenljivu zg,

naziva se k-tim wvektorom skupa L.
Vektor

by
B =| :
bm,
sa koeficijentima koji predstavljaju slobodne ¢lanove iz skupa ogranicenja,
naziva se vektor ogranicenja.

Odredivanje vektora x = (z1,...,%,) koji zadovoljavaju uslove (1.2.7)
naziva se odredivanje plana zadatka. Vrednosti zi,...,z, iz plana nazi-
vaju se komponentama tog plana. Plan x* = (z7,... ,z}) koji obezbeduje

ekstremnu vrednost funkcije cilja Q(x), naziva se optimalni plan ili resenje
zadatka linearnog programiranja.

Za optimalni plan x* je ispunjeno Q(x*) > Q(x) (u odnosu na bilo koji
drugi plan x € D), u slu¢aju da je trazen maksimum. U sluc¢aju da se radi o
trazenju minimuma onda mora biti zadovoljen uslov Q(x*) < Q(x). Zadaci
koji imaju bar jedan optimalni plan x* pripadaju klasi resivih problema.

Oznac¢imo kolone matrice A sa Ki,...,K,. Ocigledno da se ne uma-
njuje opstost razmatranja ako se pretpostavi da medu ogranic¢enjima nema
suvisnih. To znaéi da je u slu¢aju m < n ispunjen uslov rang(A) = m. Prema
tome, postoji bar jedan skup od m linearno nezavisnih kolona matrice A.
Svaki maksimalan skup linearno nezavisnih kolona matrice A naziva se baza
matrice A. Dve baze su susedne ako se razlikuju u jednoj koloni. Neka
su B = {j1,... ,Jm} indeksi baziénih kolona matrice A i neka je Ap =

10 Uvod

{Kj,,...,Kj, } bazitni minor matrice A. Promenljive z;, j € B nazivaju
se baziéne, a preostale nebaziéne u odnosu na izabrane bazi¢ne kolone. U
odnosu na izabrane bazi¢ne kolone, bazi¢no resenje se dobija kada se sve
nebazi¢ne promenljive izjednace sa nulom i sistem Ax = b resi po bazi¢nim
promenljivim. Svako bazi¢no resenje ¢ije su komponente nenegativne naziva
se bazicno dopustivo resenje, dok se baza Ap nazica dopustivom bazom.
Ako je broj ogranicenja (1.2.7) veliki, tada postoji veliki broj varijanti
koje dolaze u obzir kao resenje. Zbog toga je potrebno formirati Semu za
nalazenje optimalnog plana koji bi se dobio bez ispitivanja svih moguéih
varijanti i izvodenja odgovarajucéih racunskih operacija kojih moze biti vise

od
n\ 2
n!z(—) 2nm,
e

gde je n broj nepoznatih iz funkcije cilja Q(x) [34].
Postoje razli¢iti metodi za reSavanje zadataka linearnog programiranja.
Jedna od njih je Dantzig-ov metod, koji je poznat pod nazivom simpleks

metod [8], [23], [34], [63], [65].

Simpleks metod linearnog programiranja je do sada implementiran pr-
venstveno u proceduralnim programskim jezicima. U [45] je opisana im-
plementacija simpleks metoda u programskom jeziku C. NajceSce su imple-
mentacije metoda linearnog programiranja u programskom jeziku FORTRAN
[22], [30]. U radu [54] opisana je simbolicka implementacija simpleks metoda
u programskom paketu MATHEMATICA. U ovoj knjizi je od primarnog interesa
implementacija nelinearnog programiranja. Simbolicka implementacija sim-
pleks metoda linearnog programiranja opisana je u poglavlju 3.5 treée glave.

U poslednjih dvadesetak godina razvijene su neke modifikacije simpleks
metoda. Takode, sve su popularniji tzv. unutrasnji metodi u reSavanju
problema linearnog programiranja [8], [20].

1.2.2. NELINEARNO PROGRAMIRANJE

Svaki upravljacki zadatak u kome je funkcija cilja Q(x) i (ili) skup og-
ranicenja L definisan nelinearnim jednac¢inama i (ili) nejednac¢inama, pred-
stavlja zadatak nelinearnog programiranja. Optimalno reSenje nelinearnog
optimizacionog problema izracunava se nekom od raspolozivih metoda, koja
je najadekvatnija za nalazenje konkretnog resenja.

Za razliku od zadataka linearnog programiranja, zadaci nelinearnog pro-

gramiranja se ne mogu resavati primenom nekog univerzalnog metoda (kao
Sto je to simpleks metod za zadatke linearnog programiranja). Za zadatke

Matematicka priprema 11

nelinearnog programiranja je za svaki konkretan slucaj, u zavisnosti od nje-
govog matematickog modela, dimenzija i karaktera nelinearnosti, potreban
nov metod ili prilagodavanje nekog od postoje¢ih metoda. U velikom broju
sluc¢ajeva ¢ak i ne postoji prikladni metod na osnovu kojeg se moze naci op-
timalno reSenje formulisanog zadatka nelinearnog programiranja, Sto znaci
da postoji jos uvek veliki broj neresivih ili tesko resivih zadataka nelinearnog
programiranja.

Postoji vise metoda optimizacije pomoc¢u kojih se mogu resavati neki za-
daci nelinearnog programiranja. Svi ti metodi su specijalizovani za razli¢ite
tipove zadataka nelinearnog programiranja, koji se formalno razlikuju po
obliku matematickog modela, tj. po obliku i dimenzijama funkcije cilja i
skupa ogranicenja. Tako, na primer, postoje specijalni metodi za linearna
ograni¢enja i nelinearnu funkciju cilja, za funkcije cilja zadate kvadratnom
formom, za celobrojne vrednosti promenljivih, itd. Otuda poti¢u i neki
posebni nazivi za takve specificne zadatke nelinearnog programiranja, kao
§to su: kvadratno programiranje, celobrojno programiranje, itd.

Zadaci nelinearnog programiranja prekrivaju znatno Sire podrucje uprav-
ljackih zadataka i raznovrsniji su od zadataka koji se svode na primenu lin-
earnog programiranja. Mnogi od njih jos uvek nisu resivi jer ne postoje razvi-
jeni algoritmi ¢ija bi primena dala odredene efekte. Primenljivost odredenih
algoritama procenjuje se na osnovu broja ra¢unskih operacija koje treba
obaviti u procesu nalazenja reSenja. Neki algoritmi u odredenim zadacima
nelinearnog programiranja, ¢ak i uz primenu savremenih ra¢unara, nisu uvek
primenljivi.

Opsta formulacija zadatka nelinearnog programiranja moze se iskazati
na sledeéi nacin: Naéi n-dimenzionalni vektor x = (z1,...,z,) kojim je
omoguceno da funkcija cilja Q(x) dobija maksimalnu (minimalnu) vrednost,
a da pri tome budu zadovoljena ogranic¢enja

(1.2.12)

gde su F(x), G(x) i H(x) vektori ¢ije su komponente definisane slede¢im
funkcijama, redom:

fl(x)"" afh(x)’ gl(X),... agkz(x)’ hl(x)"" ahks(x)'

Ogranicenje (1.2.12) se u razvijenom obliku mogu predstaviti na sledeéi

12 Uvod

nacin:
filx1,...,zn) >0, i=1,... k
(1.2.13) gi(z1,...,x,) <0, i=1,... ko
hi(x1,...,z,) =0, i=1,... ks, ki+tko+ks=m,
x; >0, j=1...,n.

Uobi¢ajeno je da se jednacine u izrazima (1.2.13) nazivaju uslovima, a

nejednacine ogranic¢enjima. I jednacine i nejednacine se jednim imenom
nazivaju skup ogranicenja, i oznacavaju sa L. Indeksi m i n medusobno
su nezavisni, tj. m mozZe biti manje, jednako ili veée od n.
Funkcije Q(x) i fi(x1,...,2pn), 1=1,... k1, gi(x1,...,2pn), 1=1,... ko,
hi(x1,... ,xy), i=1,... k3 u opStem slucaju su nelinearne funkcije, pa
otuda naziv nelinearno programiranje. Posebni slucajevi zadataka nelin-
earnog programiranja javljaju se kada funkcije sadrzane u @, F', G i H nisu
istovremeno nelinearne funkcije, tj. kada je samo () nelinearna funkcija, ili
je neka od funkcija iz F', G, H nelinearna. Na toj osnovi, vezujuéi se za ob-
lik funkcija Q(x), F'(x), G(x), H(x), vrsi se formalna klasifikacija zadataka
nelinearnog programiranja.

Navedene su se neke od tih klasifikacija, koje u prvi plan isticu resive
zadatke nelinearnog programiranja i njihovu opstu formulaciju [34], [73].

a) Nelinearno programiranje sa linearnim skupom ograni¢enja.

U ovoj klasi zadataka nelinearnog programiranja skup ogranicenja zadaje
se funkcijama g;, ¢ = 1,...,m koje su linearne, tj.

n
gi(X):Zaijijbi, Z:L ,m,
i=1

b) nelinearno programiranje sa separabilnom funkcijom cilja.

U ovoj klasi zadataka nelinearnog programiranja funkcija cilja je defin-
isana zbirom n funkcija od kojih svaka zavisi samo od jedne promenljive, tj.
Q(x) je oblika

Qx) = ij(ﬁﬂj)-

Matematicka priprema 13

c) Kvadratno programiranje.

Ovu klasu zadataka nelinearnog programiranja karakterise funkcija cilja
zadata u obliku kvadratne forme

Q(X) = Z Z cijxixj-

i=1 j=1

Specijalnu podklasu zadataka kvadratnog programiranja ¢ine zadaci kod
kojih je skup ogranicenja linearan. Zadaci ove vrste, kod kojih je funkcija
cilja zadata kvadratnom formom, a skup ogranic¢enja linearnim jednac¢inama
i (ili) nejednacinama, spadaju u grupu relativno lako resivih zadataka.

d) Celobrojno programiranje.

Zadaci nelinearnog programiranja koji pored uslova (1.2.13) moraju zado-
voljavati i posebne uslove, koji se sastoje u tome da sve promenljive mogu
uzimati samo celobrojne vrednosti, ¢ine klasu zadataka koja se naziva celo-
brojno programirange.

Kao specijalan slucaj ove klase zadataka u praksi se ¢esto javljaju zadaci
kod kojih promenljive mogu uzimati samo dve vrednosti: nula i jedan. To
su zadaci koji se izuc¢avaju u okviru posebnog naziva: 0-1 programiranje.

Do sada su, pored ostalog $to je napomenuto, razvijeni efikasni algo-
ritmi za maksimizaciju (minimizaciju) konkavne (konveksne) funkcije Q(x)
u konkavnoj (konveksnoj) oblasti (D), koja je odredena skupom ogranic¢enja

gi(x) >0,i=1,... ,m, gde su g;(x) takode konkavne (konveksne) funkcije.
Maksimizacija (minimizacija) funkcije cilja Q(x), pri skupu ograni¢enja
gi(x) <0,i=1,...,m, pretpostavlja egzistenciju pocetnog plana
X(O) = (xg0)7 s 7x£10))7
za koji je zadovoljen skup ogranicenja g;(x) > 0,i=1,... ,m.

Metodi koji su razvijeni za reSavanje ovih zadataka omogucéuju nalazenje
samo lokalnih ekstremuma.

Imajuéi u vidu ukazane napomene, potrebno je istaé¢i da u praksi postoji
nekoliko tipi¢nih zadataka nelinearnog programiranja, kao Sto su: zadaci
raspodele ogranic¢enih resursa, neki transportni zadaci, zadaci vezani za up-
ravljanje zalihama, itd.

14 Uvod

1.3. Metodi optimizacije i njihove osobine

Zadaci optimizacije se mogu klasifikovati na osnovu veéeg broja razli¢itih
kriterijuma [60].

1. U zadacima staticke optimizacije objekat se posmatra u nepromenlji-
vom jedinstvenom stanju. U zadacima dinamicke optimizacije ciljna funkcija

zavisi od parametara koji su dati u funkciji vremena, odnosno, objekat op-
timizacije se smatra promenljivim u vremenu i prostoru.

Kao sto je ranije napomenuto, staticka optimizacija moze biti linearna
i melinearna optimizacija. U ovoj knjizi se prvenstveno izucavaju metodi
nelinearne optimizacije.

2. Zavisno od upravljackih parametara, zadaci optimizacije dele se na:
— Zadaci za jednodimenzionalnu optimizaciju (n = 1).

— Zadaci za visedimenzionalnu optimizaciju. U slucaju n € {4,5} parame-
tara, govori se o zadacima malih dimenzija, dok se u sluéaju 5 < n < 20
radi o zadacima srednjih dimenzija. Optimizacioni problemi sa n > 20
upravljackih parametara odreduju zadatke velikih dimenzija.

— Zadaci sa zadatom pocetnom tackom ili sa nepoznatom pocetnom tackom.

3. U zavisnosti od ciljne funkcije, metodi optimizacije se dele na:

— Metodi jednokriterijumske optimizacije, u kojima se optimizira jedna cil-
jna funkcija.

— Metodi visekriterijumske optimizacije, u kojima se optimizira vise ciljnih
funkcija.

— Metodi za diferencijabilne i nediferencijabilne funkcije. Za nediferencija-
bilne funkcije razvijeni su metodi koji ne koriste izvode ciljne funkcije (tzv.
negradijentni metodi). Za diferencijabilne ciljne funkcije mogu se koristiti
tzv. gradijentni metodi, u kojima se bitno koriste parcijalni izvodi ciljne
funkcije.

— Zadata ili nepoznata tacnost lokalizacije ekstremuma.

— Metodi za jednoekstremalnu i viseekstremalnu ciljnu funkciju.

— Metodi za eksperimentalno odredenu ili analiticki zadatu ciljnu funkciju.
4. U zavisnosti od zadatih ogranicenja, optimizacioni metodi se mogu

podeliti na slede¢i nacin:

— Optimizacija bez ogranicenja.

— Optimizacija sa ograni¢enjima koja su zadata linearnim jednakostima i
(ili) nejednakostima.

Matematicka priprema 15

— Optimizacija sa funkcionalnim ogranicenjima.

Metodi optimizacije se mogu podeliti na sledeéi naéin.

a) Analiticki metodi se zasnivaju na analizi izvoda ciljne funkcije pomoéu
matematicke analize. U ovim metodima se ekstremna vrednost funkcije Q(x)
odreduje pomoéu izracunavanja takvih vektora x za koje je Q'(x) = 0. Za
velike nelinearne probleme, analiticki metodi postaju nezadovoljavajudi, te
nisu od posebnog znacaja.

b) Numericki (iterativni) metodi se zasnivaju na definisanju numerickih
iteracija za pribliznu aproksimaciju reSenja. Ovakvi metodi su najpogodniji
za programiranje. Dele se u dve grupe:

— gradijentni metodi, koji koriste izvod ciljne funkcije;
— negradijentni metodi, koji ne koriste izvod ciljne funkcije.

Numericki metodi su od najveéeg znacaja, i oni ¢e biti opisani u ovoj
knjizi.

¢) Graficki metodi koriste graficko predstavljanje ciljne funkcije i ograni-
¢enja. Ekstremum ciljne funkcije se dobija iz grafa funkcije pretrazivanjem.
Ovi metodi se mogu primeniti samo na ciljne funkcije od jednog ili dva

upravljacka parametra. Medutim, graficki metodi se odlikuju velikom pre-
glednoséu.

d) Eksperimentalni metodi prognoziraju ekstremum na osnovu izvrSene
serije eksperimenata. Ovi metodi ne koriste matematicki model procesa.
Eksperimentalni metodi se koriste samo u slu¢aju kada se matematicki model
objekta pokaze neadekvatan.

Osnovne osobine koje bi algoritam optimizacije trebalo da zadovolji jesu:

— Konvergencija (dobijanje numerickog resenja za konacan broj koraka).
Pod konvergencijom metoda se podrazumeva njegova moguénost da ge-
nerise numericko reSenje koje se razlikuje od pocetnog za ne vise od zadate
tacnosti ciljne funkcije i (ili) upravljackih parametara.

— Brza konvergencija (dobijanje resenja za $to kra¢e vreme i sa $to manjim
brojem izra¢unavanja vrednosti ciljne funkcije).

— Sto manja alokacija memorije racunara.
— Ispunjenje svih ograni¢enja nametnutih zadatkom.

— Univerzalnost. Pozeljno je da algoritam bude primenljiv na sto vec¢u klasu
zadataka. Univerzalni metod za reSavanje svih tipova optimizacionih za-
dataka ne postoji.

16 Uvod

Ne moze se preporuciti ni jedinstveni kriterijum za prekid numerickih
metoda optimizacije. Jedan od kriterijuma koristi razliku vrednosti uprav-
ljackog parametra u dve uzastopne iteracije:

(k+1) _ 5 (k)
[[
PR

Ovaj kriterijum moze da prouzrokuje prevremeni prekid algoritma ako je
ciljna funkcija veoma osetljiva na ekstremum. U tom slu¢aju je norma
[x*+1D) — x(®)|| mali broj, dok se Q(z**1)) znatno razlikuje od Q(z*)).
Cesto se koristi kriterijum koji koristi vrednosti ciljne funkcije u dve uza-
stopne itercije:
Qx"*) — Q(xM)
Q(xk)
Medutim, ovaj kriterijum moze da prekine algoritam “daleko” od optimalne
tacke u slucaju kada je ciljna funkcija slabo osetljiva na ekstremum. U tom
slucaju je velicina ||x*+1) —x®) || mnogo veéa od razlike Q(xF+1)) —Q(x*))

< eo.

Veoma je rasprostranjen kriterijum za ocenu tacnosti lokalizacije ekstre-
muma koji se zasniva na zadatim minimalnim koracima hmin;, i=1,... ,n
kojima se menjaju upravljacki parametri. U ovom slucaju, algoritam se
prekida kada je ispunjen uslov

hi <hmin;, i=1,...,n.

Ako ciljna funkcija ima veliku osetljivost na ekstremum, dobijeno resenje
moze da bude nezadovoljavajuce.

Da bi se izbegao nedostatak prethodnih kriterijuma, uvodi se dvostruki
kriterijum:

< €3,

W 4 0@
(131) (hi < hming, i=1,...,m) i (1 _ u)

2Q

gde su QM 1 Q@ dve najblize vrednosti ciljne funkcije njenoj optimalnoj
vrednosti Q*. Kada se prvi od ova dva kriterijuma ispuni, proverava se drugi
kriterijum. Ako je i drugi kriterijum ispunjen, optimizacija se prekida. Ako
je prvi kriterijum ispunjen a drugi nije, proces optimizacije se nastavlja sve
do ispunjenja drugog kriterijuma. Medutim, kriterijum (1.3.1) nije pouz-
dan u slucaju Q* =~ 0. U tom slu¢aju se preporucuje sledeca kombinacija
kriterijuma:

A+l |,

(1.3.2) (h; < hming;, i=1,...,n) 5

)

Matematicka priprema 17

gde je
Ay =Q —QW, Ap=Q" —QW.
Kao jedan od kriterijuma za prekid pretrazivanja moze se uzeti i

— h; . .
hi = — < hmin;, i=1,...,n,
xr;

gde je xr* = {axr],... ,ar}} tekuca aproksimacija optimalne tacke x*.

1.4. Uslovi za postojanje ekstremuma

Na pocetku je navedeno nekoliko osnovnih pojmova.

Oznacimo sa @ : R™ — R ciljnu funkciju definisanu na prostoru Eukli-
dovih n-torki. Vektor-gradijent VQ(x) u n-dimenzionalnom prostoru ima n
komponenti, koje su jednake parcijalnim izvodima po svakom upravljackom
parametru u tacki x*), tj.

o (k)
(1.4.1) VQ(x®) = gradQ(x™) = {M} .
Ox; i=1,....n
Zbog jednostavnijeg oznacavanja usvaja se oznaka Q*) = Q(X(k)), tako da
se gradijent u tacki x(*) oznacava na sledeé¢i nacin:

o0 k) o0 k)
(1.4.1a) VQ(x<k>):{ ;il e ;i }

Hesseova matrica je kvadratna matrica parcijalnih izvoda drugog reda
funkcije Q(x) u tacki x(*):

82Q(k’) 32Q(k)
89012 e 81‘181‘71
(1.4.2) V2Q(z™) = H(x®) = :
82Q) 52Q*)
O0xy, 0z 81‘712

Gradijentni metodi prvog reda koriste osnovna svojstva gradijenta. Na-
jvaznije svojstvo gradijentnog vektora VQ(x) ciljne funkcije jeste da je on u
svakoj tacki x(®) = (:ng), .. ,x%k)) prostora normalan na povrs sa konstant-
nom vrednoséu Q(x) (to je linija u sluc¢aju dva upravljacka parametra), i
prolazi kroz zadatu tacku. Drugim re¢ima, gradijentni vektor u svakoj tacki
x(¥) je vektor koji ima smer najbrzeg rasta funkcije Q(x) pocev od tacke x(*).
Znaci, ako se korak nacini u smeru gradijenta funcije Q(x), sigurno ¢e biti u
pravcu najveéeg povecanja vrednosti funkcije Q(x), tj. prema maksimumu,
dok ¢e obrnuti korak sigurno biti prema minimumu.

18 Uvod

Definicija 1.4.1. Funkcija Q(x) je konveksna ako je

Q(Ax+ (1= N)y) <AQ(x)+ (1 - 2)Q(y)

za sve vektore x, y € R™ i za sve realne brojeve 0 < A < 1. Funkcija Q(x)
je konkavna ako je funkcija —Q(x) konveksna.

Definicija 1.4.2. Skup M je konveksan ako zajedno sa svakim parom ta-
caka koje pripadaju M sadrzi i pravolinijski segment koji spaja te dve tacke,
tj. ako vazi

xeM, yeM, 0<A<1=Xx+(1-ANyeM

za sve vektore x, y € R" i za sve realne brojeve 0 < A < 1.

S obzirom da je za svake dve tacke x, y € M
[X7y] = {)‘X+ (1 -)‘)y D AE [07 1]}

Ova definicija konveksnog skupa moze se iskazati na drugaciji nacin: skup M
je konveksan ako je ili prazan ili ako za svaka dva svoja elementa x,y € M,
skup M sadrzi ceo interval [x,y].

U slucaju x = y interval [x,y]| se svodi na jednoelementni skup {x}.
Dakle, jednoelementni skupovi su konveksni skupovi. Takode, ¢itav prostor
R™ je konveksan skup.

Propozicija 1.4.1. Presek bilo koje kolekcije konveksnih skupova je kon-
veksan skup. Unija konveksnih skupova ne mora da bude konveksan skup.

Definicija 1.4.3. Ciljna funkcija je neprekidna ako je u svakoj tacki njene
oblasti definisanosti ispunjen uslov

limOQ(x+AX) =Q(x).

Ax—

Definicija 1.4.4. Tacka x(9) je tacka lokalnog maksimuma (minimuma) ako
postoji okolina te tacke U(x(?)), tako da za svaki vektor x € U(x(?)) vazi

nejednakost Q(x) < Q(x©) (Q(x) > Q(x()).

Sledeca teorema daje potrebne uslove za ekstremnu tacku nelinearnog
bezuslovnog problema

(1.4.3) Minimizirati Q(x), xe€R"

Matematicka priprema 19

Teorema 1.4.1. Neka je x(©) tacka ekstremuma funkcije Q(x) i neka u tacki
x(0) postoje parcijalni izvodi funkcije Q. Tada je gradijent ciljne funkcije u
tacki x© jednak nuli:

(0)
VQ(X(O)) = grad@ <X(O)) = {%} =0,
‘ =1 n

4. ,
~ (9Q(x)

Komentar 1.4.1. Prema Teoremi 1.4.1, slededi uslovi su neophodni da tacka
x* bude tacka lokalnog maksimuma nelinearnog programa (1.4.3):

(1.4.4) Q(x) je diferencijabilna u tacki xx.
i
(1.4.5) VQ(x*) =0.

Dovoljni uslovi da tacka x* bude optimalna za program (1.4.3) jesu uslovi
(1.4.4), (1.4.5) i sledeéi uslov:

(1.4.6) V2Q(x*) > 0,

koji oznacava da je Hesseova matrica u tacki x* pozitivno definitna.
Dovoljni uslovi da tacka x* bude tacka lokalnog minimuma za problem
(1.4.3) jesu uslovi (1.4.4), (1.4.5) i uslov

(1.4.7) V2Q(x*) < 0,

tj. Hesseova matrica u tacki x* je negativno definitna.

Definicija 1.4.5. Tacka x* je izolovana tacka optimuma alo je, u nekoj
okolini te tacke, ona jedina tacka optimuma.

Ako je x* tacka lokalnog minimuma ili lokalnog maksimuma funcije Q(x),
tada je VQ(x*) = 0. Drugim rec¢ima, ako je x* lokalni optimum funkcije @,
tada je x* njena stacionarna tacka. Obrnuto tvrdenje ne vazi: ako je x*
stacionarna tcka funkcije @, tada x* ne mora da bude lokalni minimum te
funkcije [34].

20 Uvod

Teorema 1.4.2. [34] Neka je Q(x) dvaput neprekidno diferencijabilna fun-
kcija. Ako je u nekoj tacki x* ispunjeno VQ(x*) = 0 i ako je Hesseova
matrica V2Q(x*) pozitivno definitna, tada funkcija Q ima lokalni minimum
u tacki x*.

Ako je VQ(x*) = 0 i ako je V2Q(x*) negativno definitna, tada je tacka
x* lokalni maksimum funkcije Q).

Teorema 1.4.3. [34] Neka je Q(x) dvaput neprekidno diferencijabilna fun-
kcija. Ako je x* lokalni minimum funkcije Q(x), tada je VQ(x*) = 0 1
Hesseova matrica V2Q(x*) je pozitivno semidefinitna. Ako je x* lokalni
maksimum funkcije Q(x), tada je VQ(x*) = 0 i Hesseova matrica VZQ(x*)
negativno semidefinitna.

1.5. Konveksni konus i konveksni poliedar

Sa X,,, Y, oznacavaju se linearni prostori dimenzije n nad poljem realnih
brojeva. Elemente linearnog prostora X, oznacavamo sa a, b, v.

Definicija 1.5.1. Neka su v,d € X,, zadati elementi. Skup v = {v +1td:
t > 0} C X,, naziva se poluprava sa pocetkom u v i smerom koji je odreden sa
d. Poluprava je ocigledno konveksan skup. Unija neke familije polupravih
sa pocetkom u istom elementu v € X, naziva se konus sa vrhom u v, i
oznacava sa C(v). Konus u opstem slucaju nije konveksan skup.

Presek proizvoljne kolekcije konveksnih konusa sa vrhom u v jeste kon-
veksni konus sa vrhom u v.

Propozicija 1.5.1. Neka je Y C X,, podprostor prostora X,,, i neka je Y’
dimenzije m. Tada je skup a+Y, a € X,, linearna mnogostrukost dimenzije
m.

U optimizaciji se najces¢e koriste konveksni skupovi koji nastaju kao
presek poluprostora. Poluprostori i hiperravni su ¢esto koriSéeni pojmovi.
Kako je pojam funkcionala usko povezan sa pojmom hiperravni, to povlaci
da se zajedno sa prostorom X,, posmatra njegov dualni prostor linearnih
funkcionala X'. Elemente dualnog prostora oznacavamo sa a*, b*. Vred-
nost funkcionala y* na elementu x € X,, oznacava se sa y*(x).

Neka je H* linearni funkcional i ¢ realni broj. Od interesa su skupovi
H={xeX,: H(x) =c}.

U cilju jednostavnijeg izrazavanja, kaze se da je skup H definisan jedna¢inom
H*(x) = c.

Matematicka priprema 21

Propozicija 1.5.2. Neka je H* # 0* linearni funkcional na prostoru X, i
neka je ¢ realan broj. Skup H koji je definisan jednacinom H*(x) = ¢ jeste
linearna mnogostrukost dimenzije n — 1.

Propozicija 1.5.3. Neka je H hiperravan prostora X,. Tada postoji lin-
earni funkcional H* na X,, i realan broj ¢ takvi da je hiperravan H definisan
jednacinom H*(x) = c.

Uz pojam hiperravni tesno je povezan pojam poluprostora. Neka je H
hiperravan u X,, koja je odredena funkcionalom H* i realnim brojem c. Tada
se mogu posmatrati skupovi

H " ={xeX,: H(x)>¢c}, H ={x€X,: H*(x)<c}.

Jednostavnije se kaze da su poluprostori H' i H~ odredeni nejednac¢inama
H*(x) > ¢ i H*(x) < ¢, respektivno.

Poznato je da su skupovi HT i H~ konveksni. Dalje, oc¢igledno je H =
HT*NH~iX,=H"UH". Kaze se da su H' i H~ poluprostori odredeni
pomodcu hiperravni H.

Definicija 1.5.2. Neka su Hy,..., H,, hiperravni prostora X,, i neka su

H,...,H, odgovarajuc¢i poluprostori. Neprazan skup oblika
m

(1.5.1) K=|JH
i=1

naziva se konveksni poliedar.

Napomenimo da konveksnost skupa K sledi iz konveksnosti poluprostora

H{,... ,H,.
Svakoj hiperravni H; moze se pridruziti funkcional H i realan broj b;,
i =1,...,m. Izaberimo bazu {e;}, j=1,... ,n C X, i definiS§imo realne

brojeve a;; = H}(e;). Tada je

(152) H; == {X = (561,... ,$n) € Xn : Zaijxj S bl} .
i=1

Skup nejadnacina (1.5.2) moze se skraceno napisati u matri¢cnom obliku
Ax < b, gde je A matrica sa koeficijentima a;;, a b vektor sa koordinatama
bi,i=1,... m,5=1,... ,n.

22 Uvod

Definicija 1.5.3. Pretpostavimo da je konveksni poliedar K definisan jed-
nacinom (1.5.1). Element v € K naziva se vrh konveksnog poliedra K ako

postoji bar n hiperravni H; ... , H; medu hiperravnima Hy, ..., H,,, tako
da vazi
n
VvV = ﬂ Hlk
k=1

U definiciji vrha poliedra kaze se da je on definisan presekom bar n hiper-
ravni (a ne presekom tacno n hiperravni). U opstem slucaju, vrh se moze
nalaziti u preseku vise od n hiperravni.

Propozicija 1.5.4. Ako konveksni poliedar K poseduje vrh v, tada je rang
sistema (1.5.2) jednak n.
Svaki vrh v € K je odreden kao jedinstveno resenje podsistema

n
Zailjxj:bil, lzl,...,n
7j=1

n
ranga n, i tada se vrh v € K moze napisati u obliku v =) xje;, tj. vrh v
j=1
mma koordinate x+,... ,x,.
1z propozicije 1.5.3 se moze zakljuciti da konveksni poliedar ima konac¢no
mnogo vrhova.

2. SIMBOLICKA OPTIMIZACIJA

Ovo poglavlje je zamisljeno kao motivacija i osnova za primenu funkci-
onalnog stila programiranja u implementaciji optimizacionih metoda.

2.1. Globalno o simbolickoj implementaciji

U literaturi su poznati programi za implementaciju numerickih metoda
optimizacije, koji su napisani u proceduralnim programskim jezicima, na-
jvise u FORTRANu [13], [16], [22], [30], [37], [60], [70] kao i u jeziku C [24],
[36], [71]. U radovima [41], [48-53] izucavana je primena funkcionalnog
programskog jezika LISP u implementaciji optimizacionih metoda. U tim
radovima je pokazano da proceduralni programski jezici nisu sasvim pogodni
za implementaciju optimizacionih metoda, i da koriséenje funkcionalnog stila
programiranja povlac¢i odredene prednosti. U radu [52] izucavana je pri-
mena programskog paketa MATHEMATICA u implementaciji razli¢itih varijanti

Simbolicka optimizacija 23

metoda kaznenih funkcija za uslovnu optimizaciju. U radu [55] uvedena je
modifikacija Hooke-Jeevesovog metoda optimizacije i njegova simboli¢ka im-
plementacija u paketu MATHEMATICA. U radu [54] izucava se implementacija
simpleks metoda linearnog programiranja u MATHEMATICA. U ovoj knjizi ova
problematika ée biti izucavana detaljnije, na mnogo ve¢em broju metoda i
na vetem nivou apstrakcije.

S druge strane, u programskom paketu MATHEMATICA [68], [69] dostupno
je nekoliko funkcija za numericku optimizaciju. Standardna funkcija Find-
Minimum izracunava lokalni minimum zadate funkcije pocev od zadate tac-
ke, i slede¢i put najstrmijeg opadanja (steepest descent) te funkcije. Funkcija
FindMinimum se moze koristiti na jedan od slede¢ih nacina:

FindMinimum[f, {x, xo}] izracunati lokalni minimum funkcije f, po-
lazedi od tacke x = xg;

FindMinimum[f, {x, %0}, {y, yo}, -..] izracunati lokalni mini-
mum funkcije f nekoliko promenljivih;

FindMinimum[f, {x, {xo,x1}}] izracunati lokalni minimum koriste¢i
xo 1 1 za prve dve vrednosti promenljive x (ovaj oblik se mora koristiti ako
se ne mogu izracunati simbolicki izvodi funkcije f);

FindMinimum[f,{x, xstart,xmin,xmax}] izracunati lokalni minimum
polazeéi od startne tacke xstart, i zaustavljajuéi pretrazivanje kada x bilo
kad izade iz oblasti [xmin, xmax].

Zaklju¢ujemo da u funkciji FindMinimum ciljna funkcija moze da se se-
lektuje kao prvi parametar. Preostali parametri jesu promenljive koje su
upotrebljene u analitickom izrazu ciljne funkcije kao i njihove pocetne vred-
nosti. Prilikom implementacije optimizacionih metoda, u ovoj knjizi se
koristi nesto izmenjena reprezentacija ciljne funkcije. Preciznije, prvi ar-
gument takve unutrasnje forme je analiticki izraz ciljne funkcije, a drugi
argument predstavlja listu promenljivih koje su iskoriSéene u analitickom
izrazu ciljne funkcije. Eventualne pocetne vrednosti promenljivih sadrzane
su u tre¢em argumentu. Pojedini metodi optimizacije ne zahtevaju pozna-
vanje pocetne tacke. U tom slucaju, treé¢i argument nije neophodan. Zatim
sledi promenljiv broj argumenata, saglasno metodu optimizacije. Saglasno
prethodno napomenutom, u numerickoj bezuslovnoj optimizaciji u MATH-
EMATICA, moZe se koristiti jedino metod najstrmijeg pada! Vel je ranije
napomenuto da ne postoji univerzalni metod za bezuslovnu optimizaciju,
§to znad¢i da funkcija FindMinimum ne moza da se adekvatno upotrebi za
sve slucajeve. Osim toga, poseban je problem optimizacija nediferencijabil-
nih funkcija. Na kraju, samo se u izuzetnim sluc¢ajevima funkcijom Find-

24 Uvod

Minimum moze izracunati globalni minimum ciljne funkcije, sto opravdava
implementaciju metoda za globalnu optimizaciju.

Za uslovnu (linearnu i globalnu) optimizaciju u programskom paketu
MATHEMATICA na raspolaganju su funkcije LinearProgramming, Constrained-
Min i ConstrainedMaz [68], [69)].

Standardna funkcija LinearProgramming koristi se za reSavanje zadataka
linearnog programiranja. U ovoj funkciji je potrebno da se jednostavno
navede vektor koji predstavlja koeficijente ciljne funkcije kao i matrica koja
sadrzi koeficijente zadatih linearnih ogranicenja.

U izrazu LinearProgramming[c, m, b] argumenti funkcije su vektori b
i ¢ kao i matrica m. Ovom funkcijom se izracunava vektor x koji minimizira
ciljnu funkciju c.x prema ograni¢enjima m.x > b i x > 0. Napomenimo da
izraz a.b u programskom jeziku MATHEMATICA predstavlja skalarni proizvod
vektora a i b.

Funkcije ConstrainedMin i ConstrainedMax dozvoljavaju da se specifi-
cira linearna ciljna funkcija koja se minimizira ili maksimizira, kao i skup
linearnih ogranicenja zadatih nejednakostima i (ili) jednakostima. Uvek se
pretpostavlja da promenljive mogu da imaju jedino nenegativne vrednosti.
Preciznije, moze se rec¢i da je u MATHEMATICA implementirano jedino linearno
programiranje.

ConstrainedMin[f, {inequalities}, {x, y, ...}] nalazenje glo-
balnog minimuma za f, u regionu koji je specificiran sa inequalities;

ConstrainedMax[f, {inequalities}, {x, y, ...}] nalazenje glo-
balnog maksimuma za f, u regionu koji je specificiran sa inequalities.

Maksimalna preciznost ovih funkcija je 6 cifara.

Sve ove funkcije koje su ugradene u paketu MATHEMATICA predstavljaju
jedan nekompletan sistem u odnosu na veliki broj metoda optimizacije koji
su poznati.

Glavna namera ove knjige je da se opiSe implementacija metoda ne-
linearnog programiranja, koriste¢i moguénosti simbolickog procesiranja u
funkcionalnim programskim jezicima, pre svega MATHEMATICA, a zatim i u
jeziku LISP. Detalji u vezi programskog jezika MATHEMATICA mogu se naci u
[21], [68], [69] a u vezi programskog jezika LISP mogu se nadi u [12], [14], [44],
[61], [67].

MATHEMATICA je jedan od najuniverzalnijih programskih paketa, koji je
nasao primenu skoro u svim matematickim disciplinama. Medutim, s ob-
zirom na razvijenu numeriku i velike moguénosti u simbolickoj obradi po-

Simbolicka optimizacija 25

dataka, ¢ini se da MATHEMATICA nije u dovoljnoj meri iskoris¢ena u imple-
mentaciji metoda matematickog programiranja.

Takode, iako je LISP razvijen primarno kao alat za podrsku u razvoju
aplikacija u oblasti vestacke inteligencije, on je popularan i za programere
koji nisu direktno vezani za oblast vestacke inteligencije. Kao dijalekat LISPa,
SCHEME [47] je jedan od najsvestranijih programskih jezika dostupnih danas,
koristan za razli¢ite programske projekte, kako za simbolicko tako i za nu-
meric¢ko procesiranje.

Algoritmi u kojima se primenjuju tehnike simbolicke manipulacije po-
dacima u implementaciji optimizacionih metoda, koji su opisani u ovoj kn-
jizi, jesu osnova za primenu proizvoljnog funkcionalnog programskog jezika
ili proizvoljne tehnike funkcionalnog programiranja, u simbolickoj imple-
mentaciji optimizacionih metoda.

Ova knjiga je, koliko je autorima poznato, prvi pokusaj da se ujedine
moguénosti simbolickog i numerickog procesiranja u implementaciji opti-
mizacionih metoda.

Primarna namera u ovoj knjizi je da se poboljsa implementacija optimiza-
cionih metoda, koja je do sada bazirana na proceduralnim programskim
jezicima. Takode, knjiga je motivisana i odsustvom standardnih funkcija
u MATHEMATICA kojima se podrzavaju metodi nelinearnog programiranja.
Poboljsanja su pre svega izvedena primenom moguénosti simbolickog proce-
siranja u funkcionalnim programskim jezicima MATHEMATICA i PC SCHEME.
Naravno, sli¢ni principi bi vazili i za primenu drugih funkcionalnih program-
skih jezika. Medutim, ovde su preferirani programski jezici MATHEMATICA
i PC SCHEME, zbog njihovih moguénosti u simbolickom procesiranju kao i u
numerickoj obradi podataka. Glavna je namera da se pokaze kako adekvatan
programski jezik za implementaciju metoda nelinearne optimizacije nije FOR-
TRAN niti C, ve¢ jezik primenljiv podednako i u simbolickom procesiranju kao
i u numerickim izracunavanjima.

Dosadasnja je praksa da se programi kojima se implementiraju metodi
za reSavanje optimizacionih problema piSu u proceduralnim programskim
jezicima, najc¢eS¢e u FORTRANu. Ciljne funkcije se kod ovakvog pristupa re-
alizuju pomocéu potprograma. Potprogrami kojima se zadaju ciljne funkcije
moraju biti pra¢eni odgovarajué¢im potprogramima kojima se izra¢unavaju
njihovi parcijalni izvodi. Ovo predstavlja ograni¢enje i €ini na taj nacin
razvijene programe zatvorenim za nove ciljne funkcije. Primena ovako im-
plementairanih metoda na novu ciljnu funkciju zahteva intervenciju u kodu.
Izgradnja software-a, u proceduralnim programskim jezicima, kojim bi se

26 Uvod

omogucila upotreba proizvoljne funkcije i proizvoljnih ogranicenja, zahteva
implementaciju relativno slozenije leksicke i sintaksne analiza.

U narednim poglavljima se izucava ¢itav niz prednosti koje se dobijaju
primenom simbolickog procesiranja u implementaciji optimizacionih metoda.
To je jedan od razloga zbog kojih se namece potreba za postojanjem fleksi-
bilnog software-a koji bi bio namenjen ovoj uskospecijalizovanoj problem-
atici, a ciljna grupa korisnici za koje nije neophodno dobro poznavanje
programiranja. ReSenje je u postojanju programa koji ne bi zavisio od
konkretnog problema koji treba resiti, ve¢ od tipa, tj. klase kojoj problem
pripada s obzirom na metodologiju njegovog resavanja. Dakle, potrebno je
da se napise program u kome implementirani metod moze da reSava sve prob-
leme iz klase kojoj je namenjen, i to na §to jednostavniji nacin. U ovoj knjizi
ucinjen je pokusaj reSavanja ove problematike kroz uvodenje funkcionalnih
jezika u ovu oblast, tj. konkretno MATHEMATICAe i LISPa, kao predstavnika
ove grupe programskih jezika. U svakom poglavlju, koje je posveéeno odgo-
varajuc¢oj klasi problema, date su prednosti ovakvog pristupa u odnosu na
proceduralne programske jezike. Takode su dati primeri u kojima se resavaju
konkretni problemia koriS¢enjem razvijenog software-a.

Kao nedostatak ovakvog pristupa se moze navesti interpretatorska struk-
tura programskih jezika MATHEMATICA i LISP, Sto uti¢e na brzinu izvrSenja
definisanih funkcija. Takode, jedan od nedostataka simbolicke implementa-
cije jeste veéi utroSsak memorije u odnosu na klasican numericki pristup.

Treba istaéi da je oblast nelinearnog programiranja veoma Siroka i samo
delimi¢no pokrivena od strane matematickih programskih alata. Algorit-
mima i programima koji su razvijeni u ovoj knjizi, opisano stanje je u do-
broj meri korigovano. Sve prednosti napisanih programa u funkcionalnim
programskim jezicima u odnosu na programe dostupne u proceduralnim pro-
gramskim jezicima zasnovane su na simbolickom procesiranju i prirodnoj i
jednostavnoj manipulaciji funkcijama kao tipu podataka prve vrste.

2.2. PRIMENA FUNKCIONALA

U literaturi je poznat problem repetitivne primene funkcije kao argu-
menta u funkcionalnim programskim jezicima. U vezi ove problematike,
¢italac se upucuje na rad [56]. Interesantna je analiza ovakve repetitivne
primene funkcija, u sluc¢aju kada je funkcija u ulozi argumenta upravo neka
od funkcija kojom se implementiraju metodi optimizacije.

Mapping funkcije u SCHEME, kakve su map, apply i for—each mogu biti
primenjene na sve definisane funkcije za implementaciju metoda numericke

Simbolicka optimizacija 27

optimizacije. Neka < fc> oznacava bilo koju od funkcija kojom se im-
plementiraju neki od metoda optimizacije, i neka <args> oznacava listu
argumenata koja je potrebna za tu funkciju. Tada se moze pisati

(apply <fc> '(<args>)).

Ovakvim izrazom se funkcija fc primenjuje na svaki element iz liste argu-
menata args, a dobijeni rezultati se objedinjuju u listu.

Na primer, neka <fc¢> oznacava funkciju presek, kojom se implementira
metod zlatnog preseka. Tada se moze pisati

(apply presek

(= (x 2 (xx xxx)) (*x3x)) (X))
’(-1.0 1.0 0.01)

)

Funkcija map moze biti primenjena na funkciju <fc> na sledeéi naé¢in:

Korak 1. Definisati novu funkciju <fen>, pomocu izraza
(define (<fen> q) (<fe> <largs>)),

gde je g prvi element u <largs>, dok ostatak liste <largs>
sadrzi neke fiksirane vrednosti za druge parametre optimizacione
procedure fc.

Korak 2. Primeniti funkcional map na <fcn> kao i na nekoliko unutrasnjih
formi ciljne funkcije, koje su date u listi:

(map <fen> '(<function> ---)).

U ovom izrazu (< function> ---) oznacava listu ¢iji su elementi
oznaceni sa <function> i predstavljaju unutrasnje reprezentacije
selektovanih funkcija.

Primer 2.2.1. Sukscesivne primene funkcije presek mogu se postiéi na
slede¢i nacin [48]:

(define (presekmin q) (presek q -1.0 1.0 0.01))

(map presekmin ’ (((expt x 2)(x)) ((log (abs y))(y))))

Rezultat ovih izraza je lista koja sadrzi vrednosti dobijene posle uzastopne
primene metoda zlatnog preseka na funkcije 22 i In(|x|), koristeéi u oba
slucaja a = —1.0, b = 1.0, dmin = 0.01.

28 Uvod

Na isti nacina se mogu koristiti element maperi iz MATHEMATICA, na
primer Map (za jednoargumentne funkcije) i MapThread (za multiargu-
mentne funkcije).

Map[f, {a, b, ... }] primenjuje funkciju f na svaki element u listi,
dajuéi za rezultat {fla], f[b],...}. Funkcija Map se moze primeniti na
proizvoljne izraze, ne samo na liste, jer se liste u MATHEMATICA tretiraju
kao posebni izrazi ¢ija je glava funkcija List. Koristeéi head[z, y, ...| kao
prototip izraza u MATHEMATICA, moze se pisati

Map(f, head[z,y, ...]] = head[f[z], fly], ..].

Na primer, neka je sa fc oznacena bilo koja optimizaciona procedura, koja
za rezultat daje ekstremnu vrednost. Takode, neka su sa x, y,... oznacene
unutrasnje forme funkcija koje se optimiziraju. Tada izraz oblika

Map[fc, Plus[x,y,...]]

proizvodi rezultat fe(xz) + fe(y)---. Preciznije, rezultat je zbir izracunatih
ekstremnih vrednosti.

Ako je rezultat funkcije fc lista koja sadrzi ekstremnu tacku i ekstremnu
vrednost ciljne funkcije, tada se vrednost fc(z) + fe(y) -+ moze izra¢unati
izrazom

Map[Plus, Mapl[fc, First[x,y,...]11].
Sledi opis funkcije MapThread.

MapThread[f, {{a1, a2,...}, {b1, ba,... },...}] proizvodi rezul-
tujuéu listu {fla1, b1,...], flaz, ba,...], ...}

Izraz Thread [f [args]] je ekvivalentan izrazu MapThread[f ,args|.ee

I GLAVA

Bezuslovna optimizacija

Problematika razmatrana u ovoj glavi se odnosi na nalazenje tacke lo-
kalnog optimuma date ciljne funkcije pri ¢emu nisu zadata ograni¢enja. Po
poglavljima su navedene implementacije najvaznijih klasa metoda za opti-
mizaciju funkcija. U poglavlju 1.2 izucava se implementacija negradijentnih
metoda optimizacije za funkcije jedne promenljive. U poglavlju 1.3 opisana je
implementacija metoda viSsedimenzionalne negradijentne optimizacije. Pred-
met poglavlje 2.4 jeste implementacija metoda optimizacije koje koriste samo
prve parcijalne izvode ciljne funkcije, a u poglavlju 2.5 je opisana imple-
mentacija metoda koje koriste drugi izvod diferencijabilne ciljne funkcije
ili neku njegovu aproksimaciju. U poglavlju 2.6 se izucavaju metodi tzv.
promenljive metrike.

Optimizacija funkcija jedne promenljive je vazna koliko zbog njih samih,
toliko i zbog toga §to veliki broj problema optimizacije funkcija n promen-
ljivih sadrzi korake u kojima se reSava problem optimizacije sa samo jednom
promenljivom. U nekim metodima viSedimenzionalne optimizacije potrebna
je optimizacija po jednoj od promenljivih, dok se kod nekih metoda u ulozi
upravljackog parametra javlja neka druga veli¢ina, kao na primer duzina ko-
raka optimizacije kod gradijentnih metoda. U problemima jednodimenzione
optimizacije moze biti zadata jedna polazna tacka i dozvoljena oba smera
pretrazivanja, ili jedna polazna tacka i smer pretrazivanja, ili granice inter-
vala u okviru koga treba nac¢i optimalnu vrednost funkcije. Za svaku od
pomenutih varijanti problema implementirano je nekoliko efikasnih metoda
koji ili koriste izvode ciljne funkcije ili su formulisani tako da ne koriste
izvode ciljne funkcije.

Metodi bezuslovne optimizacije funkcija koje zavise od n promenljivih
koje ne koriste izvode ciljne funkcije u principu nisu brze metode, ali su
nasle primenu u optimizaciji nediferencijabilnih funkcija, pa ¢ak i funkcija
koje nisu neprekidne u celoj svojoj oblasti definisanosti.

Metodi bezuslovne optimizacije koji su bazirani na prvim parcijalnim
izvodima ciljne funkcije nazivaju se gradijentni metodi prvog reda. Kod
gradijentnih metoda prvog reda, polazeéi od startne tacke, ciljna funkcija

30 Bezuslovna optimizacija

se minimizira u smeru suprotnom od gradijenta ili se na osnovu gradijenata
iz poslednje dve aproksimacije optimalne tacke formira smer pretrazivanja.

Koriséenje drugog izvoda ciljne funkcije dovodi do brzih metoda. New-
tonov metod je klasi¢ni predstavnik ovakvih metoda. U ovom metodu je za
svaku aproksimaciju optimalne tacke potrebno izra¢unati inverznu Hesseovu
matricu. Poznata je “hirovitost” ovog metoda, a jedan od nacina da se ona
smanji je u modifikaciji gde se uvodi jednodimenziono pretrazivanje. Osim
toga, implementirani su i metodi kod kojih se inverzna Hesseova matrica
aproksimira odgovaraju¢im matricama.

1. NEGRADIJENTNI METODI

1.1. Prednosti simbolicke implementacije
negradijentnih metoda

Ovim metodima se izracunava ekstremna vrednost ciljne funckije bez
koriséenja njenih izvoda. DrugaCije se oni nazivaju metodi direktnog pre-
traZivanja. Zasnivaju se na uporedivanju izracunatih vrednosti ciljne funkci-
je, pri cemu je za svako poboljSanje vrednosti funkcije cilja neophodno poz-
navanje vrednosti funkcije u prethodnom koraku (ili prethodnim koracima).

Glavne prednosti koje proizilaze iz primene simbolicke obrade podataka
u metodima jednodimenzionalne optimizacije su:

(1U) Ciljna funkcija, koja nije definisana potprogramom, moze da bude
plasirana u listu parametara bilo koje funkcije kojom se implementira neki od
metoda optimizacije. U proceduralnim programskim jezicima, ciljna funk-
cija koja nije definisana potprogramom moze se koristiti kao parametar samo
uz prethodno obezbeden, relativno slozeni, proces leksicke i sintaksne anal-
ize. Ova osobina proizilazi iz moguénosti transformacije date ciljne funkcije
u pogodnu unutrasnju reprezentaciju. Ovakva unutrasnja forma se moze
koristiti u listi formalnih parametara.

(2U) Takode, objektivna funkcija moze da se konstruise u procesu op-
timizacije iz zadatih podataka, a potom da bude primenjena. Na primer,
ciljna funkcija jednog argumenta moze biti konstruisana pri simboli¢koj im-
plementaciji nekog od metoda visedimenzionalne optimizacije (kako negradi-
jentnog, tako i gradijentnog).

(3U) Za proizvoljnu jednoargumentnu funkciju f(x) moze se jednostavno
formirati nova funkcija F'(«), koja je definisana sa

F(a) =Q(z) = f(z,a), r,a € R,

Negradijentni metodi 31

gde je a zadati parametar. Preciznije, u ovom slucaju se zamenjuju uloge
argumenta i parametra. Pri tome je bitna pretpostavka da funkcija f nije
definisana potporogramom, ve¢ da je zadata kao formalni parametar, ili da
je konstruisana iz zadatih podataka.

Glavne prednosti simbolicke implementacije viSedimenzionalnih metoda
pretrazivanja jesu:

(1M) Moguénost da se ciljna funkcija zada u listi parametara, a ne pot-
programom (uopstenje od (1U)).

(2M) Moze se efikasno manipulisati sa listom argumenata ciljne funkcije.

(8M) Takode, sledeéi problem je nepogodan za implementaciju u proce-
duralnim programskim jezicima: Transformisati proizvoljnu funkciju od n

argumenata f(x1,...,2,) unovu funkciju, koja zavisi od jednog argumenta
0 0 0
F(xy) = f(:vg),...xé_)l,xk,x,(c_il,... ,x%o)),
gde su CCEU) (i=1,...,n, i # k) zadati realni brojevi.

Na pocetku su opisane prednosti (1U) i (1M). U programima koji su
napisani u proceduralnim programskim jezicima, bez leksicke i sintaksne
analize, mogu da se koriste jedino ciljne funkcije koje su definisane u potpro-
gramima (tzv. test funkcije) [2], [13], [36], [37], [60]. Takode, u gradijentnim
metodima, moraju se definisati potprogrami kojima se izra¢unavaju parci-
jalni izvodi ciljne funkcije.

Primer 1.1.1. Funkcija f(x,y,2) = (x — 1)+ (y — 1)® + (2 — 1)? zadata je
pomoc¢u potprograma [36]

float func(x)

float x[];

{ int i; float £=0.0;
for(i=1; i<=3; i++) f+=(x[i]-1.0)*(x[i]-1.0);
return f;

}

Parcijalni izvodi df[1], df[2] i df[3] ove funkcije odredeni su slede¢im pot-
programom [36]

void dfunc(x,df)
float x[], df[];
{ int i;
for(i=1; i<=3; i++) df[i]+=2.0%(x[i]-1.0);

32 Bezuslovna optimizacija

}

Ako se ciljna funkcija promeni, korisnik mora da promeni sve ove pot-
programe. Isti principi su koriséeni i u programskom jeziku FORTRAN [13],

[37).

U programskim jezicima FORTRAN ili C, moguée je koristiti ciljnu funkciju
u listi formalnih parametara, jedino uz prethodnu leksicku i sintaksnu analizu
unetog izraza.

S druge strane ovaj problem se jednostavno moze re$iti u funkcionalnim
programskim jezicima. Unutrasnju formu ciljne funkcije ¢ine analiticki izraz
ciljne funkcije i lista njenih argumenata. Neka je g- formalni parametar koji
predstavlja ciljnu funkciju u paketu MATHEMATICA, dok formalni parametar
var_ predstavlja listu argumenata funkcije Q. Ako je 20 lista koja pred-
stavlja datu tacku, tada se vrednost q0 = ¢[z0] moze izracunati na sledeéi
nacin:

q0=q;

Do[q0=q0/.var[[i]]1— >x0[[i]], {i,Length[var]}];

U jednodimenzionalnom slu¢aju, za zadati realan broj 0 moze se pisati:
q0=q; q0=q0/.var[[1]]— >x0;

U funkcijama kojima se implementiraju optimizacioni metodi u LISPu,
realna ciljna funkcija Q(x1,...x,) = Q(x) je predstavljena dvoelementnom
listom oblika

Q) (@))
Prvi element te liste jeste selektovana LISPovska aritmeticka funkcija, dok je
drugi argument lista njenih argumenata.

Ovakva unutrasnja reprezentacija, oznacena sa ¢, date ciljne funkcije,
moze da se transformiSe u odgovarajuéi lambda-izraz:

(set! fun (eval (list ’lambda (cadr q) (car q)))).

Ovakva lambda funkcija se moze primeniti na zadatu listu argumenata v:

(apply fun v)

u LISPu je

1
Primer 1.1.2. Unutrasnja forma funkcije f(z) = 223 — Oi(x)
a

sledeca lista:

((= (x 2 (expt x 3)) (/ (Qog x) (*x 4 a))) (x))

Negradijentni metodi 33

Odgovarajuc¢a unutrasnja forma u paketu MATHEMATICA je:
2%x~3-Log[x]/(4xa),{x} .

U ovom primeru se podrazumeva da je a zadati parametar. Medutim,
funkcija f se moze definisati i kao funkcija parametra a, pri ¢emu promenljiva
x preuzima ulogu parametra. To se moze jednostavno uciniti promenom liste
argumenata funkcije:

((= (x 2 (expt x 3)) (/ (log x) (*x 4 a))) (a))
ili
2*x"3-Log[x]/(4*a),{a} .

Ovim je opisana prednost (3U). Prednost (2U) ée biti koriséena kasnije
kod implementacije negradijentnih metoda visedimenzionalne optimizacije
(u vezi (83M)) ili kod implementacije gradijentnih metoda optimizacije (u
vezi sa (3G)). Prednost (3G) simbolicke implementacije bi¢e opisana kas-
nije.

1.2. Jednodimenzionalna negradijentna optimizacija

Zadata je ciljna funkcija @@ = Q(x) koja zavisi od jednog parametra x.
Problem je naéi lokalni maksimum (minimum) te funkcije, uz uslov nametnut
upravljackom parametru: a < x < b. Potrebno je naéi takvu vrednost
upravljackog parametra x* za koju ciljna funkcija ima optimalnu vrednost
unutar dozvoljene oblasti:

Q") = Qmax > Q(z), a<z<b a<z"<h

U matematickoj analizi, poznato je da se optimalna vrednost * moze naci
kao resenje jednacine Q'(z) = 0. Medutim, za slozene matematicke modele
i slozene transcendentne zavisnosti, analiticko reSenje ove jednacine je cesto
puta tesko nadi, ili je pak to nemoguce, pa je stoga neophodno koristiti neke
numericke metode kojima se ono priblizno odreduje. Osim toga, moze se
dogoditi da resenje jednacine Q’(z) = 0 ne bude tacka ekstremuma. Sve to
opravdava koris¢enje razli¢itih metoda optimizacije, u kojima se ekstremna
vrednost ne odreduje kao resenje jednacine Q'(x) = 0.

U ovoj glavi je opisana implementacija nekoliko metoda jednodimenzio-
nalne optimizacije u programskim jezicima MATHEMATICA i LISP. O metodima
jednodimenzionalne optimizacije moze se, na primer, naéi u [2], [13], [15],
[34], [35], [60], [73]. Ovi metodi su korisni zato $to se u mnogim metodima za

34 Bezuslovna optimizacija

reSavanje problema optimizacije sa n promenljivih, javljaju koraci u kojima
treba resiti problem optimizacije sa samo jednom promenljivom. Ovde su
prvo obradeni metodi kod kojih je poznat interval u kojem se nalazi opti-
malno reSenje, a koji uporeduju vrednosti funkcije i na taj nac¢in ocenjuju
interval u kojem se nalazi optimalno redenje. Sto se vise vrednosti uporeduje,
to ¢e interval biti manji i ta¢nost lokalizacije ekstremuma bolja. Zanimljivo je
da kod ovih metoda duzina intervala zavisi samo od broja uporedivanja, a ne
i od same funkcije. Metodi uporedivanja vrednosti funkcije ne zahtevaju da
funkcija bude diferencijabilna; Stavise, funkcija moze biti i prekidna. Vazno
je da funkcija bude unimodalna. Kazemo da je funkcija (jedne promenljive)
f unimodalna na intervalu I ako f ima minimum u nekoj tacki x* intervala
1 i ako za svake dve tacke x1 i zo intervala I, koje ispunjavaju uslov x1 < g
vazi:
z1 <wp <" povlaci f(z1) > f(22),

¥ <z <mg povladi f(z2) > f(x1).

U daljem tekstu, obradeni su takvi metodi jednodimenzionalne optimizacije
kod kojih je poznata polazna tacka, na osnovu koje se odreduje interval I
koji sadrzi tacku optimuma.

Metodi jednodimenzionalne negradijentne optimizacije mogu biti podel-
jeni u tri grupe.

A. Razli¢iti metodi skaniranja. Metodi skaniranja se zasnivaju na ispiti-
vanju ciljne funkcije u razli¢itim tackama oblasti [a, b], sve dok se ne dostigne
dovoljno mali interval A, u kome je lokalizovan ekstremum. U ovu grupu
metoda spadaju:

1. skeniranje sa konstantnim korakom;
2. skeniranje sa promenljivim korakom:;
3. Jednodimezioni simpleks metod;

4. Metod dihotomije;

5. Metod zlatnog preseka

B. Interpolacioni metodi. U slucaju kada pocetni interval [a,b] nije za-
dat, ekstremum moze da se pretrazuje interpolacionim i ekstrapolacionim
metodima. Osnovna ideja ovih metoda jeste definisanje polinomne aproksi-
macije drugog ili veéeg stepena tacnosti kojom se aproksimira ciljna funkcija.
Ova aproksimacija se formira na osnovu nekoliko izra¢unatih vrednosti ciljne
funkcije, kao 1 na osnovu tekuéeg maksimuma ngg)lx aproksimativnog poli-
noma.

Negradijentni metodi 35

Ako su za ciljnu funkciju Q(x) izracunate vrednosti Qu, Qm, Qp, koje
odgovaraju parametrima z(®, (™) £(®) respektivno, funkcija Q(z) moze
se aproksimirati algebarskim polinomom drugog stepena

Q(w) = by + bl(w — 1'(“)) + bll(x _ x(“))(m _ 1.(m)).
Koeficijenti by, by i by se izracunavaju po formulama

o _ Qm_Qa _ D

bo = Qa, bl—mv bll_m’
gde je

N Qb_Qa Qm_Qa

D= 2®) — p@) pm) — pla)”

Ekstremne vrednosti ciljne funkcije Q(z) se procenjuju pomocu Q'(m) =0,

odakle sleduje
1 b
* o k) T (p(a) (m)y _ 71
SR A 2(:6 + z'™) TR
Interpolacioni metodi, kako za jednodimenzionalo, tako i za viSedimen-
zionalno pretrazivanje ekstremuma razlikuju se prema nacinu generisanja
tacaka koje su neophodne za polinomnu aproksimaciju. U ovu grupu metoda
spadaju:
1. Metod Davies-Swann-Campey (DSC);

2. Powelov jednodimenzionalni metod.

C. Metodi aproksimacije polinomom. Ovi metodi se sastoje u sledecem:
Da bi se odredila tacka optimuma z* funkcije), ona se najpre aproksimira
polinomom p(x) na intervalu [a, b] koji sadrzi tacku z*. Zatim se odreduje
tacka optimuma zm polinoma p(z). Za pribliznu vrednost tacke x* moze se
uzeti tacka xm. Sada se interval [a,b] smanjuje, funkcija @ se aproksimira
novim polinomom i postupak se nastavlja sve dok se ne dostigne zeljena
tacnost. Za aproksimativne polinome obi¢no se uzimaju polinomi drugog i
treéeg reda. U tom smislu se moze govoriti o metodu parabole ili tzv. kubnom
metodu.

Iz ove grupe metoda izuc¢avacemo samo metod parabole.

1.2.1. SKENIRANJE SA KONSTANTNIM KORAKOM

U ovom metodu uzastopno se ispituje ciljna funkcija, poc¢ev od neke vred-
nosti a do vrednosti b upravljatkog parametra, sa fiksiranim korakom, koji

36 Bezuslovna optimizacija

se naziva korak skaniranja i oznacava sa A. Od dobijenih rezultata uzima
se najbolji. Na taj nacin je ektremna vrednost lokalizovana sa tacnoséu
Amin = £A. Tacnost lokalizacije ektrema je veca ako se smanjuje korak A.

Algoritam metoda skaniranja sa konstantnim korakom moze se opisati na
sledec¢i nacin:
Korak 1. Uneti vrednosti za granice optimizacije a, b i korak skaniranja A.

Korak 2. Staviti Qmax = @(a), u sluéaju maksimuma, odnosno Qui, =
Q(a), u slu¢aju minimuma.

Korak 3. Staviti X,,, = a, X = a.
Korak 4. X = X + A.

Korak 5. Ako je X > b za izlaz iz algoritma uzeti Qmax (0dnosno Qmuin) i
vrednost parametra X, za koji je optimalna vrednost dostignuta;
inace, predi na slede¢i korak.

Korak 6. Izracunati Q1 = Q(X). Ako je Q1 > Qmax, u slu¢aju maksimuma
staviti Qmax = @1, X;m = X. U slucaju minimuma, kada je
ispunjen uslov Q1 < Quin, staviti Quin = @1, X;n = X. Zatim
preéi na Korak 4.

Pogodnosti ovog metoda su: (a) laka algoritmizacija; (b) sa malim ko-
rakom A moze se pronaci globalni ekstrem.

Nedostatak metoda je veliki broj izrac¢unavanja vrednosti ciljne funkcije.

Metod se moze implementirati koristeéi jedino prednost (1U) simbolickog
pristupa.
skk[q-,pr-,a_,b_,del] :=
Block[{xm=x=a, q0, gm, izb, Lista={} },
izb = Input["1l za minimum, 2 za maksimum:"];
q0=q; qO0=q/.pr[[1]1]1->x; qm=N[q0];
Lista=Append[Lista,a,q0];
x=x+del;
While[N[x]<=D,
q0=q/.pr[[1]1]1->x;
If[(izb==1 && N[q0]l<N[gml) ||
(izb==2 && N[q0]>N[gm]),
xm=x; qm=N[q0]; Lista=Append[Lista,{xm,qm}];
15
x=x+del
1;
{xm,qgm, Lista}

Negradijentni metodi 37

]
Program se poziva sa skk|q, pr, a, b, del], pri cemu je:
q: ciljna funkcija;
pr: lista koja sadrzi parametar ciljne funkcije;
a, b: granice oblasti skaniranja;
del: korak skaniranja.

Argumenti g 1 pr predstavljaju tzv. unutrasnju formu ciljne funkcije.

Rezultati testiranja programa.
In[1]:=skk[N[Sin[x+3]],{x},-2,2,0.1] (*minimum*)

Out[1]={1.7, -0.999923, {{-0.8, 0.808496}, {-0.7, 0.745705}, {-0.6, 0.675463},
{-0.5, 0.598472}, {-0.4, 0.515501}, {-0.3, 0.42738}, {-0.2, 0.334988},
{-0.1, 0.239249}, {6.38378 1016 , 0.14112}, {0.1, 0.0415807}, {0.2, -0.0583741},
{0.3, -0.157746}, {0.4, -0.255541}, {0.5, -0.350783}, {0.6, -0.44252},
{0.7, -0.529836}, {0.8, -0.611858}, {0.9, -0.687766}, {1., -0.756802},
{1.1, -0.818277}, {1.2, -0.871576}, {1.3, -0.916166}, {1.4, -0.951602},
{1.5,-0.97753}, {1.6, -0.993691}, {1.7, -0.999923}} }
In[2]:= skk[N[Sin[x-1]]+x"2*N[Sqrt[Abs[x-1]]],{x},-1,1,0.2] (*maksimum®*)
Out[2]={-1., 0.504916, {{-1., 0.504916}}}
In[3]:= skk[N[Sin[x-1]]4+x"2*N[Sqrt[Abs[x-1]]],{x},-1,1,0.2] (*minimum™*)
Out[3]={-0.2, -0.888221, {{-1., 0.504916},{-0.8, -0.115198}, {-0.6, -0.544206},
{-0.4, -0.796135},{-0.2, -0.888221}}}

Implementacija u LISPu moze se opisati na slede¢i nacin. Ulazni parametri
imaju ranije definisani smisao. Rezultat je lista koja sadrzi ekstremnu tacku
ma u intervalu [a, b] i odgovarajuéu ekstremnu vrednost mf.

(define (fixst q a b del izb)
(let ((mf 1) (£ 1) (vr 1) (x 1) (mx 1))
; Transformisati formu ¢ u lambda-izraz f
(set! f (eval (list ’lambda (cadr q) (car g))))
; Naéi tacku ekstrema i ekstremnu vrednost
(set! mf (apply f a)) (set! mx a)
(do ((x (+ a del) (+ x del)))
((> x b) (newline) (list mx mf))
(set! wvr (apply f x))
(cond ((or (and (< vr mf) (equal izb ’m))
(and (> vr mf) (equal izb ’x)))
(set! mf vr) (set! mx x)

)))))

38 Bezuslovna optimizacija

1.2.2. SKENIRANJE SA PROMENLJIVIM KORAKOM

Ovaj algoritam u izvesnoj meri otklanja nedostatak skaniranja sa kon-
stantnim korakom. Za prvo skeniranje se uzima relativno veliki konstantni

korak AM i grubo se lokalizuje tacka ekstremuma x%). Zatim se izdvaja

podoblast x%) + AWM i u njoj se izvrsi skeniranje sa manjim korakom A(2),
Korak se smanjuje, sve dok se ne postigne zadata tacnost A i, Sto se postize
ispunjenjem uslova AR < A za neko k > 1.

Prednost ovog algoritma, u odnosu na konstantno skeniranje, jeste manji
broj izracunavanja vrednosti cijlne funkcije, dok je njegov nedostatak veca
verovatnoc¢a da se u slucaju ciljne funkcije sa velikim brojem ekstremuma
propusti globalni ekstremum zbog relativno velikog pocetnog koraka skani-
ranja.

spklq-,pr_,a_,b_,del_,delmin] :=
Block[{delta=del, x,xm, qO0,qm, dg=a,gg=b,izb, Lista={} },
izb = Input["l za mimimum, 2 za maksimum:"];
While[N[delta]>=N[delmin],
xm=x=N[dg]; qm=q/.pr[[1]]1->dg;
Lista=Append[Lista,{xm,qm}];
x = N[x+deltal;
While[x<=N[gg],
q0=q/.pr[[1]1]1->x;
If [(izb==1&&N[qO0I<N[gm]) ||
(izb==2&&N[q0]>N [qm]),
gm=N[q0] ; xm=N[x];
Lista=Append[Lista,{xm,qm}]
1
x=N[x+delta];
1;
dg=If [xm-delta < a, a, N[xm - deltall;
gg=1f [xm+delta > b, b, N[xm + deltall;
delta=N[delta/4];
1;
{xm,qm, Lista}
]
Formalni parametri programa spk|q, pr, a, b, del, delmin] imaju sledeéi smi-
sao:

q: ciljna funkcija;

pr: lista koja sadrzi argument funkcije cilja;

Negradijentni metodi 39

a, b: granice oblasti skaniranja;

del: pocetni korak skaniranja;

delmin: minimalna vrednost koraka skaniranja, tj. zahtevana ta¢nost.
Lokalna promenljiva izb odreduje izra¢unavanje minimuma ili maksimuma.
Rezultati testiranja programa.

In[1]:=spk[x"2-5x+8,{x},-4,4,0.1,0.02] (*minimum™*)

Out[1]={2.5, 1.75, {{-4., 44.}, {-3.9, 42.71}, {-3.8, 41.44}, {-3.7, 40.19}, {-3.6, 38.96},
{-3.5, 37.75}, {-3.4, 36.56}, {-3.3, 35.39}, {-3.2, 34.24}, {-3.1, 33.11},
{-3.,32.}, {-2.9, 30.91}, {-2.8, 29.84}, {-2.7, 28.79}, {-2.6, 27.76},

{-2.5, 26.75}, {-2.4, 25.76}, {-2.3, 24.79}, {-2.2, 23.84}, {-2.1, 22.91},
{-2.,22.}, {-1.9, 21.11}, {-1.8, 20.24}, {-1.7, 19.39}, {-1.6, 18.56},
{-1.5, 17.75}, {-1.4, 16.96}, {-1.3, 16.19}, {-1.2, 15.44}, {-1.1, 14.71},
{-1., 14.}, {-0.9, 13.31}, {-0.8, 12.64}, {-0.7, 11.99}, {-0.6, 11.36},
{-0.5, 10.75}, {-0.4, 10.16}, {-0.3, 9.59}, {-0.2, 9.04}, {-0.1, 8.51},
{2.41474 10715, 8.}, {0.1, 7.51}, {0.2, 7.04}, {0.3, 6.59}, {0.4, 6.16},
{0.5, 5.75}, {0.6, 5.36}, {0.7, 4.99}, {0.8, 4.64}, {0.9, 4.31}, {1., 4.},
{1.1, 3.71}, {1.2, 3.44}, {1.3, 3.19}, {1.4, 2.96}, {1.5, 2.75}, {1.6, 2.56},
{1.7,2.39}, {1.8, 2.24}, {1.9, 2.11}, {2, 2.}, {2.1, 1.91}, {2.2, 1.84},
{2.3, 1.79}, {2.4, 1.76}, {2.5, 1.75}, {2.4, 1.76}, {2.425, 1.75562},
{2.45, 1.7525}, {2.475, 1.75062}, {2.5, 1.75}}}
In[2]:= spk[N[sin [x-1]]4+x"2*N[Sqrt[Abs[x-1]]],{x},-4,4,0.1,0.02] (*minimum*)
Out[2]= {-0.175, -0.889493,
{{-4., 36.736}, {-3.9, 34.6512}, {-3.8, 32.6326}, {-3.7, 30.6791},
{-3.6, 28.7898}, {-3.5, 26.9637}, {-3.4, 25.2001}, {-3.3, 23.4982},
{-3.2, 21.8573}, {-3.1, 20.277}, {-3., 18.7568}, {-2.9, 17.2962}, {-2.8, 15.8948},
{-2.7, 14.5524}, {-2.6, 13.2687}, {-2.5, 12.0435}, {-2.4, 10.8765},
{-2.3, 9.76751}, {-2.2, 8.71643}, {-2.1, 7.72303}, {-2., 6.78708}, {-1.9, 5.90836},
{-1.8, 5.08657}, {-1.7, 4.32137}, {-1.6, 3.61237}, {-1.5, 2.95909},
{-1.4, 2.36096}, {-1.3, 1.81731}, {-1.2, 1.32737}, {-1.1, 0.890247},
{-1., 0.504916}, {-0.9, 0.170208}, {-0.8, -0.115198}, {-0.7, -0.352783},
{-0.6, -0.544206}, {-0.5, -0.691309}, {-0.4, -0.796135}, {-0.3, -0.860942},
{-0.2, -0.888221}, {-0.3, -0.860942}, {-0.275, -0.871178}, {-0.25, -0.879107},
{-0.225, -0.884774}, {-0.2, -0.888221}, {-0.175, -0.889493}} }

Odgovarajuéa funkcija u LISPu je:

(define (varst q a b delta dmin izb)
(let ((mx 1) (1 1) (1g 1))
; Korak 1. Prekinuti kada je korak manji od dmin
(do O
((< delta dmin) (newline) 1)
; Korak 2. Koristec¢i uniformno pretraZivanje
; na¢i listu [/, koja sadrzi

40 Bezuslovna optimizacija

; ekstremnu tacku i ekstremnu vrednost
(set! 1 (fixst q a b delta izb))
; Korak 3. Definisati novo uniformno pretraZivanje
(set! 1lg (/ (abs (- b a)) delta))
(set! mx (car 1))
(set! a (- mx delta)) (set! b (+ mx delta))
(set! delta (/ (abs (- b a)) 1lg)
)))

1.2.3. JEDNODIMENZIONALNI SIMPLEKS METOD

U nekim zadacima optimizacije moze se dogoditi da se izostavi donja i/ili
gornja granica optimizacije. U takvim slu¢ajevima preporucuje se jednodi-
menzionalni simpleks metod, koji se drugacije naziva skeniranje sa promen-
ljivim povratnim korakom. Takode, ovaj metod moze se koristi i u sluc¢aju
zadatih granica upravljackog parametra a < x < b, kao i za nalazenje tacke
ekstremuma ciljne funkcije koja zavisi od vise upravljackih parametara Q(x),
x = (z1,... ,2,), prema zadatom pravcu (sluc¢ajno, gradijentno i dr.). Pos-
toji nekoliko varijanti simpleks metoda.

Varijanta I. Pretrazivanje ekstremuma pocinje sa zadatom veli¢cinom
pocetnog koraka, koja se neprekidno smanjuje, ali moze i da menja smer.
Ova varijanta se koristi kada je zadata jedna od granica a ili b, ili obe granice
upravljackog parametra. Ovde je opisana varijanta u kojoj se koriste i donja
i gornja granica upravljackog parametra. skeniranje zapocinje sa relativno
velikim korakom A(®), a nastavlja se sve dok se ne dobije neuspesan rezultat
za ciljnu funkciju. U tom slu¢aju se menja smer skaniranja i uzima se korak
manje duzine A, Kada se ponovo dobije neuspesan rezultat menja se
smer i nastavlja skeniranje sa manjim korakom A(®). Iterativni proces se
nastavlja sve dok se ne dostigne zeljena tacnost A®) < A .., za neko k > 1.
Preporucuje se da svaki sledeéi korak bude ¢etiri puta manji od prethodnog,
tj. A+ = _AK) /4 Ovakav izbor koraka obezdeduje brzu konvergenciju.

Opisani postupak prikazan je na slici 1.2.1.
Ulazne velicine:

q-, pr_: ciljna funkcija i lista sa njenim parametrom;
a- ,b_: donjai gornja granica skaniranja.
korak_-: pocetni korak skaniranja;

mankor_ : minimalni korak skaniranja.

Lokalne promenljive:

Negradijentni metodi 41

b Q@

Sl 1.2.1

xt, ql: tekuéa tacka i vrednost ciljne funkcije;

xm, gm: tekuca optimalna tacka i optimalna vrednost;

izb: parametar koji odreduje lokalizaciju minimuma (izb = 1), odnosno
maksimuma (izb = 2).

Algoritam prve varijante simpleks metoda:

Korak 1. Pocetna vrednost tacke optimuma i pocetna ekstremna vrednost:
x=xm=a, gm = q(a);

Korak 2. x = x + del;

Korak 3. While ciklus, koji se prekida kada je ispunjen uslov |del| < dmin.
Unutar ciklusa treba izvrsiti sledeé¢e korake:
Korak 3.1. Ako je ©>b uzeti c=xm=>, gm=q(b), del =—del /4.
Ako je x <a uzeti r=xm=a, gm=q(a), del=—del /4.
Korak 3.2. Izracunati ¢l = g(x).
Ako je izb= 2 gl >qgm ili izb=1, ql < gm postaviti gm=ql,
rm=x.
Korak 3.3. Povecati = za tekudi korak: x = x + del.

Korak 4. Izlazne veli¢ine su xm i gm.

42 Bezuslovna optimizacija

simplexI[q_,pr_List,a_,b_,korak_,minkor_]:=
Block[{dg=a,gg=b, del=korak,dmin=minkor, xm=xt=a,

ql,qa,gb,qm,it=0, izb, Lista={} },

qa=N[q/.pr[[1]1->dgl; qb=Nlq/prl[[1]1]->ggl;

gm=qa; Lista=Append[Lista,{a,qa}];

xt=N[xt+del];

izb=Input["1 za minimum, 2 za maksimum "];

While[N[Abs[del]]>=dmin && it<100,
If [xt>b, xm=b; xt=b; qm=qb; del=N[-del/4]];
If [xt<a, xm=a; xt=a; qm=qa; del=N[-del/4]];
If [xt>=a && xt<=b,

ql=N[q/.pr[[11]->xt];

If [(izb==1&&ql<qm) | | (izb==2&&q1>qm),
xm=N[xt] ;qm=N[q1] ;
Lista=Append[Lista,{xm,qm}],
del=N[-del/4]

1;

1;
it+=1;
xt=N[xt+del]
1;
{N[xm], N[gm], Lista}
]

Odgovarajuéa funkcija u LISPu je:

(define (sim q a b delta dmin izb)
(let ((x 1) (xm 1) (ge 1) (fc 1) (qa 1) (gb 1) (ql 1))
; Korak 1. Izracunati pocetne vrednosti
(set! fc (eval (list ’lambda (cadr q) (car q))))
(set! x a) (set! =xm a)
(set! qa (apply fc a)) (set! qge qa)
(set! qgb (apply fc b))
(do O
((< (abs delta) dmin) (print dmin) (list xm qe))
(set! x (+ x delta))
(cond ((> x b)
(set! xm b) (set! x b) (set! qge gb)
(set! delta (- (/ delta 4.0)))

Negradijentni metodi 43

(< xa
(set! xm a) (set! x a) (set! qe qga)
(set! delta (- (/ delta 4.0)))
)
(t
(set! ql (apply fc x))
(cond ((or (and (< gl ge) (equal? izb ’m))
(and (> q1 ge) (equal? izb ’x))
)
(set! xm x) (set! qe ql)

)
(t (set! qe ql) (set! delta (- (/ delta 4.0)))
)EDEDEDEDEDEDED

Varijanta II. Pretrazivanje kod ove varijante zapocinje od izabrane
pocetne tacke z, sa zadatom veli¢inom pocetnog koraka (razmer simpleksa),
koji se uvecava sve dok se ne dode u oblast ekstremne tacke. Tada korak
pocinje da se smanjuje.

Ova varijanta se preporucuje kada oblast pretrazivanja nije definisana, tj.
u slucaju —oo < & < +00.

Ulazne velicine:

q- , pr-: ciljna funkcija i lista koja sadrzi parametar ciljne funkcije;
pocx_: pocetna tacka;

del=korak_ , dmin=minkor_: pocetna i minimalna vrednost koraka.

Lokalne promenljive:
n: indikator kojim se signalizira da je potrebna promena smera jos u
pocetnoj tacki;
id: indikator koji oznacava da je bar jednom dostignuta uspesna vred-
nost i da se korak ne moze povecavati;
xz, ql: tekuca tacka i vrednost ciljne funkcije;
xm, gm: optimalna tacka i optimalna vrednost;
izb: parametar koji odreduje lokalizaciju minimuma (izb = 1), odnosno
maksimuma (izb = 2).
Glavni koraci u algoritmu:
Korak 1. Pocetne vrednosti: in =0, id = 0, x = xm = 20, gm = ¢(x0);
Korak 2. x = x + del;

44 Bezuslovna optimizacija

Korak 3. While ciklus, koji se prekida kada je ispunjen uslov |del| < dmin.
Unutar ciklusa izvrsiti sledece korake:

Korak 3.1. Izracunati ¢l = q(z).
Ako jeizb =1, ql < gm ili izb = 2, q1 > gm, preéi na Korak
8.2, inace pred¢i na Korak 3.3.

Korak 3.2. Postaviti am = x, gm = ¢1, in = 1.
Ako je id = 0 staviti del = 2 x del, a zatim preéi na Korak
3.4.

Korak 3.3. Ako je in = 0 postaviti x = z0, del = —del, in = 1, inace
postaviti id = 1, del = —del/4; gm = q1.
Preéi na Korak 3.4.

Korak 3.4. Poveéati x: x = x + del.

Korak 4. Izlazne veli¢ine su xm i gm.

simplexII[q_,pr_,pocx_,korak ,minkor_]:=
Block [{x0=N[pocx],del=korak,dmin=minkor,in=id=it=0,qm,
x=xm=N [pocx] ,izb, Lista ={} },
izb=Input["Zelite 1i minimum(1) ili maksimum(2)?"];
qm=N[q/.pr[[1]]->pocx];
Lista=Append[Lista,{x0,qm}];
x=x+del;
While[Abs[del]>=dmin && it<100,
q1=N[q/.pr[[11]1->x];

If[(izb==1 && qi<gm) || (izb==2 && ql>qgm),
xm=x;qm=ql;in=1; If[id==0,del=del*2];
Lista=Append[Lista,{xm,qm}],

If [in==0,
x=x0; del=-del; in=1,
id=1; del=-del/4
]
15
x=x+del; it=it+1;
1;
If[id==0, Print["Funkcija nema ekstremum "]];
Return[{xm,qm, Lista}]
]

Rezultati testiranja programa.
In[1]:= simplexI[N[Sin[x-1]]+x"2*N[Sqrt[Abs[x-1]]],{x},-4,4,0.1,0.02]

Negradijentni metodi 45

Out[1]={-0.2, -0.888221, {{-4, 36.736}, {-3.9, 34.6512}, {-3.8, 32.6326}, {-3.7, 30.6791},
{-3.6, 28.7898}, {-3.5, 26.9637}, {-3.4, 25.2001}, {-3.3, 23.4982},
{-3.2, 21.8573}, {-3.1, 20.277}, {-3., 18.7568}, {-2.9, 17.2962}, {-2.8, 15.8948},
{-2.7, 14.5524}, {-2.6, 13.2687}, {-2.5, 12.0435}, {-2.4, 10.8765},
{-2.3, 9.76751}, {-2.2, 8.71643}, {-2.1, 7.72303}, {-2., 6.78708}, {-1.9, 5.90836},
{-1.8, 5.08657}, {-1.7, 4.32137}, {-1.6, 3.61237}, {-1.5, 2.95909},
{-1.4, 2.36096}, {-1.3, 1.81731}, {-1.2, 1.32737}, {-1.1, 0.890247},
{-1., 0.504916}, {-0.9, 0.170208}, {-0.8, -0.115198}, {-0.7, -0.352783},
{-0.6, -0.544206}, {-0.5, -0.691309}, {-0.4, -0.796135}, {-0.3, -0.860942},
{-0.2, -0.888221}}}

In[2]:=simplexI[N[Sin[x-1]]+x " 2*N[Sqrt[Abs[x-1]]],{x},-4,4,0.1,0.02] (*maksimum*)
Out[2]={-4., 36.736, {{-4, 36.736}}}
In[3]:= simplexII[N[Sin[x-1]]+x"2*N[Sqrt[Abs[x-1]]], {x},-4,0.1,0.02] (*minimum*)
Out[3]={-0.9, 0.170208, {{-4., 36.736}, {-3.9, 34.6512}, {-3.7, 30.6791},
{-3.3, 23.4982}, {-2.5, 12.0435}, {-0.9, 0.170208} }}
In[4]:=simplexII[N[Sin[x-1]]4+x"2*N[Sqrt[Abs[x-1]]], {x},-4,0.1,0.02] (*maksimum?®)
Funkcija nema ekstremum
Out[4]= {-6.33825 1028 | 1.0114 1072 , {{-4., 36.736}, {-4.1, 38.8881}, {-4.3, 43.3994},
{-4.7, 53.2898}, {-5.5, 76.9076}, {-7.1, 142.499}, {-10.3, 357.581},
{-16.7, 1174.24}, {-29.5, 4806.91}, {-55.1, 22740.1}, {-106.3, 117048.},
{-208.7, 630730.}, {-413.5, 3.48107 10° }, {-823.1, 1.94489 107 },
{-1642.3, 1.09336 108 }, {-3280.7, 6.1657 10% }, {-6557.5,3.4824 10° },
{-13111.1, 1.9684 10'° }, {-26218.3, 1.11306 10! }, {-52432.7, 6.2952 1011 },
{-104862., 3.56076 1012 }, {-209719., 2.01417 10%3 }, {-419434., 1.13936 104 },
{-838865., 6.44511 10 }, {-1.67773 106 , 3.64588 10'° },
{-3.35545 10% | 2.06241 106 }, {-6.71089 10% | 1.16668 107 }, ...
{-1.58456 10%% | 3.16063 1070 }, {-3.16913 1028 | 1.78792 107* },
{-6.33825 1028 | 1.0114 1072 }}}
In[5]:= simplexII[x~2,{x},-1,0.1,0.01] (*minimum®*)
Out[5]= {-0.3, 0.09, {{-1., 1.}, {-0.9, 0.81}, {-0.7,0.49}, {-0.3, 0.09}}}
In[6]:= simplexI[x~2,{x},-1,1,0.1,0.01] (*minimum®*)
Out[6]= {-1.38778 10~16,1.92593 10732 ,
{{-1, 1.}, {-0.9, 0.81}, {-0.8, 0.64}, {-0.7, 0.49}, {-0.6,0.36},
{-0.5, 0.25}, {-0.4, 0.16}, {-0.3, 0.09}, {-0.2, 0.04}, {-0.1, 0.01},
{-1.38778 1016 | 1.92593 1032 }}}
In[7]:= simplexII[Sin[x],{x}, -Pi,0.1,0.001] (*maksimum*)

Out[7]= {-4.64159, 0.997495, {{-3.14159, 0}, {-3.24159,0.0998334}, {-3.44159, 0.29552},
{-3.84159, 0.644218}, {-4.64159, 0.997495}}}

Iz poslednjeg primera se moze zakljuciti da se kod druge varijante simplex
metoda zbog uvetavanja koraka skaniranja, kod periodi¢nih i drugih funkcija
koje imaju vise ekstremnih vrednosti, ¢esto “preskace” najbliza ekstremna

46 Bezuslovna optimizacija

vrednost u odnosu na polaznu tacku, a locira se neka udaljenija. Zato se moze
desiti slucaj da se “preskoci” globalni ekstremum i da kao rezultat dobijemo
neki od lokalnih ekstremuma. Ovo je, evidentno, nedostatak druge varijante
simplex metoda.

S druge strane, druga varijanta simpleks metoda je bolja za ispitivanje
funkcija definisanih na ¢itavoj realnoj pravoj, jer se njome moze konstato-
vati nepostojanje zahtevane ekstremne vrednosti, dok se prvim varijantom
metoda za ekstremnu vrednost proglasava najveé¢a, odnosno najmanja vred-
nost funkcije na konkretnom intervalu.

1.2.4. METOD DIHOTOMIJE

Metod dihotomije (deljenja na pola) predstavlja posebno skeniranje unu-
tar intervala [a, b], pri ¢emu se u svakoj iteraciji oblast smanjuje dva puta, a
u nekim slucajevima cetiri puta. Najpre se izra¢una vrednost funkcije u pet
tacaka, koristeéi korak skaniranja A = (b — a)/4. Od pet dobijenih rezul-
tata odabira se najbolji, oznacen sa ¢gm i odgovaraju¢a vrednost xm. Ako
vrednost xm odgovara jednoj od granica a ili b, pretrazivanje se nastavlja
na 1/4 oblasti i izracunavaju se vrednosti ciljne funkcije u tri nove tacke.
Ako je dobijena vrednost unutar intervala [a,b], odbacuje se 1/2 oblasti
i izracunavaju se dve nove vrednosti ciljne funkcije. Izlazni kriterijum je
A < Apin, pri éemu je A, minimalna vrednost koraka.

Ulazne velicine:
q-, pr-: ciljna funkcija i lista sa parametrom ciljne funkcije;
a_, b_: granice skaniranja;

dmin_ : minimalna vrednost koraka.

Lokalne promenljive:

del: parametar koraka,
izb: parametar koji odreduje lokalizaciju minimuma, odnosno maksi-
muma.

x, qa, qb, ql, q2, ¢3: tekuca tacka i vrednosti ciljne funkcije;

Tm, qm: tekuca optimalna tacka i optimalna vrednost;
rmax, gmax: optimalna tacka i optimalna vrednost.
Algoritam:

Korak 1. Postaviti del = (b — a)/4, a zatim generisati Cetiri ekvidistantne
tacke u intervalu [a, b]:

Negradijentni metodi 47

qga = q(a), x1 = a+ 2 x del, q1 = q(x1),
22 =a+del, 2 = q(22), x3 = b — del, q¢3 = q(x3), qb = q(b).

Korak 2. U slu¢aju minimuma izra¢unati

gm=gmax =min{qa, ¢2, q1, ¢3, qb},

a za slucaj maksimuma izraCunati

gm = gmazr = max{qa, 42, q1, 3, gb}.

Korak 3. While ciklus, koji se prekida kada je ispunjen uslov |del| < dmin.
Unutar ciklusa izvrsiti sledece korake:

Korak 3.1. Ako je vrednost gm “bolja” od vrednosti gmax uraditi:

Korak 3.1.1.
A.

B.

Korak 3.1.2.

Selektovati sledece slucajeve:

Za gm=qa postaviti

b=1x2; gb=q2; x1 =a+ (b—a)/2; q1 = q(z1); xm = a;
Za gm=qb postaviti

a=xz3; ga=¢q3; rl=a+ (b —a)/2; ql=q(x1); xm="b;

. Za gm=ql postaviti

a=1x2; b=x3; gqa=q2; gb=¢q3; xm==x1;

. Za gqm=q2 postaviti

b=x1; gb=ql; x1=22; q1=q2; xMm=12;

. Za gqm=q3 postaviti

a=x1; ga=ql; x1=23; ql=q3; cm=23;

Postaviti:

del = (b — a)/4, 22 = a+del, q2 = q(22), 3 = b—del,
q3=q(x3).

Korak 3.2. Ako vrednost gm nije “bolja” od vrednosti gmaz uraditi:
a=a+del; b=">b—del; del = (b—a)/4;
2 =a+del; x3 =0b—del; x1 = a + 2 *x del;
ga = N[q/.pr[[1]]-> c]; ¢b = N[q/.pr[[1]]—> dJ;

ql=

Nlq/.pr([1]]-> =1]; ¢2=Nlq/.pr[[1]]— > x2];

q3=Nlg/.pr([i]]-> x3};
Korak 3.3. U slu¢aju minimuma izra¢unati ¢m = min{qa, ¢2, q1, ¢3, ¢b},
a za slucaj maksimuma gm =max{qa, ¢2, q1, ¢3, qb}.

Korak 4. Izlazne veli¢ine su xmax i gmax.

dih[q-,pr_-List,a_,b_,dmin] :=
Block[{c=a,d=b,qa,qb,q2,q3,x1=c+(d-c)/2,q1,
del=N[(d-c)/4],x2=c+del,x3=d-del,qm,xm,1,

Bezuslovna optimizacija

dm=dmin,izb,qmax,xmax, Lista ={} },
qa=N[q/.pr[[1]]1->c]; qb=N[q/.pr[[1]1]->d];
ql=N[q/.pr[[1]]1->x1]; q2=N[q/.pr[[1]]->x2];
q3=N[q/.pr[[1]11->x3];
izb=Input["1l za minimum, 2 za maksimum "J;
If [izb==2, gm=gmax=Max[qa,qb,ql,q2,93],
gm=gmax=Min[qa,qb,ql,q2,q3]
15
Which[gm==qa,xmax=c,
gqm==qgb ,xmax=d,
gqm==q1,xmax=x1,
gqm==q2,Xmax=x2,
True, xmax=x3
1;
Lista=Append[Lista, {xmax,qmax}];
While[Abs[del]>dm,
If [(izb==1&&N [qm] <N [gmax]) | | (izb==2&&N [qm] >N [gmax]),
gmax=qm;
Which[gm==qa, d=x2;gb=q2;xl=c+(d-c)/2;
ql=N[q/.pr[[1]1]1->x1] ;xmax=c,
gm==gb, c=x3;qa=q3;x1l=c+(d-c)/2;
ql=N[qg/.pr[[11]1->x1] ;xmax=d,
gm==ql, c=x2;d=x3;9a=q2;qb=q93;xmax=x1,
gqm==q2, d=x1;qb=ql;x1=x2;ql=q2;xmax=x2,
True, c=x1;qa=ql;x1=x3;ql=q3;xmax=x3
1;
Lista=Append[Lista, {xmax,qmax}];
del=(d-c)/4;
x2=c+del; q2=N[q/.pr[[1]1]1->x2];
x3=d-del; q3=N[q/.pr[[1]1]1->x3],
c=ctdel; d=d-del;
del=(d-c)/4;
x2=c+del; x3=d-del; xl1l=c+2x*del;
qa=N[q/.pr[[1]11->c]; qb=N[q/.pr[[1]1]1->d];
ql=N[q/.pr[[1]1]1->x1]; q2=N[q/.pr[[1]]->x2];
q3=N[q/.pr[[1]1]1->x3];
1;
If [izb==2,gm=Max[qa,qb,ql,q92,q3],
gm=Min[qa,qb,ql,q2,q93]

Negradijentni metodi 49

]
1;
{N[xmax] ,N[gmax], Lista}
]

Test primeri. Koriséene su sledece test funkcije:
ql[z] := x2, ¢2[z] ;== N[Sin[z — 1]] + 22 * N[Sqrt[Abs[z — 1]].
In[1]:= dih[Sin[x-1]4+x"2*Sqrt[Abs[x-1]],{x},-1,1,0.001] (*minimum®*)
Out[1]= {-0.172607, -0.889502, {{0, -0.841471}, {-0.21875,-0.885842},
{-0.148437, -0.888512}, {-0.183594, -0.889298}, 0.166016, -0.889428},
{-0.174805, -0.889495}, {-0.172607, -0.889502}}}
In[2]:=dih[Sin[x-1]4+x"2*Sqrt[Abs[x-1]],{x},-1,1,0.001] (*maksimum*)
Out[2]= {-1., 0.504916, {{-1, 0.504916}}}
In[3]:=dih[x"2,{x},-1,1,0.001] (*minimum¥*)

Out[3]= {0, 0, {{0, 0}}}
In[4]:= dih[x"2,{x},-1,1,0.001] (*maksimum *)

Out[d]= {-1,1,{{-1., 1.}}}

1.2.5. METOD ZLATNOG PRESEKA

Brza konvergencija u prethodnom metodu se moze dobiti ako se interval
[a, b] ne deli celim brojem, veé iracionalnim brojem. Jedan od takvih metoda
je metod zlatnog preseka. On je primenljiv i na nedifirencijabilne funkcije.
Pretpostavlja se da je funkcija Q(z) definisana i neprekidna na intervalu
[a,b] i da na tom intervalu ima samo jedan lokalni ekstremum. Algoritam se
sastoji u slede¢em.

Izracunava se vrednost funkcije na krajevima intervala kao i u dve un-
utrasnje tacke z1 1 . Izmedu Cetiri izracunate vrednosti izdvaja se ona
koja je najbolja, u smislu da je najveéa (kod maksimizacije) ili da je naj-
manja (kod minimizacije). Ako je najbolja vrednost u tacki x1, postupak se
nastavlja na intervalu [a, 3], a ako je najbolja vrednost u tacki zo, postupak
se nastavlja na intervalu [z1,b]. Neka je najbolja vrednost u ;. Na inter-
valu [a, z2] postavljamo: b = x5, T2 = x1, a zatim izra¢unavamo vrednost
funkcije u jednoj unutrasnjoj tacki, koju oznac¢avamo sa x1. Pogodno je da
se novom tackom xp sledeéi interval podeli slicno prethodnom intervalu:

b—x1 x1—a
b_ — j— = =
REEREE b—a b— 21 ¢

50 Bezuslovna optimizacija
Odavde se dobija slede¢i sistem linearnih jednacina:

b_xlzg(b_a)a
x1 —a=¢&0b—1x),

b—x9 =121 —a.

Resenje ovih jednacina je

2
r1=a+&b—a), x2=b—-&0b—a), = ~ 0, 381966.
1 §(b—a), = §(b—a) 3 Y-

To znaci da je u svakoj iteraciji
1 =a+¢(b—a), zo =b—¢(b—a).

U slucaju da je Q(z1) = Q(=z2), proces optimizacije se nastavlja na in-
tervalu [a,b] = [z1, 23], izraCunavanjem vrednosti funkcije u dve unutrasnje
tacke odredene prema poslednjoj formuli.

Proces se prekida kada se ispuni uslov | b — a | < €, gde je € unapred zadata
tacnost. U tom slucaju, ekstremna vrednost funkcije jednaka je Q((a+0b)/2).

Algoritam metoda zlatnog preseka:

Korak 1. Odrediti pocetni interval [a, b] i specificirati tacnost e.

Korak 2. Izracunati
rl=a+&b—a);x2=a+ (1 —-&)(b—a)=a+b— x1;
ql=q(z1); ¢2 = q(x2); d = b~ q;

Korak 3. While ciklus, koji se prekida u slucaju d < e. Unutar ciklusa
izvrsiti sledeée korake:

Korak 3.1. Ako je ql = ¢2 postaviti d = 22 — z1.
Moguca su sledeca dva slucaja:
Al. Za d > e postaviti
a=zl; b=22; zl=a+&(b—a); x22—a+b— x1;
ql=q(x1); 2 = q(22); d = b — a3
A2. Za d < e postaviti d = d/2; xm = z1 + d; gm = q(zm)
Korak 3.2. Ako je ql # 2 izra¢unati d = (1 — &)(b — a).

Moguca su dva slucaja:

Negradijentni metodi 51

B1l. Ako je vrednost ¢2 “bolja” od vrednosti ¢l ispitati sledeée
slucajeve:

C1. Ako je d > e izracunati
a=zl; x1=22; q1=q2; 22=(1—&)(b—a); q2 = q(x2);
C2. Ako je d < e postaviti zm=x2; gm=q2;
B2. Ako je vrednost g2 “losija” od ¢l ispitati slucajeve:
D1. Ako je d > e izracunati
b=x2; 22=21; 2=ql; zl=a+&(b—a); ¢l = q(x1);
D2. Ako je d < e postaviti zm=xz1; gm=ql;

Korak 4. Rezultat je lista sa vrednostima xzm i gm.

Sledi implementacija u paketu MATHEMATICA.

zlatnilq-,pr_,dg-,gg-,e.]:=
Block[{a=dg,b=gg,x1,%x2,91,92,ksi,xm,qm,d,izb},
izb=Input["1l za min 2 za max "];
ksi=N[2/(3+Sqrt[5])];
xl=a+ksi*(b-a); x2=a+b-x1;
ql=N[q/.pr[[1]1]1->x1]; q2=N[q/.pr[[1]]->x2];
Print[{a,x1,x2,b},{ql,92}];
d=Abs[b-a];
While[d>e,
If [q1==q2,
d=x2-x1;
If [d>e,
a=x1; b=x2;
xl=a+ksix(b-a); x2=a+b-x1;
ql=N[q/.pr[[1]]1->x1]; q2=N[q/.pr[[1]]->x2],
d=d/2; xm=x1+d; qm=N[q/.pr[[1]1]->xm]
]
1
If [ql=!=q2,
d=(1-ksi)*(b-a);
If[(q2>ql && izb==2) || (g2<ql && izb==1),
If[d>e,
a=x1; x1=x2; ql=q2;
x2=a+b-x1; q2=N[q/.pr[[1]1]1->x2],
xm=x2; qm=q2
1,

52 Bezuslovna optimizacija

If[d>e,
b=x2; x2=x1; q2=q1l;
x1=a+ksi*(b-a); ql1=N[q/.pr[[1]]1->x1],
xm=x1; gm=ql

]
1
Print[{a,x1,x2,b},{ql,q2}];
1;
Return[{xm,qm}]
]

Test primeri.

In[1]:= zlatni[x"2-1,{x},-5,5,0.01]

1 za min 2 za max 1

{-5, -1.18034, 1.18034, 5}{0.393202, 0.393202}

{-1.18034, -0.27864, 0.27864, 1.18034}{-0.922359, -0.922359}

{-0.27864, -0.0657781, 0.0657781, 0.27864}{-0.995673, -0.995673}
{-0.0657781, -0.0155281, 0.0155281, 0.0657781}{-0.999759, -0.999759}
{-0.0155281, -0.00366569, 0.00366569, 0.0155281 }{-0.999987, -0.999987}
{-0.0155281, -0.00366569, 0.00366569, 0.0155281}{-0.999987, -0.999987}

Out[1]= {0., -1.}

Odgovarajuca funkcija u LISPu je napisana za slu¢aj minimizacije.

(define (goldsec q a b dmin)
(let ((f1 1) (£2 1) (delta 1) (x1 1) (x2 1) (xm 1) (gm 1)
(f 1) (q1 1) (g2 1) (ga 1) (gb 1))
; Korak 1. Definisati Fibonaccijeve brojeve f1, fo
; 1 ciljnu funkciju f
(set! f1 (/ (- 3.0 (sqrt 5.0)) 2.0))
(set! £2 (- 1.0 £1))
(set! £ (eval (list ’lambda (cadr q) (car q))))
; Korak 2. PoZetno razbijanje intervala [a,b]
(set! x1 (+ a (x f1 (- b a))))
(set! x2 (+ a (x £2 (- b a))))
(set! ql1 (apply f x1)) (set! g2 (apply f x2))
(set! qa (apply f a)) (set! gb (apply f b))
; Korak 8. Ciklus
(do O
((< delta dmin) (list xm gqm delta))
(cond ((= q1 q2) ; case f(x1) = f(x2)

Negradijentni metodi 53

(set! delta (- x2 x1))
(cond ((> delta dmin)
(set! a x1) (set! b x2)
(set! x1 (+ a (x f1 (- b a))))
(set! x2 (+ a (x £2 (- b a))))
(set! q1l (apply f x1))
(set! q2 (apply f x2))
(set! qa (apply f a))
(set! gb (apply f b))
)
(t (set! delta (/ delta 2.0))
(set! xm (+ delta x1)) (set! qm (apply f xm))
)))
(t
(set! delta (x £f2 (- b a)))
(cond ((< g2 q1) ; case f(x2) < f(x2)
(cond ((> delta dmin)
(set! a x1) (set! x1 x2) (set! ql g2)
(set! x2 (+ a (x £2 (- b a))))
(set! q2 (apply f x2))

)
(t (set! =xm x1) (set! gm ql)
)))
(t (cond ((> delta dmin) ; case f(x2) > f(z1)

(set! Db x2)
(set! x2 x1) (set! g2 ql)
(set! x1 (+ a (x f1 (- b a))))
(set! ql (apply f x1))
)
(t (set! xm x1) (set! qgm ql)
)ADEDEDEDEDEDEDED

Rezultati testiranja programa. Primenjujuéi metod zlatnog preseka sa minimalnim
korakom 1075 na ciljnu funkciju — 2z* — 3z, dobija se sledeéa lista apscisa:

(@ =0.721114411901743 =z = 0.72112037276273
x2 = 0.721124056777422 b = 0.721130017638408).

Rezultujuéi par koji sadrzi optimalnu vrednost argumenta i pripadajuéu vrednost ciljne
funkcije, i dobijen je u 24. koraku:

(0.72112037276273 — 1.62253076647434).

54 Bezuslovna optimizacija

Vrednost poslednjeg koraka d je 0.964487567840431 + 10~5. Odgovarajuéi rezultat u [73]
je dobijen u 24. koraku:

(0.7211207 0.7210795 0.7211866 0.7211371)

Medutim, moze se dobiti numericki rezultat sa vetom ta¢noséu od odgovarajuéeg u [71].
Na primer, koriste¢i metod zlatnog preseka sa vrednodéu minimalnog koraka 10~8, dobija
se slededi rezultat:

(0.721124769617705 — 1.62253076659583).

Najveéa preciznost u SCHEME je 10715, Metod zlatnog preseka, primenjen sa vrednoséu
minimalnog koraka 10712 daje rezultat u 56 koraka. Poslednjih pet iteracija generise
sledece rezultate:

(a =0.72112478450948 x1 = 0.721124784509484
x2 = 0.721124784509486 b = 0.72112478450949)
(a =0.72112478450948 1 = 0.721124784509482
xo = 0.721124784509484 b = 0.721124784509486)
(a = 0.721124784509482 x; = 0.721124784509484
x2 = 0.721124784509485 b = 0.721124784509486)
(a = 0.721124784509483 x1 = 0.721124784509484
xo = 0.721124784509484 b = 0.721124784509485).

Poslednja vrednost koraka je jednaka 0.960617790035482 10~1%, a poslednja aproksi-
macija lokalnog minimuma je

* & 156 = 0.721124784509484.

1.2.6. METOD DAVIES-SWANN-CAMPEY (DSC)

Pri izvrsenju DSC algoritma povecéava se veli¢ina koraka, sve dok se ne
prevazide ekstremum, a zatim se definiSe kvadratna interpolacija na osnovu
dobijenih rezultata.

Algoritam ovog metoda (u slucaju maksimuma) je sledeéi:

Korak 1. Izabrati pocetnu tacku z(®) € R, pocetni korak A(® i minimalni
korak Apin.

Korak 2. Izracunati Q(©) = Q(z(®).

Korak 3. Tzracunati Q) = Q(z()) = Q(2© + AMW) sa A = A0,
Korak 4. Ako je QM) > QO preéi na Korak 7.

Korak 5. Ako je QW) <Q© postaviti A® =—AO) i yratiti se na Korak 3.

Negradijentni metodi 55

Korak 6. Ako pocev od z(©), koristeéi £A©) nije dobijen zadovoljavajuéi
rezultat iskoristiti tri izrac¢unate vrednosti ciljne funkcije Q(z) za
kvadratnu interpolaciju i pre¢i na Korak 13, inace preéi na sledeéi
korak.

Korak 7. Udvostruciti korak
AFFD — oA (k)

Korak 8. Izracunati
2D — (k) A(k+1)7 Q(kH) _ Q(x(k“)).

Korak 9. Ako je Q1) > Q) algoritam produziti od Koraka 7, inace od
Koraka 10.

Q)

Sl 1.2.2

Korak 10. Izracunati vrednost funkcije cilja Q(z) u suprotnom pravcu od
£+ na rastojanju jednakom polovini tekuéeg koraka:

Ak+1)

L(B+2) — et 1) _ —.

Q(k'+2) — Q(.Z'(k+2))

56 Bezuslovna optimizacija

Korak 11. Na osnovu Cetiri vrednosti ciljne funkcije Q(z), koje su izra¢unate
ekvidistantno sa jednakim korakom upravljackog parametra x
(oznacimo ih redom sa zF=1) z(*) = z(k+2) 5 2(k+1)) - odbacuje
se D ili (=1 zavisno od polozaja maksimalne vrednosti
funkcije Q(z).

Korak 12. Izracunati vrednost sledec¢eg koraka
Ak+1)

Tr = .

2

Korak 13. Zatri vrednosti ciljne funkcije i odgovarajuée vrednosti upravljac-
kog parametra x koristimo sledeée oznake:

Qm =Q™), Qu=0Q='"), Qy=Q="),

gde je ™) centralna tacka, dok su tacke x, i x; odredene sa
2@ =2m Az i 2® =2(m 4 Ag.
Korak 14. Prema kvadratnoj interpolaciji tekuée priblizavanje maksimumu

:Ur(na)m definisano je izrazom

Az(Qa — Qp)
(k) _ .(m)
Fmax v * Q(Qa - 2Qm + Qb) .

Korak 15. Ako je |Az| < Apin trazenje se zavrsava, izracunava se Q(ngg,x)
i edituju vrednosti za z* = ngg)lx iQ(x*).
Korak 16. Ako je |Az|> Apin smanjiti korak L puta (1 < L < 4):

A0)

A0) —
L

Korak 17. Uzeti (0 = ngg)lx 1 vratiti se na Korak 2.

Prednost DSK algoritma je u tome $to ne zahteva granice za upravljacki
parametar u toku pretrazivanja.

Nedostatak algoritma je u velikom broju izracunavanja vrednosti ciljne
funkcije dok se ne ude u oblast maksimuma, naroc¢ito kada je pocetna tacka
z(© daleko od maksimuma, a pocetni korak A(©) mali.

Dsk[q_,pr List,x01_,del0_,delmin]:=
Block[{xO=X01,qO,ql,q2,q3,x1,x2,x3,de11,dx=10,kaax,

Negradijentni metodi

gmax,xm,xa,xb,qm,qa,qb,d=del0,it=0,izb, Lista={} },

izb=Input["1 za minimum, 2 za maksimum "J;
(* Korak 15 *)
While[Abs[dx]>=delmin && it<100,
(* Korak 2 *)
q0=N[q/.pr[[1]11->x0];
Lista=Append[Lista,{x0,q0}];
(* Korak 3 *)
x1=x0+d; q1=N[q/.pr[[1]1]->x1];
(* Korak 5 *)
If [(izb==2&&q0>ql) || (izb==1&&q0<ql),
d=-d; x2=x0+d; q2=N[q/.pr[[1]1]1->x2];
(* Korak 6 *)
If [(izb==2&&q0>q2) | | (izb==1&&q0<q2),
xa=x2; xm=x0; xb=x1,
ql=q2; x1=x2
1
1
(* Korak 4 x*)
If [(izb==2&&q1>q0) || (izb==1&&q1<q0),
dell=2xd;
x2=x1+dell; q2=N[q/.pr[[1]1]1->x2];
(* Koraci 7,8,9 *)

While [((izb==2&&q2>ql) | | (izb==1&&q2<q1))

&& (it<100),
x0=x1; q0=ql;
x1=x2; ql=q2;
d=dell; dell=2x*d;

x2=x1+dell; q2=N[q/.pr[[1]1]->x2];

it+=1
15
(* Korak 10 *)
x3=x2-del1/2; q3=N[q/.pr[[1]]->x3];
(* Korak 11 *)
If [(izb==2&&q3>ql) || (izb==1&&q3<ql),
x0=x1; q0=ql; x1=x3; ql=q3,
x2=x3; q2=q3
15
(* Korak 12 *)

57

58 Bezuslovna optimizacija

dx=4/2;
xm=x1; xa=x0; xb=x2;
1;
(* Korak 13 *)
qa=N[q/.pr[[1]]->xal; gm=N[q/.pr[[1]]->xm];
gb=N[q/.pr[[1]]1->xb];
(* Korak 14 *)
xkmax=xm+dx* (qa-gb) / (2* (qa-2*qm+qgb)) ;
gmax=N[q/.pr[[1]]->xkmax];
Lista=Append[Lista, {xkmax,qmax}];
(* Korak 16 *)
d /=4;
(* Korak 17 *)
x0=xkmax;
it+=1;
13
gmax=N[q/.pr[[1]]->xkmax];
Return[{xkmax,qmax, Lista}]
]

Odgovarajuéa funkcija u LISPu, za slucaj maksimuma ciljne funkcije ima
oblik:

(define (dsk q x dxmin)
; Priprema: Deklarisanje promenljivih i ciljne funkcije f
(let ((fun Q) %0 x) (x1 x) (x2 x) (x3 x) (xmin x) (xa x)
(xb x) (xc x) (£x0 1) (£x1 1) (£x2 1) (£x3 1) (fxmin 1)
(fxa x) (£fxb x) (fxc x) (delta 0.001) (dx 0.001))
(set! fun (eval (list ’lambda (cadr q) (car q))))
; Glavna petlja iteracije:
(do Q)
((< (abs dx) dxmin) (list xmin fxmin))
(set! dx delta) (set! £x0 (apply fun x0))
(set! x1 (+ x0 dx)) (set! f£fx1 (apply fun x1))
(set! dx (if (> fx1 £x0) (- 0.0 dx) dx))
(set! x1 (+ x0 dx)) (set! f£fx1 (apply fun x1))
(set! dx (x 2.0 dx))
(set! x2 (+ x1 dx)) (set! f£x2 (apply fun x2))
(do O
(& £x2 £fx1) O)

)))

Negradijentni metodi 59

(set! x0 x1) (set! f£x0 fx1)
(set! x1 x2) (set! fx1 fx2)
(set! dx (x 2.0 dx))
(set! x2 (+ x1 dx)) (set! £x2 (apply fun x2)))
(set! x3 (/ (+ x1 x2) 2.0))
(set! f£x3 (apply fun x3))
(set! dx (/ dx 2.0))
(if (> £x0 fx2)
(begin
(set! xa x1) (set! fxa fx1)
(set! xb x3) (set! fxb fx3)
(set! =xc x2) (set! fxc fx2))
(begin
(set! xa x0) (set! fxa fx0)
(set! xb x1) (set! fxb fx1)
(set! =xc x3) (set! fxc fx3)))
(set! =xmin (+ xb
(/ (x dx (- fxa fxc))
(* 2.0 (- (+ fxa fxc) (x 2.0 fxb))))))
(set! fxmin (apply fun xmin))
(set! x0 (if (< fxmin fxb) xmin xb))
(set! delta (abs (/ delta 2.)))

1.2.7. JEDNODIMENZIONALNI POWELOV METOD

U metodu Powela kvadratna aproksimacija se vrsi na osnovu rezultata
dobijenih u prva tri koraka. U slu¢aju maksimuma, algoritam ovog metoda
se moze opisati na slede¢i nacin.

Korak 1

Korak 2.
Korak 3.
Korak 4.

Korak 5.
Korak 6.
Korak 7.

Izabrati pocetnu tacku z(9), pocetni korak A(® i minimalni korak
Amnin-

Izracunati Q) = Q(z(?).

Izracunati Q) = Q(z™M) = Q(z(® + A©).

Ako je QW) > QO izracunati z? = z(M + 2A© i pred na
Korak 6.

Ako je QM) < QO staviti A = —A©) i yratiti se na Korak 3.
Izracunava se Q) = Q(z(?).

Izrac¢unava se vrednost upravljackog parametra, koja odreduje pri-
bliznu vrednost ekstremuma funkcije Q(x), a koja se dobija na

60 Bezuslovna optimizacija

osnovu izraza

(1.2.1) z®) = o5

pri ¢emu su
A= [(x(l))2 _ (x(2))2}Q(0) + [(x(2))2 _ (x(O))2]Q(1)
+[@) - @),

B = (2 — 22)QO 1 (2 — 20)0M) 4 (3 _ z(1)Q@)

Korak 8. U skupu {z(@, 21 23} odreduje se vrednost z = z*) za koju
ciljna funkcija ima maksimalnu vrednost, tj.

Q(:n(t)) — max{Q(O), Q(l), Q(Q)}‘

Korak 9. Pretrazivanje prekinuti ako je ispunjen uslov

(1.2.2) AW =12k — O] < A,
Tada se izra¢unava vrednost ciljne funkcije Quax = Q(nge)lx) i

edituju vrednosti: Qumax, T* = nggx, A

Ako uslov nije ispunjen, produziti od Koraka 10.

Korak 10. Izracunava se Q(ngg)lx) i iz skupa {z(© 21 2@} se iskljucuje

tacka u kojoj ciljna funkcija ima minimalnu vrednost. Iskljucena
tacka se zamenjuje sa :UI(IQX, a algoritam se nastavlja od Koraka 7.

Nedostatak algoritma je neophodnost da imenilac izraza (1.2.1) bude raz-
li¢it od nule.

Naveden je listing funkcije koja odgovara Powelovom metodu.

Powel[q-,pr_List,x01_,del0_,delmin_] :=
Block[{x0=x01,qO,ql,q2,x1,x2,in=0,kaax,
gmax,qgxt,xt,xkmin,a,b,
delt=10,p,it, d=delO, izb, Lista={} },
izb=Input["1l za minimum, 2 za maksimum"];
(* Korak 2. *)
q0=N[q/.pr[[1]1]->x0];
Lista=Append[Lista,{x0,q0}];

Negradijentni metodi

(* Korak 3.)
x1=x0+d; q1=N[q/.pr[[1]1]1->x1];
If [(izb==2&&q1<=q0&&in==0) | | (izb==1&&q1>=q0&&in==0),
d=-d; x1=x0+d; ql1=N[q/.pr[[1]1]1->x1];
in=1
15
If [(izb==2&&q1<=q0&&in==1) | | (izb==1&&q1>=q0&&in==1),
Print["Tacnost= ",d];
Return[{x0,q0, Lista}]
15
x2=x1+2xd; q2=N[q/.pr[[1]1]1->x2];
it=2;
While[Abs[delt]>=delmin,
(* Korak 7. *)
a=(x1"2-x272) *q0+(x272-x0"2) *q1+(x0"2-x1"2) *q2;
b=(x1-x2) *q0+(x2-x0) *q1+(x0-x1) *q2;
xkmax=a/(2xb) ; qmax=N[q/.pr[[1]]->xkmax];
Lista=Append[Lista, {xkmax,qmax}];
(* Korak 8. *)
If [izb==1,qxt=Min[q0,ql,q2],qxt=Max[q0,q1,q2]];
Which[gxt==q0, xt=x0,
gqxt==ql, xt=x1,
qxt==q21, xt=x2
1;
(* Korak 10.)
delt=Abs [xkmax-xt];
If [izb==2, gxt=Min[q0,q1,q2],
gxt=Max[q0,q1,q92] 1;
Which[gxt==q0, xO=xkmax; qO0=gmax,
gxt==ql, xl=xkmax; ql=gmax,
gxt==q2, x2=xkmax; q2=qgmax
1;
(* Ocuvanje redosleda x0<x1<x2 *)
If[x1<x0,
p=x0; x0=x1; x1=p; p=q90; q0=ql; ql=p
1;
If [x2<x0,
p=x0; x0=x2; x2=p; p=q90; q0=q92; q2=p
1;

61

62 Bezuslovna optimizacija

If[x2<x1,
p=x1; x1=x2; x2=p; p=ql; ql=q2; q2=p
15
it+=1;
If[it>100, Print["Tacnost nije dostignuta "];
Return[xkmax,N[q/.pr[[1]]->xkmax], Listal
]
13
Print["tacnost= ", delt];
Return[{xkmax,N[q/.pr[[1]]->xkmax], Lista}];
]

1.2.8. DSC-POWELOV METOD

Metod DSC-Powela predstavlja kombinaciju dva prethodno razmatrana
metoda: DSC i Powelovog metoda. Pokazao se efektivnijim i od jednog i od
drugog metoda ponaosob. Metod se moze opisati slede¢im glavnim koracima:

Korak 1. Iskoristiti deo DSK algoritma, od Koraka 1 do Koraka 14, u
(k)

kojima se izra¢unava vrednost Tmax-.

Korak 2. Algoritam produziti od Koraka 8 Powelovog metoda, pri ¢emu
skupu {2, 21 22} odgovara skup {z(®), 2(™) 2} iz metoda
DSC.

Najveéi problemi u vezi ovog metoda su izbor pocetne tacke i pocetnog
koraka. Sledi implementacija ovog metoda u paketu MATHEMATICA.

DskPowel[q_,pr_List,x01_,del0_,delmin_] :=
Block[{xO=xOl,qO,q1,q2,q3,x1,x2,x3,de11,dx=10,kaax,qmax,
xm,xa,xb,qm,qa,qb,d=del0,it=0,delt=10,p,izb,Lista={}},
izb=Input["1 za minimum, 2 za maksimum "];
(* Zajednicki kriterijum za izlaz *)
While[Abs[dx]>=delmin&&Abs [delt]>=delmin&&it<100,
(x Deo DSC metoda *)
q0=N[q/.pr[[1]11->x0];
Lista=Append[Lista,{x0,q0}];
x1=x0+d; q1=N[q/.pr[[1]1]1->x1];
If[(izb==2 && q0>ql) || (izb==1 && q0<ql),
d=-d; x2=x0+d; q2=N[q/.pr[[1]1]1->x2];
If [(izb==2 && q0>q2) || (izb==1 && q0<qg2),
xa=x2; xm=x0; =xb=x1,
ql=q2; x1=x2

Negradijentni metodi

13
1;
If [(izb==2&&q1>q0) || (izb==1&&q1<q0),
dell=2xd;
x2=x1+dell; q2=N[q/.pr[[1]]->x2];
While [((izb==2&&q2>q1) | | (izb==1&&q2<q1))
&& (it<100),
x0=x1; q0=qi;
x1=x2; ql=q2;
d=dell; dell=2xd;
x2=x1+dell; q2=N[q/.pr[[1]1]1->x2];
it+=1
13
x3=x2-dell1/2; q3=N[q/.pr[[1]]->x3];
If [(izb==2&&q3>q1l) || (izb==1&&q3<ql),
x0=x1; q0=ql; x1=x3; ql=q3,
x2=x3; q2=q3
13
dx=d/2;
xm=x1; xa=x0; xb=x2
1;

ga=N[q/.pr[[1]1]->xal; qm=N[q/.pr[[1]]->xm];
qb=N[q/.pr[[1]1]1->xb];
xkmax=xm+dx* (qa-gb) / (2* (qa-2*qm+qgb)) ;
gmax=N[q/.pr[[1]]->xkmax];
Lista=Append[Lista, {xkmax,qmax}];
(* Priprema za Powelov metod *)
x0=xa; q0=qa; x1=xm; ql=gm; x2=xb; q2=qgb;
(* Deo Powelovog metoda *)
If [izb==1, qxt=Min[q0,ql,q2], gxt=Max[q0,ql1,q2] 1;
Which[gxt==q0, xt=x0,

gxt==ql, xt=x1,

qgqxt==q2, xt=x2
15
delt=Abs [xkmax-xt];
If [izb==2, gxt=Min[q0,ql,q2], gxt=Max[q0,q1,92] 1;
Which[gxt==q0, x0=xkmax; qO=qgmax,

gxt==ql, xl=xkmax; ql=gmax,

gxt==q2, x2=xkmax; g2=gmax

63

64 Bezuslovna optimizacija

1;
If[x1<x0,

p=x0; x0=x1; x1=p; p=q0; qO0=ql; ql=p
1;
If [x2<x0,

p=x0; x0=x2; x2=p; p=q0; q0=92; q2=p
1;
If [x2<x1,

p=x1; x1=x2; x2=p; p=ql; ql=q2; q2=p
1;
it+=1;
If[it>100, Print["Tacnost = ",delt];

Return[{xkmax,N[q/.pr[[1]]->xkmax], Lista}]

]

1;

Print["tacnost= ",delt];

Return[{xkmax,N[q/.pr[[1]]->xkmax], Lista}l;
]

Test primeri.

In[1]:= Dsk[x"2-1,{x},0.5,0.1,0.0001] (*minimum*)

Out[1]= {0., -1., {{0.5, -0.75},{0., -1.}}}

In[2]:= Dsk[x"2-1,{x},0.5,0.1,0.0001] (*maksimum*)

Out[3]= {1.90148 10%° | 3.61561 10%® | {{0.5, -0.75}, {1.90148 102° | 3.61561 10°% }}}
In[4]:= Dsk[N[Sin[x-1]]4+x"2*N[Sqrt[Abs[x-1]]],{x}, 0.5,0.1,0.0001] (*minimum®*)

Out[4]= {{-0.17267, -0.889502, {{0.5, -0.302649}, {-0.175053, -0.889493},
{-0.175053, -0.889493}, {-0.16737, -0.889455}, {-0.16737, -0.889455},
{-0.125699, -0.885805}, {-0.125699, -0.885805}, {-0.17101, -0.889498},
{-0.17101, -0.889498}, {-0.174296, -0.889498}, {-0.174296, -0.889498},
{-0.172695, -0.889502}, {-0.172695, -0.889502}, {-0.17262, -0.889502},
{-0.17262, -0.889502}, {-0.172317, -0.889502}, {-0.172317, -0.889502},
{-0.17267, -0.889502} }}

In[5]:= Dsk[N[Sin[x-1]]4+x"2*N[Sqrt[Abs[x-1]]],{x}, 0.5,0.1,0.0001] (*maksimum™*)
Out[5]= {2.51459 102° |, 3.17081 1073,{{0.5,-0.302649},{2.51459 1029, 3.17081 1073}}}
In[6]:= Powel[N[Sin[x-1]]4+x"2*N[Sqrt[Abs[x-1]]],{x}, 0.5,0.1,0.0001] (*minimum*)

Out[6]= {-0.172658, -0.889502, {{0.5, -0.302649}, {-0.725152, -0.297439},
{-0.118346, -0.884567}, {-0.250773, -0.878896}, {-0.170376, -0.889494},
{-0.172041, -0.889502}, {-0.172681, -0.889502}, {-0.172658, -0.889502} } }

In[7]:= Powel[N[Sin[x-1]]4+x"2*N[Sqrt[Abs[x-1]]],{x}, 0.5,0.1,0.0001] (*maksimum™*)
Out[7]= {-0.0474527, -0.863848, {{0.5, -0.302649}, {1.84886, 3.89992},

Negradijentni metodi 65

{0.374131, -0.475066}, {0.166035, -0.715426}, {0.0329998, -0.822115},
{-0.023233, -0.85325},{-0.0408846, -0.861146}, {-0.0457311, -0.863153},
{-0.0470057, -0.863669},{-0.0473369, -0.863802}, {-0.0474227, -0.863836},
{-0.0474449, -0.863845}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}, {-0.0474527, -0.863848},
{-0.0474527, -0.863848}, {-0.0474527, -0.863848}}}

In[8]:= Powel[x"2-1,{x},0.5,0.1,0.0001] (*minimum*)

Out[8]= {-4.33681 10~16 -1, {{0.5, -0.75}, {-1.15648 10~ 15, -1.}, {-4.33681 10~ 16, -1.}}}
In[9]:= DskPowel[x"2-1,{x},0.5,0.1,0.0001] (*minimum*)

Out[9]= {0.,-1., {{-0.75, -0.64},{0., -1.}}}

Graficka ilustracija rezultata. Rezultati minimizacija zadatih izrazima

skk[N[Sin[x-1]-x*Sqrt[x " 2]*N[Sqrt[Abs[x-1]]]+Sqrt[x "2],{x},-4,4,0.1,0.02]

spk[N[Sin[x-1]-x*Sqrt[x " 2] *N[Sqrt[Abs[x-1]]]+Sqrt[x"2],{x},-4,4,0.02]

simplexI[N[Sin[x-1]-x*Sqrt[x " 2]*N[Sqrt[Abs[x-1]]]+Sqrt[x " 2],{x},-4,4,0.1,0.002]

simplexII[N[Sin[x-1]-x*Sqrt[x " 2]*N[Sqrt[Abs[x-1]]]+Sqrt[x " 2],{x},-4,0.1,0.002]

Powel[N[Sin[x-1]-x*Sqrt[x"2]*N[Sqrt[Abs[x-1]]]+Sqrt[x"2],{x},-4,0.1,0.002]
prikazani su, redom, na slikama 1.2.3 — 1.2.7.

40 40
an . an
20 20
10 10
-4 -3.85 -3 2.5 -2 -1.5 -1 -0.§5 -4 -3.8 -3 2.5 -2 -1.5 -1 -0.%5
Sl 1.2.3 Sl 1.2.4

Sto je metod “primitivniji,” veéi je broj izraunavanja vrednosti ciljne funkcije, te je
trajektorija kretanja prema ekstremumu sli¢nija grafiku ciljne funkcije (u ovom primeru

paraboli).

66 Bezuslovna optimizacija

40 40
) 30 30
20 20
10 10
4 35 3 28 2 1585 1 10.¢t 4 38 3 28 2 15 1 05
Sl. 1.2.5 Sl. 1.2.6
40
30
20
10
4 3% 3 285 2 185 1 0¢E

Sl 1.2.7

1.2.9. METOD PARABOLE

Kod metoda parabole u prvom koraku se izracunavaju tri tacke koje is-
punjavaju uslove

(123) r1 < Ty < I3, Q(acl) > Q(.%'Q), Q(m'g) < Q(Z’g)

Za nalazenje ovakvih tacaka razradeno je vise algoritama. Najprimitivnija
strategija se sastoji u fiksiranju neke vrednosti x = zg i racunanju vrednosti
funkcije @ u tackama

Tr1 = Cﬂg+h, Ty = $0—|—2h, I3 = $0+3h, Tr1 = Tg, T2 = T3, T3 = $0—|—4h,

za neku izabranu vrednost koraka h. Posle lokacije ovakvih tacaka, lokalni
minimum z* funkcije @ se nalazi u intervalu [z1, z3).

Tri tacke z1, xo 1 3 sa odgovarajuéim vrednostima Q(x1), Q(z2), Q(z3)
odreduju kvadratnu aproksimaciju, tj. parabolu

p(z) = a + bz + cx?.

Negradijentni metodi 67

Koeficijenti a, b, ¢ dobijaju se reSavanjem sistema linearnih algebarskih
jednacina

a+bry + cx? = Q(x1)
(1.2.4) a+ bxy + cxs = Q(w3)
a+bxs + crs = Q(x3).

Posle izracunavanja koeficijenata, minimum polinoma p(z) se nalazi kao
reSenje jednacine
p(r)=b+2cx =0,

odakle se dobija
b
2¢

Tacka I je aproksimacija optimalne tacke z*. Sada postoje Cetiri tacke:
“stare” tacke x1, T2, x3 1 “nova” tacka r. Medutim, za odredivanje nove
kvadratne aproksimacije potrebne su tri tacke. Od gore navedenih tacaka,
u sledecoj iteraciji oznaCimo sa xo tacku u kojoj funkcija ima najmanju
vrednost (xo moze biti “stara” tacka z2). Susednu tacku koja se nalazi levo
od “nove” tacke xo oznaCimo sa xp, a susednu tacku desno od “nove” tacke
xo oznacimo sa x3. Za ovako oznacene tri tacke ponovo vaze uslovi (1.2.3),
te se postupak moze nastaviti.

T =—

Teorijski je moguce da je proizvoljno izabrana tacka xs na pocetku proce-
dure upravo tacka minimuma parabole p(x). U tom slu¢aju, metod parabole
ulazi u beskonacnu petlju u kojoj stalno daje & = z5. Da bi se izaslo iz petlje,
treba promeniti vrednost xo na zs + €, gde je € neki mali pozitivan broj, na
primer, € = 107°.

Algoritam ovog metoda se moze opisati na slede¢i nacin:

Korak 1. Odrediti proizvoljne tacke z1 <5 <x3 za koje je ispunjeno
Qz1) > Qx2), Qx2) < Q(z3).

Korak 2. Odrediti resenje a, b, ¢ iz sistema (1.2.4).

Korak 3. Izracunati & = —b/(2¢), a zatim p(%) = a + b% + ci? i Q(Z).

Korak 4. Ako je |Q(Z) —p(z)| < e proces se prekida, a Z je priblizna
aproksimacija za x*.
Ako je | Q(Z) — p(Z) | > € oznaciti sa x2 onu od Cetiri tacke u kojoj
funkcija @ ima najmanju vrednost, sa x; susednu tacku levo, a

sa x3 susednu tacku desno od “nove” tacke xo, a zatim preéi na
Korak 3.

68 Bezuslovna optimizacija

1.3. Visedimenzionalna negradijentna optimizacija

U ovom poglavlju se izuc¢ava problem izra¢unavanja optimalne vrednosti
ciljne funkcije Q(x) = Q(x1,. .. x,), koja zavisi od n argumenata x1,... , Z,,
bez koriséenja izvoda ciljne funkcije. Vektor x* = (x7,... ,z}) za koji funk-
cija postize ekstremnu vrednost u nekoj oblasti I'y naziva se tacka optimuma

1 ona se moze izracunati razli¢itim metodima.

Metodi viSedimenzionalne negradijentne optimizacije mogu se podeliti u
sledece grupe: metodi skaniranja, sukscesivna aproksimacija po koordinata-
ma, metodi slucajnog pretrazZivanja 1 Powelov visedimenzionalni metod.

A. Metodi skaniranja. Zasnivaju se na uporedivanju nekih od izracu-
natih vrednosti funkcije cilja u odredenoj oblasti. Iz ove grupe metoda
izdvoji¢emo:

1. skeniranje sa konstantnim i promenljivim korakom:;

2. skeniranje po spirali.

B. Sukscesivna aproksimacija po koordinatama. Poseban tip visedimen-
zionalnog pretrazivanja je baziran na promeni jedne od promenljivih u jed-
nom trenutku, pri ¢emu se sve ostale zadrzavaju konstantnim, sve dok se
ne pronade ekstremum nekom od metoda jednodimenzionalne optimizacije.
Za svaku promenu nezavisne promenljive, vrednost cijlne funkcije se upo-
reduje sa vrednoséu u prethodnoj iteraciji. Ako je vrednost ciljne funkcije
poboljsana u datom koraku, tada nova vrednost ciljne funkcije zamenjuje
staru. Medutim, ako je iterativni korak neuspesan, tada ostaju stare vred-
nosti za funkciju cilja i ekstremnu tacku. Ciklus se zavrSsava kada posle
pretrazivanja po svim koordinatama ne mogu da se dobiju poboljSanja vred-
nosti ciljne funkcije.

U cilju implementacije metoda viSedimenzionalnog pretrazivanja, potreb-
no je da se definise algoritam transformacije ciljne funkcije Q(z1,... ,2,) u
odgovarajuéu funkciju parametra xp (1 < k <n):

0 0 0
Q(azg), ... ,x,&ll,xk,xéil, ... xﬁfn) = f(zp),
gde je x(0) = (CESO), . ,x%o)) dati vektor. Ovaj algoritam je nepodesan za

implementaciju u proceduralnim programskim jezicima, ali se moze efikasno
implementirati u funkcionalnim programskim jezicima. Ovo je suStina oso-
bine (2M) simboli¢ke implementacije.

U daljem tekstu sledi opis implementacije osobine (2M) u LISPu. Un-
utrasnja forma nove funkcije f(xx) moze se generisati na sledeéi nacin:

Negradijentni metodi 69
Korak 1. Zameniti x; sa CEEO) (1 <i<mn,i+#k)uprvom elementu liste koja
reprezentuje unutrasnju formu ciljlne funkcije Q). Pri tome se u PC
SCHEME mora definisati funkcija SUBST za zamenu svih pojava
jednog elementa liste drugim elementom. Ova funkcija moze biti
napisana koristeéi principe iz [12], [14], [67]. LISP izraz konstruisan
na taj nacin predstavlja prvi element rezultujuée unutrasnje forme
funkcije
0 0 0 0
Q(xg), . ,x,(c_)l,mk,xé_zl, . a:%)) = f(zg).
Korak 2. Lista argumenata funkcije f(zy) jednaka je listi (zx). Preciznije,
rezultujuéa unutrasnja reprezentacija je

((Q(azgo), o ,x,(cozl,xk, x,(qoil, .. x%o)))(xk))

Primer 1.3.1. Neka je funkcija definisana pomocéu

2
Q(z1,22) = logx(;Q) + /T3

Za zadatu tacku (xgo),xéo)) = (1,3), ona se moze transformisati u funkciju

f(z1) = Q(aq, xéo)) transformacijom unutrasnje forme funkcije Q(z1,x2):
((+ (/ (expt x1 2) (log x2)) (sqrt x2))(x1 x2))
u novu listu

((+ (/ (expt x1 2) (log 3.0)) (sqrt 3.0))(x1))

Odgovarajuca LISP funkcija, definisana za zadatu unutrasnju formu g ciljne
funkcije, datu pocetnu tacku x0 = (mﬁ‘”, . ..x%o)) i zadati ceo broj k, ima
oblik:

(define (newfunl q x0 k)

(let ((£ 1) (£1 1) (p 1) (n 1))
; Korak 1. Izdvojiti funkciju f i listu argumenata p
(set! f (car q)) (set! f1 f)
(set! n (length (set! p (cadr q9))))
; Korak 2. Za svako i # k zameniti x; sa xgo)
; u listi koja reprezentuje f.
(do ((x 1) (1 1))

((= 1 n) (1ist £ (list x)))

70 Bezuslovna optimizacija

(if (= 1 k) (set! x (car p))
(begin (set! f1 (subst (car x0) (car p) f))
(set! f f1)))
(set! x0 (cdr x0)) (set! p (cdr p))
)))

U ovu grupu metoda spadaju:

1. Gauss-Seidelov metod;

2. Metod Hooke-Jeevesa.

U programskoj implementaciji ovih metoda potvrduje se prednost (2U).

C. Metodi slucajnog pretraZivanja. Metodi slucajnog pretrazivanja zas-
nivaju se na ispitivanju ciljne funkcije u oblasti upravljackih parametara na
slu¢ajan nacin. Za primenu ovih metoda nije neophodna ¢ak ni neprekidnost
ciljne funkcije.

D. Powelov visedimenzionalni metod. Ovaj metod ima svojstvo kvadrat-
nog zavrSavanja i koristi konjugovane pravce.

1.3.1. SKENIRANJE SA KONSTANTNIM I PROMENLJIVIM
KORAKOM

Kao i kod funkcija jedne promenljive, pretraZivanje skeniranjem moze se
koristiti i za funkcije vise promenljivih.

Dacemo opis algoritma za metod skaniranja sa konstantnim korakom za
dva upravljacka parametra. Za zadatu vrednost upravljackog parametra o
vr8i se skeniranje po upravljackom parametru zi, sa definisanim korakom
Axq u zadatom untervalu x1min < 1 < Z1max, 1 upamte se koordinate ek-
stremuma X F4 1 X F5 kao i vrednost ekstremuma QM. Zatim se parametar
ro promeni za zadati korak Axo, dok se procedura za skeniranje po up-
ravljackom parametru x; ponavlja. skeniranje se zavrSava kada upravljacki
parametar xo dostigne (ili prestigne) gornju granicu Tomax.

Algoritam za metod skaniranja sa konstantnim korakom, za slucaj dva
upravljacka parametra:

Korak 1. Definisati ulazne veli¢ine: Z1min, o2mins T1max, L2max, DT1, Ao
Korak 2. Postaviti QM = Q(Z1mins T2min)s X F1 = T1min, XFE2 = Tomin-
Korak 3. Definisati dvostruku for petlju,

za vrednosti promenljive 21 od 21 min dO Z1max Sa korakom Az
i za vrednosti promenljive x5 od Zomin do Tomax Sa korakom Axs.

Unutar ciklusa izvrsiti sledec¢e algoritamske korake:

Negradijentni metodi 71

Korak 3.1. Izracunati Q1 = Q(x1,x2).
Korak 3.2. Ako je Q1 >QM postaviti: QM =Q1, XFE1=x1, X Fy=1s.
Korak 4. Prikazati vrednosti promenljivih QM, XE; i X Es.

Za proizvoljan broj n > 2 upravljackih parametara, vrednost nekog od pa-
rametara povecava se za odgovarajuéi korak kada se zavrse ciklusi skaniranja
za sve prethodne parametre.

Tacnost metoda je veéa ukoliko su manji koraci skaniranja Ax;, i =
1,...,n. Medutim, kada se umanjuju koraci Az; i povecava broj uprav-
ljackih parametara n, broj izracunavanja vrednosti ciljne funkcije, oznacen
sa S, drasti¢no raste. Uz pretpostavku da je za svaki parametar korak A
isti, potreban je slede¢i broj izra¢unavanja:

1 n
so(La)"

Naprimer, za n =4 i A = 0.01, broj potrebnih izraéunavanja ciljne funkcije
je 101*. Zato se ovaj metod koristi u zadacima sa malim brojem upravljackih
parametara (n = 2,3,4) i sa razumno odabranom ta¢noséu lokalizacije ek-
stremuima.

S druge strane, metod je lak za algoritmizaciju. Organizacija pretraziva-
nja ne zavisi od oblika ciljne funkcije. Sa malim korakom A i ciljnom funkci-
jom koja se jednostavno izracunava, ovaj algoritam dozvoljava izratunavanje
globalnog ektremuma sa zadatom tac¢noséu A.

Uz pretpostavku da su z1d i xlg granice za prvi argument ciljne funkcije,
idasux2d i x2g granice za njen drugi argument, kao i da su delx1 i delx2
koraci skaniranja po parametrima x1 i 2, respektivno, algoritam ove metoda
je slededi:

skk2[q_,var List,x1d_,x1g ,x2d_,x2g ,delxl_,delx2]:=
Block[{d1=x1d,d2=x2d,gl=x1g,g2=x2g,
gmax=q[d1,d2],xel=d1,xe2=d2,x1,x2,qm,izb,Lista={}},
izb=Input["1 za min 2 za max"];
Lista =Append[Lista,{xel,xe2}];
For[x1=d1,x1<=gl,x1+=delx1,
For [x2=d2,x2<=g2,x2+=delx2,
qm=q;
gm=N[gm/.var[[1]]->x1];
qm=N[gm/.var[[2]]->x2];
If [(izb==2&&qm>qgmax) | | (izb==1&&qm<qgmax) ,

72 Bezuslovna optimizacija

gmax=qm;xel=x1;xe2=x2;
Lista =Append[Lista,{xel,xe2}]

]
15
Return[{{xel,xe2},qmax, Lista}]
]

Smanjenje broja izracunavanja ciljne funkcije Q(x) moze se postiéi pro-
menljivim korakom skaniranja. Na pocetku se uzimaju relativno veliki koraci
AEO), i =1,...,n. Posle lokalizacije ekstremne tacke {XFEy,... , XE,} sa
ovako velikim korakom uzima se nova oblast X FE; + AEO), koja se skanira

sa manjim korakom Agl), 1 =1,...,n. Postupak se ponavlja sve dok se ne
postigne zeljena tacnost A in:

AR < A, i=1,... n.
Kao ilustracija, uzete su test funkcije
qllz] :== 2> + %, q2[z] == 2* + zy — 22 * Sin|z].

Za prvu funkciju, poziv

skkmax2[ql,{z,y}, —2,2,—2,2,0.01,0.02]
je dao maksimum 8 u tacki {—2,2}. Za drugu funkciju poziv

skkmax2[q2,{z,y}, —2,2,—-2,2,0.01,0.02]
dao je maksimum 4 x Sin[—2] u tacki {—2,2}.
1.3.2. SKENIRANJE PO SPIRALI

Metod se koristi u slu¢aju kada nisu zadate granice upravljackih parame-
tara ili kada su zadate samo neke granice upravljackih parametara. Tada
se skeniranje izvrSava od pocCetne tacke xg. Za n = 2 moze se koristiti ili
Arhimedova spirala sa polarnim koordinatama

R=ayp

ili logaritamska spirala
R = ae™?,

Negradijentni metodi 73

pri ¢emu su a i m konstante.

Ako se pri skaniranju po spirali sa (2km; k = 1,2,...) ne dobije bolji
rezultat od najboljeg rezultata u prethodnom razvoju 2(k — 1), tacka sa
maksimalnom vrednoséu za Q)(x) izabira se za novu pocetnu tacku xg. Za-
tim se sprovodi novo skeniranje sa manjim radijusom spirale, sve dok se ne
postigne prethodno zadata tatnost amin < Amin-

Kako je ciljna funkcija zadata u Dekartovim koordinatama, neophodno je
da se u svakoj iteraciji izraCunavaju x; i o prema formulama

1 = Rcosp + g1, 2= Rsiny + xgo.

Preporucuje se Ap = 7/4 ili 7/6.

Ako pocetna tacka nije zadata, odabira se na slu¢ajan nacin.

Na slici 1.3.1 prikazano je skeniranje po Arhimedovoj spirali, za slucaj
dva upravljacka parametra.

[>
=
Il

oy

Ty §

L

Loy I, a

Sl 1.3.1

Pri razvoju po logaritamskoj spirali obuhvata se ve¢a povrsina pri svakom
razvoju, za isti radijus razvoja a u odnosu na Arhimedovu spiralu. To znaci
da se pomocu logaritamske spirale moze brze da lokalizuje oblast ekstrema.

pospiralilq-,pr-,a_,del_,1_,x01_,x02_]:=
Block[{c=x01,d=x02,xel=c,xe2=d,maxl=q[xel,xe2] ,k=1, fi=0,
max=maxl,al=a,r,x1,x2,y,xml,xm2,ind=0,izb, Lista={} },
izb=Input["1 za min 2 za max= "];

74 Bezuslovna optimizacija

maxl=q;

max1=N[max1/.var[[1]]->xel]; max1=N[max1/.var[[2]]->xe2];
max=maxl;

Lista=Append[Lista,xel,xe2];

fi=fi+Pi/6;

While[ind=0,
If[fi>2*xk*Pi,
If [max>maxl,
maxl=max;xel=xml;xe2=xm2;k=k+1;fi=fi+Pi/6;
Lista=Append[Lista,xel,xe2],

If[al>del,
al=al/l;c=xel;d=xe2;k=1;fi=Pi/6;max=maxl,
ind=1

]

1,
r=alxfi;

xl=c+r*Cos[fi]; x2=d+r*Sin[fi];
y=q/.pr->{x1,x2};
If [(izb==2&& y>max) | | (izb==1&& y<max),
max=y; xml=x1; xm2=x2
1;
fi=fi+Pi/6
]
1
{{xel,xe2}, max, Lista}
]

Program se poziva pomotu
pospiralilq, pr,a,del,l, 01, x02]

pri ¢emu je ¢, pr unutrasnja forma ciljne funkcije, a je konstanta, del je
zadata tacnost, [faktor smanjenja koraka, a (01, x02) su koordinate pocetne
tacke.

1.3.3. GAUSS-SEIDELOV METOD

Gauss-Seidelov metod se sastoji u sukscesivnoj izmeni upravljackih para-
metara, tj. on predstavlja metod za mnogostruko sukscesivno pretrazivanje
po jednom upravljackom parametru.

Algoritam Gauss-Seidelovog metoda se sastoji u slededem:

Korak 1.
Korak 2.

Korak 3.

Korak 4.

Korak 5.

Negradijentni metodi 75

Izabrati odredeni redosled upravljackih parametara z1,... ,z,.

Lokalizovati ekstremum x7 po prvom upravljackom parametru xq,
prema jednom od metoda za jednodimenzionalnu optimizaciju,
uzimajuéi konstantne vrednosti zg2, g3, ... ,To, za ostale uprav-
ljacke parametre.

Nadena vrednost z; se uzima za konstantnu i ekstremum se loka-
lizuje po drugom upravljackom parametru. Dobijenu vrednost za
upravljacki parametar oznacimo sa x3.

Ova procedura se ponavlja sve dok se ne izvrsi lokalizacija i posled-
njeg upravljackog parametra x,,.

Kriterijum zaustavljanja je dostizanje tacke z*={z7,... ,z}}, od
koje pri izmeni od +A;, za svaki upravljacki parametar ne moze
se naéi bolji rezultat.

U slucaju da izlazni kriterijum nije ispunjen algoritam se nastavlja od

Koraka 2.

Kako oblast upravljackih parametara nije lokalizovana, za lokalizaciju
svake koordinate ekstremuma preporucuje se jednodimenzionalni simpleks

metod.

Gauss-Seidelov etod se koristi za mali broj upravljackih parametara (n =
3,4) i ima razli¢itu brzinu konvergencije u zavisnosti od ciljne funkcije Q(z).

Sledi implementacija ovog metoda.
Ulazne velicine:

q-,var_List: ciljna funkcija i lista njenih parametara;
x_List: izabrana pocetna tacka;
eps_: zadata tacnost.

Lokalne promenljive:

del: kriterijum dostignute tacnosti.

Gaussei[q_,prom List,x List,eps_]:=
Block[Lis={},rad=True,p,pr=prom,x0=x1=x,

qm=q0=q,del=1,n=Length[prom],
Lis=Append[Lis,x0];

Print["Izabor metoda jednodim. optim."];
Print["<1> skeniranje konstantnim korakom"];
Print ["<2> skeniranje promenljivim korakom"];
Print ["<3> simplexI metod"];

Print["<4> simplexII metod"];

76 Bezuslovna optimizacija

Print ["<5> zlatni presek"];
Print["<6> metod dihotomije"];
Print["<7> DSC metod"];
Print["<8> Powelov metod"];
Print["<9> DSC-Powelov metod"];
metod=Input[];
While[del>=eps,
For[i=1,i<=n,i++,
qm=q;
Do [qm=qm/.prom[[j]1]1->x0[[j1],j,i-1];
gm=qm/ .prom[[i]l]->p;
Do [gqm=qm/.prom[[j]1]1->x0[[j]1],j,i+1,n];
(*jednodimenzionalna optimizacija po p*)
Which[metod==1,pO=skk[gm,{p},0,1,0.01],
metod==2,pO=spk [qm,{p},0,1,0.5,eps/10],
metod==3,pO=simplexI[qm,{p},0,1,0.5,eps/10],
metod==4,pO=simplexII[qm,{p},-1,0.1,eps/10],
metod==5,p0=zlatni[qm,{p},-1,1,eps/10],
metod==6,p0=dih[gm,{p},-1,1,eps/10],
metod==7,p0=Dsk[qm,{p},-1,0.1,eps/10],
metod==8,p0=Powel [gm, {p},-1,0.1,eps/10],
metod==9,pO=dskpowel [qm, {p},-1,0.1,eps/10]
1;
x0[[i]]1=pO[[1]]
1;
del=Sqrt [Sum([[x1[[i]]-x0[[i]11]12,4i,n]]
Lis=Append[Lis,x0] ;
x1=x0;
1;
Do[q0=q0/.prom[[i]1->x0[[i]],i,n];
{x0,q0,Lis}

1.3.4. HOOKE-JEEVESOV METOD

Ideja ovog metoda se sastoji u tome da se iz tacke x* naprave “koraci”
duz svake koordinatne ose:

k k .
x'xdf, i=1,...,n,

Negradijentni metodi 77

gde su “koraci” d¥ definisani sa

5 0 0
0 5 0
di=|0|, d§=|0], , df =10
0 0 5

U prethodnim vektorima § je neki fiksiran pozitivan broj, k oznacava redni
broj iteracije, dok ¢ oznacava koordinatu po kojoj se pravi “korak.”

Optimizacija poc¢inje od proizvoljne tacke
Xg — X%

7

koja se naziva “bazi¢na tacka.” Kasnije se izraCunavaju nove bazi¢ne tacke
xb, x%, ..., kojima se aproksimira tacka optimuma x*. Naziv bazi¢na tacka
potice iz Cinjenice da se oko te tacke prave koraci duz koordinatnih osa, pri
¢emu ova tacka sluzi kao “baza.” Oznacimo sa t¥ “tekuéu” promenljivu po

kojoj se vrsi optimizacija. Na pocetku je
té = x%.

Prvo pretrazujemo pozitivnu osu x, tj. pravimo korak

)

ty+d) =t5+ |0
0
i racunamo Q(t3 +d?). Ako je Q(t} +d?) > Q(t}), ovaj korak nas je doveo

do “brda,” te u slu¢aju minimizacije ovaj korak proglasavamo neuspe$nim.
Sada se pretrazuje negativna osa x1:

o O

ty —df =tp —

78 Bezuslovna optimizacija
Ako je ponovo Q(t} —d¥) > Q(t}), vracamo se u x%, stavljamo
1_ 41
t1 - tO

i pocinjemo sa pretrazivanjem duz ose xs, tj. pravimo korak

0
)
th+dy=tl+ |0
0
Pretpostavimo da je sada Q(t1 + d9) < Q(t}). U ovom slucaju, korak je

uspesan. Stavimo
ty =t} +dJ.

Sada se ne pretrazuje negativni deo ose w2, nego iz t3 odmah pretrazujemo
tre¢u osu. To pretrazivanje ponovo ide najpre u pozitivhom smeru:

0
0
tlrdl=tl+ |0
0
Ukoliko je ovaj korak bio uspeSan, stavljamo

t3 =ty +dj

i nastavimo sa koracima duz cetvrte ose. Ukoliko je korak neuspesan formira
se korak po negativnom delu treée ose. Ako je i ovaj korak bio neuspeSan
(tj. ako su oba koraka duz trece ose bila neuspesna), stavljamo

ts =t

i nastavljamo iz t} sa pretrazivanjem duz ¢etvrte ose.

Potrebno je da se istaknu tri ¢injenice: Prvo, ako je korak duz pozitivnog
dela neke ose uspesan, tada se ne pravi korak duz negativnog dela te ose.
Drugo, ako su oba koraka duz jedne koordinatne ose bila neuspesna, tada
se za pribliznu vrednost optimalne tacke uzima vrednost iz prethodne it-
eracije. Treée, potrebno je odrediti svih n tacaka t¥ t5, ... t£ izmedu dve

Negradijentni metodi 79
baziéne tacke x% i x%. Poslednja tacka t¥ se uzima za novu baziénu tacku
x% = tF. Na taj nacin, prva iteracija se zavrsava posle pretrazivanja svih n
koordinatnih osa, ¢ime se dobija nova bazi¢na tacka

1 _ 41
xg=t,.

Sada se proces optimizacije moZe nastaviti iz bazi¢ne tacke xk. Medutim,
prvo se ¢ini pokusaj da se baziéna tacka pomeri u smeru xk — x%, ¢ime se
dobija tacka

t2 = XE + (X%3 — x%).

Za ovakav postupak postoji opravdanje: buduéi da je vrednost Q(x%) “bo-

lja” od vrednosti Q(x%), postoji moguénost da se vrednosti funkcije i dalje

poboljavaju u smeru x5 — x% pocev od tatke xk. Ukoliko je vrednost
Q(t2) “bolja” od vrednosti Q(x%) “skok” je bio uspesan. Sada se tacka t2
moze proglasiti za novu bazi¢nu tacku. Medutim, nova bazitna tacka se
odreduje posle prvog uspesnog koraka iz t3. Zbog toga iz te tatke ponovo
pocinje pretrazivanje duz koordinatnih osa. Ako su u nekoj baziénoj tacki
x% svi koraci duzine § bili neuspesni, tada se duzina ¢ smanjuje (na primer
na polovinu ili desetinu) i koraci se ponavljaju sa ovom manjom duzinom.
Ako su svi koraci bili neuspesni, ponovo se smanjuje duzina koraka. Proces
se prekida kada duzina koraka bude manja od zadate vrednosti € > 0. Tada

je poslednja bazi¢na tacka zZeljena aproksimacija ekstremne tacke.

Hooke-Jeevesov metod se moze ukratko opisati na sledeé¢i nacin: To je
iterativni proces u kome se formira niz bazi¢nih tacaka x%, xk,... koje
konvergiraju prema nekoj lokalnoj ekstremnoj vrednosti x*. Pocev od svake
baziéne tacke x% pretrazivanje se nastavlja po svim koordinatnim osama,

posle ¢ega se nalazi nova bazi¢na tacka x’f;rl. Tada se pravi “skok”

E+2 k41 k+1 k
tg " =xp + (x5 —x3)

i prvi uspesan korak iz t’g“ uzima se za novu bazi¢nu tacku X%+2. Ukoliko

nijedan od koraka iz t§+2 nije uspeSan, vra¢amo se u x]f;l. Sada se nas-

tavlja pretrazivanje iz nove bazi¢ne tacke. Ukoliko nijedan korak iz x?‘l nije
uspesSan, smanjuje se duzina koraka. Proces se prekida kada korak postane

manji od zadatog pozitivnog realnog broja.

U funkciji Postoji formira se nova “bazi¢na tacka” i ispituje da li je ona
“bolja” od prethodne.

Postojilq-,prom List,t_List,delta_]:=

80

Bezuslovna optimizacija

Block[{q0=q,qm,1i,j,n=Length[prom] ,uspesan=False, xm=t},
Do[q0=q0/.prom[[j11->xm[[j11,{],n}];
For[i=1,i<=n,i++,

qm=q;

Do [qm=qm/.prom[[j1]1->xm[[j1],{],i-1}];
gm=gm/.prom[[i]]->(xm[[i]]+delta);

Do [qm=qm/.prom[[j1]1->xm[[j1],{j,i+1,n}];

If [gm<qO,
xm[[i]]+=delta;
q0=q1;
uspesan=True,
qQm=q;

Do [qm=qm/.prom[[j11->xm[[j]],{j,i-1}1;
gm=qm/.prom[[i]]->(xm[[i]]-delta);
Do [qm=qm/.prom[[j11->xm[[j1],{j,i+1,n}];

If [gm<qO,
xm[[i]]-=delta;
q0=q1;
uspesan=True

]

]
15
{xm,uspesan}

]

Sada se Hooke-Jeevesov metod moze jednostavno implementirati:

HookeJeeves[q-,prom List,xb List,delta_,eps_]:=
Block [{n=Length[prom] ,x0=x1=xb,t=xb,usp=False,q0=q,
del=delta,pn,it=0, Lista={} },
Do[q0=q0/.prom[[1]1->x0[[i]],{i,n}];
Lista=Append[Lista,x0];
(* Formiranje nove bazicne tackex*)
While[Abs[del] >=eps && 'usp,
pn=Postojilq,prom,t,del];
usp=pn[[2]];
Print["usp = ",usp];
If [usp, x1=pn[[1]];Lista=Append[Lista,x1], del/=2]
1;
While[Abs[del]>=eps,

Negradijentni metodi 81

(*Skok u novu tacku t*)
t=x1+(x1-x0);
Print[" t = ",t];
pn=Postojilq,prom,t,del];
usp=pn[[2]];
If [usp, x0=x1;x1=pn[[1]];Lista=Append[Lista,x1],
del/=2
1;
Print["x1= ",x1];
q0=q; Do[q0=q0/.prom[[i]]1->x1[[i]],{i,n}];
Print["q=",q0,"delta=",dell;
it+=1
1;
q0=q; Dol[q0=q0/.prom[[i]]1->x1[[il],{i,n}];
Print["it= ",it];
{x1,90, Lista}
]
Izlozi¢emo sada jedno poboljsanje Hooke-Jeevesove metode iz [55], koje
se sastoji u tome da se nova tacka t§+2 izrac¢unava pomocu

2 = G),
gde je korak hj definisan pomocu

hy = mhinQ (xBH + h(xEH —xk)) = mhin F(h)

i izrac¢unava se nekom od metoda jednodimenzionalne optimizacije.

Najvazniji detalj u implementaciji modifikacije Hooke-Jeevesovog metoda
jeste konstrukcija funkcije

F(h) = Q (a5 + h(xj"™ —xp))

u simbolickoj formi. Pri tome je zadat analiticki izraz q_ ciljne funkcije @
i postoje izracunate dve bazicne tacke z1 = X’grl i 20 = x%. Ovaj problem
je nepodesan za implementaciju u proceduralnim programskim jezicima. Po
svojoj suStini, on je podesniji za simbolicku implementaciju ako se h posma-
tra kao simbol. U programskom paketu MATHEMATICA, funkcija F'(h) = gexp
se moze jednostavno implementirati:

t=x1+h*(x1-x0) ;

82 Bezuslovna optimizacija

qexp=q;
Do [qexp=qexp/.prom[[il1->t[[il],{i,n}];

Sada je unutrasnja forma ciljne funkcije za iniciranu jednodimenzionalnu
optimizaciju jednaka
gexp, {h}.

Preostali argumenti koji se koriste u pozivu funkcija za jednodimenzion-
alnu optimizaciju zavise od metoda optimizacije. Potrebno je naglasiti da
se koriste nenegativne vrednosti parametra h, sto znaci da je njegova donja
granica jednaka nuli. Ukoliko se u metodu jednodimenzionalne optimizacije
koristi jedna pocetna vrednost, prirodno je da ona bude nula. NesSto je
slozeniji problem odredivanja gornje granice parametra h. U programima
koji su navedeni koriséena je vrednost 1, kada se modifikacija svodi na orig-
inalni metod. Medutim, mogu se koristiti i vrednosti vece od jedinice. Tada
jednodimenzionalna optimizacija ima veci efekat i koristi se manji broj puta.

Osim prednosti (1M)—(3M) simbolicke implementacije metoda visedi-
menzionalnog pretrazivanja, moze se navesti i slede¢a prednost:

(4M) Funkcionalni programski jezici su pogodniji za implementaciju sle-
deée transformacije

Qz1,... xn) — F(h) = R(Q(z1,... ,zn), h),

gde je R proizvoljna funkcija.

HookeJeevesh[q_,prom List,xb List,delta_,eps_]:=
Block[{n=Length[prom] ,x0=x1=xb, t=xb,usp=False,q0=q,

del=delta,pn, qexp,hk,metod,it=0},
Do[q0=q0/.prom[[1]1->x0[[i]],{i,n}];
Lista=Append[Lista,x0];
(* Formiranje nove bazicne tackex*)
While[del>=eps && !'usp,

pn=Postojilq,prom,t,del];

usp=pn[[2]];

Print["usp = ",usp];

If[usp, x1=pn[[1]];Lista=Append[Lista,x1], del/=2]
13
(*Izbor jednodimenzione optimizacijex*)
Print["Izaberi metod jednoimenzionalne optimizacije"];
Print["<1> skeniranje konstantnim korakom"];
Print ["<2> skeniranje promenljivim korakom"];

Print["<3>
Print["<4>
Print ["<5>
Print["<6>
Print["<7>
Print["<8>
Print ["<9>

Negradijentni metodi

simplexI metod"];
simplexII metod"];
zlatni presek"];
metod dihotomije"];
DSC metod"];

Powelov metod"];
DSC-Powelov metod"];

metod=Input[];
While[Abs[del] >=eps,

83

(* Simbilicko formiranje nove tacke t *)

t=x1+h*(x1-x0);

qexp=q;

Do [qexp=qexp/.prom[[i]]1->t [[1]],{i,n}];

(*gexp je funkcija simbola hx)

Print["qexp = ",qexpl];

(* jednodimenziona optimizacija po h *)

Which[metod==1,hk=skk[qexp,{h},0,1,0.01],
metod==2,hk=spk[qexp,{h},0,1,0.5,eps/10],
metod==3,hk=simplexI[qexp,{h},0,1,0.5,eps/10],
metod==4,hk=simplexII[qexp,{h},0,0.1,eps/10],
metod==5,hk=zlatni [qexp,{h},0,1,eps/10],
metod==6,hk=dih[qexp,{h},0,1,eps/10],
metod==7,hk=Dsk [qexp,{h},0.,0.1,eps/10],
metod==8,hk=Powel [qexp,{h},0.,0.1,eps/10],
metod==9,hk=dskpowel [qexp,{h},0.,0.1,eps/10]

1;

hk=hk[[1]]; Print["hk= ",hk];

(*Formiranje tacke t prema optimalnoj vrednosti hx*)

t=x1+hk*(x1-x0) ;

Print["t posle minimiziranja po h = ",t];

pn=Postojilq,prom,t,dell;

usp=pn[[2]];

If [usp, x0=x1;x1=pn[[1]];Lista=Append[Lista,x1],
del/=2

1;

Print["x1= ",x1];

q0=q; Do[q0=q0/.prom[[i]]->x1[[i]],{i,n}];

Print["q=",q0,"delta=",dell;

it+=1

84 Bezuslovna optimizacija

13
q0=q; Do[q0=q0/.prom[[i]]->x1[[il],{i,n}];
Print["it= ",it];
{x1,q90, Lista}
]

Numericki rezultati. Ilustrova¢emo metod kroz nekoliko primera.

Primer 1. Ako se za minimizaciju funkcije Q(z,y) = x2 + y2 — 3 Sin[z — y] koristi
originalni Hooke-Jeevesov metod, sa po¢etnom vredno§éu minimuma {0.5, 0.8}, primecuje
se njegova divergencija:

In[1]:= HookeJeeves[x " 2+y " 2-3*Sin[x-y],{x,y},{0.5,0.8},0.1,0.001]

Deo liste generisanih tacaka je:

{{0.8, 0.8},{1.1, 0.8},{1.3, 0.8},{1.4, 0.8},{1.4, 0.8}, {1.3, 0.8}, {1.3, 0.7}, {1.2, 0.6},
{1.2, 0.5},{1.1, 0.4}, {1.1, 0.3},{1., 0.2},{1., 0.1},{0.9, 2.22045x 10716}, {0.9, -0.1}, ... }

Out[1]= $Aborted
Za iste pocetne uslove modifikacija Hooke-Jeevesovog metoda konvergira.

Na primer, u startnoj tacki, simbolicka funkcija f(h) jednaka je
2 2
f=(0.8+4+0. h) +(0.6+0.1h) + 3Sin[0.2- 0.1 h]

Metod zlatnog preseka posle minimizacije hy = m}in f(h) daje rezultat hk = 0.999959,
sto implicira
x1 ={0.799996,0.8}, ¢ =1.28001, delta =0.1

U 22. iteraciji se dobija simbolicka funkcija

12 2 2
f = (-0.584927 - 5.03952 10 h) + (0.585755 4 0.00312474 h) -
> 3 Sin[1.17068 + 0.00312474 h]

Jednodimenzionalnom optimizacijom dobija se korak hk = 0.0000408563
i rezultat:

1l = {0.585755, —0.584927}, ¢ = —2.0778, delta = 0.00078125.

Primer 2. U ovom primeru je dato nekoliko grafickih ilustracija modifikovanog metoda,
koje su dobijene primenom funkcija ContourPlot i ListPlot u paketu MATHEMATICA.

Rezultujuca lista dobijena izrazom

HookeJeeves [x~2+y~2,{x,y},{2,3},0.1,0.00000000001]
reprezentovana je na slici 1.3.2.

Rezultati modifikovanog Hooke-Jeevesovog metoda

HookeJeevesh[x~2+y~2,{x,y},{2,3},0.1,0.00000000001]

poboljsavaju brzinu konvergencije i tacnost. Na slici 1.3.3 prikazana je trajektorija gener-
isana fiksnim korakom pretrazivanja sa tac¢noséu 10711,

Negradijentni metodi 85

3 3
2.5 2.5
Z Z
1.5 1.5
1 1
0.5 0.5
o o
-1 -0.5 o 0.5 1 1.5 Z -1 -0.5 o 0.5 1 1.5 Z
Sl 1.3.2 Sl. 1.3.3
Ej 3o Ej 3o
]
25 25 ;\
5 5 /_\
15 15 /
1 1 /
0.5 0.5 /
0 0
-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2
Sl. 1.3.4 Sl. 1.3.5

Na slici 1.3.4 prikazana je trajektorija generisana promenljivim korakom pretrazivanja
sa tacnoséu 10711, dok je na slici 1.3.5 prikazana trajektorija generisana prvom varijantom
simpleks metoda sa tacnoséu 10~ 11,

Na slici 1.3.6 prikazana je trajektorija generisana drugom varijantom simpleks metoda
sa ta¢noséu 10~7, dok je na slici 1.3.7 prikazana trajektorija generisana metodom zlatnog
preseka sa taénoséu 10~ 7.

Trajektorije generisane metodom dihotomije sa ta¢noséu 10~7 i Powelovim metodom
sa istom tacnoSéu prikazane su na slikama 1.3.8 i 1.3.9, respektivno.

Primer 3. Sledeée izracunavanje, definisano originalnim Hooke-Jeeves metodom

HookeJeeves [x~2+y~2,{x,y},{20,10},0.1,0.00000000001]

86 Bezuslovna optimizacija

3 // 3 //
25 / _ 25 /

2 2
15 _. ' 15

1 1
0.5 0

0 0

-2 -1 0 1 2 -2 -1 0 1 2

Sl. 1.3.6 Sl. 1.3.7

25

e —— ———

1 S N R G 5 1 .
) \ _
= -1 0 1 2 & —Z %

Sl 1.3.8 Sl 1.3.9

N
\\

2

divergira (slika 1.3.10), dok modifikovani metod, pod istim pretpostavkama, konvergira
(slika 1.3.11).

1.3.5. SLUCAJNO PRETRAZIVANJE

Ovaj metod je analogan metodu skaniranja. Pri primeni metoda prostog
slu¢ajnog pretrazivanja, vrednosti ciljne funkcije se izracunavaju u sekven-
cijalno generisanim tackama x, koje su ravnomerno rasporedene unutar
dozvoljene oblasti

[xmin, xmax] = [zmin;, zmaz;], i=1,... ,n.

Pretrazivanje se prekida na osnovu jednog od sledeéa dva kriterijuma:

Negradijentni metodi 87

)(10 \)[104 \

o

e
e

o)
[

-15 -10 -5 u] 5 10 15 20 -15 -10 -5 u] 5 10 15 20
Sl 1.3.10 Sl 1.3.11

1° Dostizanje unapred zadatog broja M; izra¢unavanja vrednosti Q(x);

2° Dostizanje zadatog broja izracunavanja Ms ciljne funkcije Q(x) nakon
poslednjeg izbora tekuéeg maksimuma (M; je broj “neuspesnih tacaka”).
Obicéno se uzima 10n < My < 50n).

Slucajna tacka unutar dozvoljene oblasti [xmin;, zmaz;], i = 1,...,n
generiSe se jednakoséu

(1.3.1) x; = xmin; + a;(zmax; — xming), i=1,...,n,

gde je a; pseudoslucajni broj u intervalu [0, 1] dobijen od strane programskog
generatora.

Algoritam sluc¢ajnog pretraZivanja:
Korak 1. Zadati ulazne veli¢ine n, My, zmin;, xmaz;, 1 =1,...,n.

Korak 2. Generisati niz slu¢ajnih brojeva «; i niz koordinata z;,1=1,... ,n,
tacke x, na osnovu (1.3.1).

Korak 3. Postaviti J =1 1 zFE; =x;, i=1,... ,n.
Korak 4. Izracunati @, = QM = Q(x).

Korak 5. Unutar ciklusa, koji se prekida kada je J > M, izvrsiti sledeée
korake:

Korak 5.1. Generisati niz slucajnih brojeva a; a zatim niz sluc¢ajnih bro-
jeva x;, 1=1,...,n, koristeéi (1.3.1).

Korak 5.2. Izracunati Q1 = Q(x).

Korak 5.3. Ako je Q1> QM postaviti
QM =Q1, zE;=x;, i=1,...,n.

Korak 5.4. Postaviti J := J + 1.

88 Bezuslovna optimizacija

Korak 6. Editovati vrednosti promenljivih QM i zE;, i=1,... ,n.

U slede¢em algoritmu, pretrazivanje se prekida kada se dostigne zadati
broj M, izracunavanja vrednosti ciljne funkcije nakon poslednjeg definisanja
tekuéeg maksimuma.

Korak 1. Zadati ulazne velicine N, My, xmin;, xmax;, i =1,... ,n.

Korak 2. Generisati niz slu¢ajnih brojeva «; i niz koordinata z;, i=1,... ,n,
tacke x, prema (1.3.1).

Korak 3. Postaviti L=0 i zFE; =x;, i=1,...,n.
Korak 4. Izracunati @, = QM = Q(x).

Korak 5. Unutar ciklusa, koji se prekida kada je L > M, izvrsiti sledeée
korake:

Korak 5.1. Koristeéi (1.3.1) generisati niz slucajnih brojeva «;, a zatim
niz slu¢ajnih brojeva z;,i =1,... ,n.

Korak 5.2. Izracunati Q1 = Q(x).
Korak 5.3. Ako je Q1 > QM postaviti
QM =Qq, zF; =x;, i=1,... ,n, i L =0; inate postaviti
L:=L+1.
Korak 6. Prikazati vrednosti promenljivih QM i zE;, i=1,... ,n.

Priblizna tacnost lokalizacije ekstremuma A zavisno od broja ravnomerno
generisanih tacaka M, izra¢unava se po formuli

Pri koriséenju ovog metoda verovatnoc¢a da se pronade globalni maksimum
raste u zavisnosti od broja izraCunavanja vrednosti ciljne funkcije.

Metod nije efikasan, ali se koristi kao pomoc¢ni algoritam za nalazenje glob-
alnog ekstremuma ili za izbor pocetne optimalne tacke pri implementaciji
drugih metoda.

1.3.6. SLUCAJNO PRETRAZIVANJE SA VECOM GUSTINOM

U ovom algoritmu nova sluc¢ajna tacka se generiSe u zavisnosti od tekuée
najbolje vrednosti ciljne funkcije. Kriterijum za prekid algoritma je dosti-
zanje zadatog broja M “neuspesnih” tacaka nakon poslednjeg izbora najbo-
ljeg rezultata za Q(z).

Negradijentni metodi 89

U toku primene ovog metoda moguce je da vrednost nekog od upravljackih
parametara izade izvan dozvoljene oblasti I'x. Zbog toga je neophodno
izvrsiti proveru da li su vrednosti svih parametara unutar zadate oblasti
[xmin, xmax]. Blok Sema algoritma limit, kojim se vrednosti upravljackih

parametara vra¢aju unutar zadate oblasti, posebno je opisana u ovom odelj-
ku.

U algoritmu vrednost broja k predstavlja broj novoodabranih ocena mak-

simuma. Nova sluc¢ajna tacka x1 = z1;, ¢ = 1,... ,n, se generiSe prema
formulama

2a; — 1)¥
(1.3.2) xl; = zE; + (xmax; — xmini)%, i=1,...,n.

Zbog —1 < 2a; — 1 < 1, zaklju¢ujemo da se nove slucajne tacke generisu sa
sve vetom gustinom sa pove¢anjem vrednosti k.

Ovaj metod ima karakter adaptivnog metoda, ali sa veoma niskim ste-
penom adaptivnosti. Sledi opis ovog metoda.

Korak 1. Zadati ulazne veli¢ine n, M1, xmin;, xmax;, +1=1,...,n.
Korak 2. Postaviti L =0, K =1.

Korak 3. Generisati niz slucajnih brojeva «;, a zatim niz brojeva
zE; = xmin; + o;(xmazx; — xmin;), i=1,...,n,

koji predstavljaju koordinate tacke xE.
Korak 4. Izracunati QM = Q(xE).
Korak 5. Unutar ciklusa, koji se prekida kada je J > My, izvrsiti sledece:
Korak 5.1. Generisati niz sluc¢ajnih brojeva «; a zatim niz brojeva x1;,
i=1,...,n, prema (1.3.2).
Korak 5.2. Poziv procedure limit.
Korak 5.3. Izracunati Q1 = Q(x1).
Korak 5.4. Ako je Q1 > QM postaviti:
QM =Qq, 2F;=21;, i=1,... ,n, k=k+1, L=0;
inace postaviti L := L + 1.
Korak 6. Editovati vrednosti QM i aF;, i=1,... ,n.
Sledi opis algoritma procedure limit.

Ulazne veli¢ine su n, xmin(l), zmaz(I), I =1,... ,n.

90 Bezuslovna optimizacija

Korak 1. Definisati for ciklus, za vrednosti promenljive I = 1,... ;n. Un-
utar ciklusa uraditi sledece korake:

Korak 1.1. Ako je z(I) > xmax(I) postaviti z(I) = xmax(I).
Korak 1.2. Ako je z(I) < xmin(I) postaviti z(I) = zmin(I).

limit[x_List,xmin List,xmax List]:=
Block[{i,n,x0=x},
n=Length[x0];
Do[Which[x0[[i]]<xmin[[i]],x0[[i]])=xmin[[i]l],
x0[[i]]>xmax[[i]],x0[[i]]=xmax[[i]]
] ,{i,n}
1
x0

1.3.7. METOD SLUCAJNIH SMEROVA

Osnovna ideja ovog metoda sastoji se u slede¢em. Neka je zadata tacka
X9 = (CESO), . ,x%o)) u dozvoljenoj oblasti I',. Ova tacka lezi na jednoj
povrsi (ili liniji) sa konstantnomm vrednoséu ciljne funkcije. Ova povrs deli
prostor na dve oblasti, koje se nazivaju uspesna i neuspesna, zavisno od
smera koji vodi prema ekstremu. Ako se nacini neki korak od tacke xg u
slu¢ajnom smeru postoje tri moguénosti:

a) korak je unutar uspesne oblasti, tj. u smeru poboljsanja vrednosti Q(x);
b) korak je u neuspesnoj oblasti, tj. u smeru losijih vrednosti funkcije Q(x);
c) korak je unutar neutralne oblasti, tj. Q(x) ima istu vrednost.

Ako je korak u uspesnoj oblasti, nova tacka moze da se uzme za novu
pocetnu tacku, a zatim da se nacini novi korak u slu¢ajnom pravcu. Ako
je tacka u meuspesnoj oblasti, ona se izostavlja i pravi se novi korak od
prethodne pocetne tacke, sve dok se ne dobije nova uspesna tacka. Praveéi
uzastopno korake konstantne duzine Az na slucajan nacin i zamenjujudi
staru pocetnu tacku novom uspesnom tackom, stize se u oblast ekstremne
tacke x*. U toj oblasti korak moze da se smanjuje do prethodno zadatih
granica. Graficki je metod ilustrovan na slici 1.3.12.

Na osnovu ove ideje razradeno je mnogo algoritama za slucajno pre-
trazivanje. Osnovna ideja tih algoritama je formiranje koraka u sluc¢ajnom
pravcu. To se moze ostvariti formiranjem sluc¢ajnog vektora {=(&1,... ,&,)
jedini¢ne duzine, koji se prostire od zadate tacke u svim moguéim pravcima

Negradijentni metodi 91

T,

Sl 1.3.12

sa jednakom verovatnot¢om, unutar oblasti upravljackih parametara. Korak
od zadate tacke x*) u novu tacku x(**1) odreden je transformacijom

x§k+1) = xgk) + hzgz(k)a 1=1,2,...,n,

gde je h; velicina koraka po svakom upravljackom parametru, a ffk) je
i-ta komponenta sluc¢ajnog vektora formiranog u k-oj iteraciji. Kriteri-
jum uspesnosti koraka je Q(x*t1)) > Q(x®)) u slucaju maksimuma i
Q(x*1)) < Q(x®)) za slucaj minimuma. U blizini ekstremne tacke, pot-
rebno je sve viSe smanjivati duzinu koraka h; da bi korak bio uspesan. Kri-
terijum za prekid pretrazivanja moze da bude dostizanje broja M neuspesnih
smerova nakon poslednjeg uspesSnog koraka. Broj M moze da se uzme prema
empirijskim formulama

2™ + 4, a n <3,
(1.3.3) M= { ’

2n+4, za n> 3.

Formiranje slucajnog vektora. Komponente slucajnog n-dimenzionalnog
vektora £ = (&1,...,&,) mogu se dobiti koriséenjem vrednosti n slu¢ajnih
brojeva (3; (i = 1,... ,n) ravnomerno rasporedenih unutar intervala [—C, C],
prema slede¢oj formuli

92 Bezuslovna optimizacija

Pri tome je, evidentno, ispunjen uslov

et
i=1

Ako se raspolaze nizom sluc¢ajnih brojeva «; koji su ravnomerno ras-
poredeni unutar pozitivnog intervala [0,C], on se transformise u interval
[—C, C] prema formuli

C
Bi = (ar5>'2a i=1,2,...,n

Na primer, ako je «; u intervalu [0, 1], on se transformise u interval [—1, 1],
prema formuli

Bi:<ai—l>-2, i:1,2,...,n,
2
posle Cega se izraCunavaju vrednosti &;. Algoritam za generisanje kom-
ponenti n-dimenzionalnog slucajnog jedini¢nog vektora ¢ implementiran je
slede¢im programom:
Sluvec[n_Integer]:=
Block[{v=Table[Random[],{n}],s},

s=Sum[v[[i]]1"2,{i,n}];

s=Sqrt [s];

Dol[v[[ill/=s, {i,n}1;

v

]

Sledi opis implementacije metoda slu¢ajnih smerova.
Neophodni parametri algoritma su:

Q(x) = Q(x1,... ,x,): ciljna funkcija;

n: broj upravljackih parametara;

x0 =2x0;, ¢ =1,...,n: poCetna tacka;
hO = h0;, ¢ =1,... ,n: pocetni parametar koraka;
hmin = hAmin;, ¢ = 1,...,n: minimalan parametar koraka, odnosno

tacnost lokalizacije ekstremuma za svaki upravljacki parametar;

LH: vrednost kojom se skrac¢uju koraci optimizacije h;, i =1,... ,n;

Negradijentni metodi 93

xmin = zmin;, i = 1,...,n, i xmax = zmaz;, ¢ = 1,...,n: vektori
kojima je odredena oblast optimizacije.

Neophodni potprogrami su:
potprogram za generisanje slu¢ajnog vektora Sluvec;
potprogram za proveru ogranicenja limit.
Pored toga, u algoritmu se koriste sledec¢e lokalne promenljive:
x1: nova slucajna tacka u pravcu slucajnog vektora;
I-broja¢ neuspesnih pokusaja (I < M);

g0 i gl: pomoc¢ne promenljive (dodeljuje im se vrednost funkcije ¢ u dve
uzastopne iteracije x0 i tacki x1, respektivno).

Algoritam metoda je slededi:
Korak 1. Definisati broj M saglasno formuli (1.3.3).
Korak 2. Izracunati vrednost ciljne funkcije u pocetnoj tacki Qo = Q(xo).
Korak 3. Broj neuspesnih smerova postaje nula (L = 0).

Korak 4. Generisati komponente sluc¢ajnog vektora &, koristeéi potprogram
Sluvec.

Korak 5. Naciniti korak u slu¢ajnom pravcu, tj. izracunati x1 prema
xEkH) = xgk) + hifi(k), i=1,...,n.

Korak 6. Proveriti ogranicenja za interval (xmin, xmax) koriste¢i potpro-
gram limit.

Korak 7. Izracunati se vrednost ciljne funkcije Q1 = Q(x1).
Korak 8. Proveriti da li je nacinjeni korak uspesan, tj. uslov Q1 > Qo.

Korak 9. Ako je Q1 > Qo pocCetnu tacku premestiti u x1, tj. postaviti
x0 = x1 i nastaviti algoritam od Koraka 3.

Korak 10. Ako je Q1 < Qg postaviti L := L+1, tj. povecati broj neuspesnih
smerova za 1.

Korak 11. Proveriti broj neuspesnih smerova. Ako je L < M, produziti
algoritam od Koraka 4, tj. izabrati novi slucajni smer.

Korak 12. Ako je L > M, proveriti da li je parametar koraka za svako x;
dostigao zadatu tacnost hmin;, tj.

h0; < hmin; =zasvako 1=1,... n.

94 Bezuslovna optimizacija

L2

.’1’,'11

Sl 1.3.13

Ako je uslov ispunjen prekinuti pretrazivanje i editovati vrednosti
za Qo 1 x0.

Korak 13. Ako poslednji uslov nije ispunjen, smanjiti svaki korak h; deljen-
jem sa LH, a zatim nastaviti algoritam od Koraka 3.
Metod je ilustrovan na slici 1.3.13.

SluDir[q-,var List,x List,h List,hmin List,elha_,
xmin_ List,xmax List]:=
Block [{x0=x,ksi,M,qO,ql,n,i,L=O,x1=x,1g=True,hO=h,1h=e1ha,
izbor, Lista={} },
izbor=Input["Zelite 1li minimum(1) ili maksimum(2)7?" J;
n=Length[var];
If[n<=3, M=2"n+4, M=2xn+4];
q0=q; Dol[q0=q0/.var[[i]1->x0[[i]],{i,n}];
Lista=Append[Lista,x0];
q1=q0;
While[L<=M && 1g,
ksi=Sluvec[n]; ksi=Limit[ksi,xmin,xmax];
Do[x1[[1]1=x0[[i]]+hO[[1]]1*ksi[[i]],{i,n}];
x1=Limit [x1,xmin,xmax] ;
ql=q; Dolql=q1/.var[[i]]1->x1[[i]],{i,n}];
If [(izbor==1 && q1<q0) || (izbor==2 && q1>q0),
q0=ql; x0=x1; L=0; Lista=Append[Lista,x0],

Negradijentni metodi 95

L=L+1;
lg=False;
Do[Which[hO[[i]]>hmin[[i]], lg=Truel,{i,n}];
If[1g, Do[hO[[i]]/=1h,{i,n}];]
]
1;
{x0,q0, Lista}
]

Metod slu¢ajnih smerova nije tako efikasan u odnosu na brzinu konvergen-
cije, ali je on osnova za niz drugih metoda, kao $to su algoritam sa obrnutim
korakom, algoritam sa linearnom interpolacijom za ciljnu funkciju, algoritam
slu¢ajnog trazenja sa samoobucavanjem, itd.

1.3.8. SLUCAJNO PRETRAZIVANJE SA OBRNUTIM KORAKOM

Znacajno ubrzanje konvergencije metoda slu¢ajnih smerova moze se pos-
ti¢i ako se uvede obrnuti korak, u slucaju da je korak ué¢injen u neuspesnoj
oblasti. Ako se nacini neki korak u slu¢ajnom pravcu koji se pokaze neus-
pesnim, logi¢no je da se proveri obrnuti smer. U sluc¢aju da se i prvi i drugi
korak pokazu neuspesSnim, definiSe se novi slucajan smer.

Algoritam ovog metoda se moze opisati na slede¢i nacin:
Korak 1. Izabirati pocetnu tacku xq.
Korak 2. lzgraditi slucajni smer, kako je ve¢ opisano.
Korak 3. Ako je generisani sluc¢ajni vektor odredio neuspeSni smer opti-
mizacije, pokuSava se sa optimizacijom u suprotnom smeru.

Korak 4. Vratiti se na Korak 2.

Korak 5. Kriterijum za prekid algoritma je isti kao i za metod sluc¢ajnih
smerova.

Ekstremum se lokalizuje sa ta¢noséu h0; za svaki upravljacki parametar.

SluOb[q_,var List,x List,h List,hmin List,elha_,
xmin_List,xmax List]:=
Block[{xO=x,ksi,M,qO,q1,n,i,L=O,X1=x,1g=True,hO=h,izbor,
lh=elha, Lista={}},
izbor=Input["Zelite 1i minimum(1) ili maksimum(2)?7"];
n=Length[var];
If [n<=3, M=2"n+4, M=2%*n+4];
q0=q; Do[q0=q0/.var[[i]]->x0[[i]1],{i,n}];
Lista=Append[Lista,x0];

96 Bezuslovna optimizacija

q1=q0;
While[L<=M && 1g,

ksi=Sluvec[n]; ksi=Limit[ksi,xmin,xmax];

Do[x1[[i]11=x0[[i]11+h0[[i11*ksi[[i]],{i,n}];

x1=Limit [x1,xmin,xmax] ;

ql=q; Dolql=ql/.var[[i]l]->x1[[i]1],{i,n}];

If [(izbor==2 && q1<q0) || (izbor==1 && q1>q0),
Do[x1[[i]1=x0[[i]1]-hO[[i]]*ksi[[i]1],{i,n}];
x1=Limit [x1,xmin,xmax] ;
ql=q; Dolql=qi/.var[[i]]->x1[[il],{i,n}];

1

If [(izbor==2 && q1>q0) || (izbor==1 && q1<q0),

q0=ql; x0=x1; L=0;Lista=Append[Lista,x0],
L=L+1;
lg=False;
Do[Which[hO[[i]]>hmin[[i]], lg=Truel,{i,n}];
If[1g, Do[hO[[i]]1/=1h,{i,n}];]
1;
1;
{x0,q0, Lista}
]

1.3.9. METOD NAMETNUTE SLUCAJNOSTI

U ovom slucaju, koristi se isti pravac generisan slu¢ajnim vektorom sve
dok je pretrazivanje u tom pravcu uspesno. Posle toga, formira se novi
sluc¢ajni vektor, odnosno novi pravac za optimizacuju.

Algoritam ovog metoda je slededi:
Korak 1. Formirati pocetnu tacku xg.
Korak 2. lzgraditi slucajni smer na ranije opisan nacin.

Korak 3. Lokalizovati ekstremum u tom smeru. Lokalizacija moze da se
izvr§i sa konstantnim korakom dok se ne dobije neuspesan rezultat,
ili se moze izvrsiti sa promenljivim korakom.

Korak 4. Poslednji uspesni korak u wuspesnom pravcu se uzima za novu
pocetnu tacku xq i algoritam se nastavlja od Koraka 2.

Korak 5. Kriterijum za prekid algoritma je isti kao i za metod slucajnih
smerova.

Metod je graficki predstavljen na slici 1.3.14. Prikazana su dva mogucéa
smera (I iII) za dostizanje maksimuma od jedne pocetne tacke xg.

Negradijentni metodi 97

BN

Ty

Q)

3

T,

Sl 1.3.14

SluConlq-,var List,x List,h List,hmin List,elha xmin List,
xmax_List] :=
Block [{x0=x,ksi,M,qO,ql,n,i,L=O,x1=x,1g=True,hO=h,izbor,
lh=elha, Lista={}},
izbor=Input["Zelite 1i minimum (1) ili maksimum(2)? "];
n=Length[var];
If [n<=3, M=2"n+4, M=2%*n+4];
q0=q; Do[q0=q0/.var[[i]]->x0[[i]],{i,n}];
Lista=Append[Lista,x0];
q1=q0;
While[L<=M && 1g,
ksi=Sluvec[n]; ksi=Limit[ksi,xmin,xmax];
Do[x1[[i11=x0[[i11+h0[[i]]*ksi[[i]],{i,n}];
x1=Limit [x1,xmin,xmax] ;
ql=q; Dolql=ql/.var[[i]]->x1[[i]],{i,n}];
While[(izbor==1 && q1<q0) || (izbor==2 && q1>q0),
q0=ql; x0=x1; L=0;
Do[x1[[i]1]1=x0[[i]]+hO[[i]]*ksi[[i]],i,n],
x1=Limit [x1,xmin,xmax] ;
ql=q; Dolql=q1/.var[[i]]1->x1[[il],{i,n}];
Lista=Append[Lista,x0];
1;
L=L+1; lg=False;
Do [Which[hO[[i]]>hmin[[i]], 1g=Truel,{i,n}];
If[1g, Do[hO[[i]]1/=1h,{i,n}]; 1]

98 Bezuslovna optimizacija

1;
{x0,q0, Lista}

Izbor pocetne tacke pri slucajnom trazenju. Brzina konvergencije
algoritma sustinski zavisi od izbora pocetne tacke. Osnovni metodi za izbor
pocetne tacke su:

1° Pocetna tacka se zadaje u oblasti ekstremuma ako apriori postoji takva
informacija.

2° Pocetna tacka x0 se zadaje u sredistu dozvoljene oblasti xmin;, xmax;,
1=1,...,n

1
z0; = E(ﬂ:maazi + xmin;), i=1,...,n.

3° Pocetna tacka se generiSe na slucajan nacin
x0; = zmin; + o;(xmax; — xmin;), i=1,...,n,

pri ¢emu je «; pseudoslucajni broj.

4° Odabira se pocetna tacka iz skupa slu¢ajnih tacaka. Ovo predstavlja
kombinaciju prostog sluc¢ajnog trazenja i adaptivnog metoda. GeneriSe se
niz slucajnih tacaka, a za pocetnu se uzima ona u kojoj ciljna funkcija ima
najbolju vrednost Q(x¢). Broj generisanih tacaka Ny moze se definisati
empirijskim formulama

2" +4, za n <3,
0 2n+4, za n>3.

Ovakvom modifikacijom znatno se povecava konvergencija metoda.

Brzina konvergencije moze se dodatno povecati ako se koristi pocetni al-
goritam slucajnog pretrazivanja sa velikim parametrom u pocetnoj tacki
koja je izabrana iz skupa tacaka koje su lokalizovane drugim algoritmom (na
primer, gradijentnim algoritmom).

Rezultati testiranja programa.
In[1]:= SluDir[x"2+y"2,{x,y},{-1,1},{0.1,0.2}, {0.01,0.02},4,{-5,-3} {2,2}]
(*maksimum*)

Out[l]= {{-0.627172, 2}, 4.39334, {{-1, 1}, {-0.947012, 1.16961}, {-0.856402, 1.25423},
{-0.826867, 1.4453}, {-0.791668, 1.6325}, {-0.782184, 1.8316}, {-0.709821, 1.96964},

Negradijentni metodi 99

{-0.627172, 2}}}

In[2):= SluDir[x"2+y"2,{x,y},{-1,1},{0.1,0.2}, {0.01,0.02},4,{-5,-3},{2,2}]
(*minimum*)

Out[2]= {{-0.976039, 1.01416}, 1.98116, {{-1, 1}, {-0.994116, 1.00422},
{-0.988058, 1.00720},{-0.982048, 1.01072}, {-0.976039, 1.01416}}}

In[3]:= SluOb[x"2+y"2,{x,y},{-1,1},{0.1,0.2}, {0.01,0.02}4,{-5,-3},{2,2}]
(*maksimum*)

Out[3]= {{-0.737246, 2}, 4.54353, {{-1, 1}, {-0.917731, 1.1137}, {-0.826847, 1.19713},
{-0.761856, 1.34913}, {-0.861496, 1.33216}, {-0.960766, 1.30804},
{-0.909615, 1.47989}, {-0.870186, 1.66369}, {-0.811819, 1.82609},
{-0.747974, 1.98002}, {-0.737246, 2}}}

In[4]:= SluOb[x"2+y"2,{x,y},{-1,1},{0.1,0.2}, {0.01,0.02},4,{-5-3},{2,2}]
(*minimum*)

Out[4]= {{-0.617204, 0.242588}, 0.43979, {{-1, 1}, {-1.01419, 0.802022},
{-1.03335, 0.60573}, {-0.949694, 0.715303}, {-1.00881, 0.553997},
{-1.02335, 0.356121}, {-1.04692, 0.161756}, {-0.994721, 0.332349},
{-0.894751, 0.33724},{-0.80455, 0.423585}, {-0.704648, 0.43241},
{-0.729485, 0.238678}, {-0.738451, 0.192004}, {-0.745307, 0.14392},
{-0.73239, 0.186729}, {-0.718912, 0.228841}, {-0.699053, 0.259213},
{-0.674067, 0.260897}, {-0.678432, 0.211665}, {-0.653432, 0.211801},
{-0.648969, 0.220551}, {-0.649399, 0.208081}, {-0.643752, 0.213438},
{-0.637742, 0.216864}, {-0.63403, 0.226921}, {-0.629265, 0.235011},
{-0.624094, 0.24203}, {-0.619879, 0.251259}, {-0.623398, 0.24093},
{-0.617204, 0.242588}}}

In[5]:= SluCon[x"2+4+y"2,{x,y},{-1,1},{0.1,0.2}, {0.01,0.02},4,{-5,-3},{2,2}]
(*maksimum*)

Out[5]= {{-0.703839, 2}, 4.49539, {{-1, 1}, {-0.95064, 1.17394}, {-0.90128, 1.34788},
{-0.85192, 1.52181}, {-0.80256, 1.69575}, {-0.753199, 1.86969}, {-0.703839, 2}}}

In[6]:= SluCon[x"2+y"2,{x,y},{-1,1},{0.1,0.2}, {0.01,0.02},4,{-5,-3},{2,2}]
(*minimum*)

Out[6]= {{-0.836083, 1.12258}, 1.95921, {{-1, 1}, {-0.976583, 1.01751},
{-0.953167, 1.03502},{-0.92975, 1.05253}, {-0.906333, 1.07004},
{-0.882917, 1.08755}, {-0.8595, 1.10507},{-0.836083, 1.12258}1}

Kako se metod zasniva na slu¢ajnom izboru tacaka iz zadatog intervala,
prilikom viSe poziva za iste parametre dobijaju se razli¢iti rezultati. Greska
je relativno velika. Zato se ovakvi metodi najcesée koriste za odredivanje
pocetnih vrednosti za neke druge metode.

1.8.10. KOMPLEKS METOD

Ideja metoda je da se unutar dozvoljene oblasti formira “oblak” slucajnih
tacaka, koji se naziva kompleks, a koji ¢e se na odgovarajuéi nacin kretati

100

Bezuslovna optimizacija

prema ekstremnoj vrednosti ciljne funkcije Q(x). Pri premestanju kompleksa
koristi se teziste kompleksa, koje se oznacava sa x(¢). U ovom poglavlju se
izuCava kompleks metod koji je primenljiv samo za ograni¢enja parametara

oblika T",,

= (xmin, xmax).

Algoritam kompleks metoda:

Korak 1.

Korak 2.
Korak 3.

Korak 4.

Korak 5.

Formirati pocetni kompleks koji sadrzi IV, tacaka
xU) j=1,... N, formiranih prema formuli
(1.3.4) xf;j) = zmin; + agj)(xmaxi — xmin;),

gdesui=1,...,n; j=1,...,N,,. Velicine agj) Su ravnomerno
rasporedeni slucajni brojevi iz intervala [0, 1].

Broj tacaka u kompleksu se odreduje prema empirijskoj formuli
2" +2, n<3,
O 2+ 2, n>3.

U svakoj tacki x\) kompleksa izra¢unati vrednost Q) = Q(x()).

Determinisati tacku x(*) unutar kompleksa u kojoj ciljna funkcija
ima najbolju vrednost, kao i tacku x(*) unutar kompleksa u kojoj
ciljna funkcija ima najlosiju vrednost, tj.

(1.3.5) Q® = Q(x®) = maxQW), Q) = Q(x™)) = min Q).
J J

Proveriti kriterijum za prekid algoritma:

n

2
(1.3.6) 3 (mEb) - :cE“”) < e,

i=1

gde je £, mali pozitivan broj koji, o¢igledno, predstavlja rastojanje
izmedu najbolje i najlosije vrednosti ciljne funkcije.

Ako je uslov (1.3.6) ispunjen, algoritam se prekida i edituju se
vrednosti Q® i x(®). U protivnom slucaju, algoritam se nastavlja
od sledeéeg koraka.

Izracunavaju se koordinate nove tacke z(V):

(1.3.7) 2N = 2x§b) — mgw), i=1,...,n.

1

Negradijentni metodi 101

Korak 6. Proveriti ograni¢enja x € I'y, koristeéi ranije opisanu proceduru
limat.

Korak 7. Tzracunati QV) = Q(xV)).

Korak 8. Ako je Q) > Q) tacka x(V) se uzima za novu tacku kompleksa
umesto tacke x(®) tj. x(@) = xV) QW) = QN)_ Algoritam se
nastavlja od Koraka 3.

Korak 9. Ako je Q) < Q™) nova tacka x(V) se izostavlja i izracunavaju
se koordinate tacke (V)| koja se nalazi na sredini izmedu tacaka
x(w) j x(®).

1
iW%:ﬂﬁ”+ﬂmy i=1,...,n.

) 7 7

Korak 10. Izrac¢unati

QW) = Q(;((N)).

Korak 11. Nova tacka (V) se uzima umesto x(®) tj. postavljaju se smene
x(®) = x(N) QW) = Q(N) " Algoritam se nastavlja od Koraka 3.

Mogu se istaéi slede¢e pozitivne osobine kompleks metoda:
1° Algoritam je jednostavan i pogodan za implementaciju na ra¢unarima.

2° Moze se koristiti kako za izra¢unavanje bezuslovnog, tako i za izracu-
navanje uslovnog ekstremuma.

KompleksMetod[q_,prom_List,xmin List,xmax List,eps_]:=
Block [{n=Length[prom] ,xb,xw,Nm,pniz,i,j,vektorq,
gpom,gb,qw,xN,qN, kompleks,qgkompleks={},
ming,minind,maxq,maxind},
If [n<=3,Nm=2"n+2,Nm=2n+2] ;
kompleks=Table [xmin[[i]]+
Random[]* (xmax [[i]]-xmin[[i]]),{Nm},{i,n}];
Print ["kompleks= ",kompleks];
For[j=1, j<=Nm, j++,
gpom=q;
Do [gpom=qpom/. prom[[i]]->kompleks[[j,i]],{i,n}];
gkompleks=Append [gkompleks, qpom]
1;
Print ["qkompleks= ", gkompleks];
ming=qkompleks[[1]]; minind=1;
maxq=qgkompleks[[1]]; maxind=1;
For[i=2,i<=Length[qkompleks] ,i++,

102

1;

Bezuslovna optimizacija

If [gkompleks[[i]]<ming,

ming=gkompleks[[i]]; minind=i

If [qkompleks[[i]]>maxq,

maxq=gkompleks[[i]]; maxind=i

xb=kompleks [[minind]]; xw=kompleks[[maxind]];

gb=minqg; qw=maxq;
While [Sqrt [Sum[(xb[[i]]-xw[[i]])"~2,{i,n}]]>=eps,

1;

xN=2% (xb-xw) ;
xN=1imit [xN,xmin,xmax] ;
gN=q; DolgN=gN/. prom[[i]]->xN[[i]],{i,n}];
If[gN >= qw,
xN=(xb+xw)/2;
xN=1imit [xN,xmin,xmax] ;
13
gN=q; DolgN=gN/. prom[[i]]->xN[[i]],{i,n}];
kompleks [[maxind]]=xN; gkompleks[[maxind]]=qN;
Print ["kompleks= ", ,kompleks];
Print ["qkompleks= ", gkompleks];
ming=qkompleks[[1]]; minind=1;
maxq=qgkompleks[[1]]; maxind=1;
For[i=2,i<=Length[qkompleks],i++,
If [gkompleks[[i]]<ming,
ming=qgkompleks[[i]]; minind=i
1;
If [qkompleks[[i]]>maxq,
maxq=qgkompleks[[i]]; maxind=i

15
xb=kompleks[[minind]]; xw=kompleks[[maxind]];
gb=ming; qw=maxq;

{xb,qb}

Negradijentni metodi 103

1.3.11. POWELOV VISEDIMENZIONALNI METOD

Powelov metod se moze koristiti i za izracunavanje lokalnog minimuma
proizvoljne funkcije f sa n promenljivih (videti [73]), pri ¢emu ima tzv. svo-
jstvo kvadratnog zavrsavanja. Kazemo da neki numericki metod za reSavanje
problema bezuslovne optimizacije ima svojstvo kvadratnog zavrSavanja ako
za svaku funkciju oblika

F() = 506 4%) + (b,%) +a.

sa pozitivno definitnom matricom A, metod daje optimalno reSenje u najvise
n iteracija. Powellov metod je efikasan u izraCunavanju optimalne tacke
proizvoljne funkcije f, ali se u opStem sluc¢aju gubi svojstvo kvadratnog za-
vrsavanja. Potrebno je na pocetku primene Powellovog metoda odrediti n
linearno nezavisnih konjugovanih vektora. Vrlo jednostavan i efikasan metod
za odredivanje n linearno nezavisnih konjugovanih vektora dao je Powell. U
kratkim crtama Powellov metod se moze opisati slede¢im algoritmom:

Korak 1. Odrediti pravilo zaustavljanja za neki dovoljno mali pozitivan broj
€. Ozna¢imo proizvoljnu pocetnu aproksimaciju sa

tél) =x.

Korak 2. Pre k-te iteracije koristi se n linerno nezavisnih (ne nuzno konju-
h) vek (k) (k)

govanih) vektora u; ’, uy /, ...

sluze jedini¢ni vektori e'

(1) 1 (1) 2

_ _ (1) _ an
u, ' =e,uy,’ =€, ..., u, =e".

, u%k). Kao pocetni vektori obi¢no
R A P

)

Korak 3. Pocetak k-te iteracije (k = 1,2, ...): Izracunati brojeve 607, 63,
..., 0 takve da vazi

F(2 +0;u) = min £ (87, + 07uf),

gde je
t™ =™ Lora™ i=12,... 0
U prvoj iteracij je k = 1. Poceti sa ¢ = 1, tj. naéi optimalnu tacku

07 funkcije f(tél) + Hlugl)) = f(xo + Hlel). Zatim se izraCunava

t1" = 5" + f7ul”

104

Korak 4.

Bezuslovna optimizacija

inastavlja se sai = 2, tj. izracunava se optimalna tacka 65 funkcije

f (tgl) + Ggugl)), a zatim izracunava
6 = t1 +65u5” (1)

i nastavlja sa ¢ = 3, itd. Na kraju petlje izracunata su sva op-

timalna resenja 07, 05, ..., 0 jednodimenzionih problema mini-
mizacije, kao 1 svi vektori tgl), tgl), R tq(ml).

Nastavak k-te iteracije: Zameniti

k+1 k .
W _g®

1 staviti

uq(fﬂ) (k) _ tglk) _ ték).

= un+1
Ovaj korak opisuje zamenu pocetnih jedini¢nih vektora sa konju-
govanim vektorima. Dok se u prvoj iteaciji koriste vektori

{u(1)7 u21) ottt ugzl)}7

za izracunavanje prve aproksimacije x! koristi se konjugovani vek-
1)

tor u,, /. U izracunavanju druge aproksimacije koristi¢e se novi
skup vektora

{u(l) u?;1 [ung)a (1) } {u(2)7 u227 RS ule? u7(@2)}

Treba primetiti da je prvi jedini¢ni vektor otpao, zapravo je za-
menjen konjugovanim vektorom ugll_il. Da bi se moglo lako kon-
trolisati koji ¢e vektor otpasti i koji su vektori konjugovani, uve-
deno je uredenje medu vektorima. Novi konjugovani vektor uvek

se pojavljuje u skupu tekuéih vektora sa desne strane.

Korak 5. Zavrsetak k-te iteracije: Izracunati broj 0},,, sa osobinom

Ont1

Fot® pgr (60 —t8).

Negradijentni metodi 105

(Vektor ugi)l = t&’” — ték) jedan je od konjugovanih vektora. U
(k)

smeru toga vektora, uzetog iz tacke t;, ’, nalazi se aproksimacija
xF).
Korak 6. Primena pravila zaustavljanja (k= 1,...). Ako je

boxbl|<e

I
proces se zaustavlja jer je x* dovoljno dobra aproksimacija lokal-
nog optimuma x*. Ako ovo nije slu¢aj, staviti

ték) — Xk—l

i vratiti se na Korak 3 i nastaviti sa (k + 1)-vom iteracijom.
Sledi implementacija u jeziku MATHEMATICA:

powelvisel[q_,pr_,x_,eps_] :=
Block[{funpom,fjed,vt0=x,vt1=x,vx0=x,vx1=x,rast=2*eps,
vvu=Table [0, {Length[pr]l},{Length[pr]}],
vnovi=Table[0,{Length[pr]l}],
vpomkonj=Table[0,{Length[pr]}],teta,tetamin,
pomeraj,n=Length[pr],i,j,jj,iter=0},
Do[vvul[i,il]=1,{i,1,n}];
(* glavna petlja iteracije *)
While[rast>eps,
iter++;
vt0=vx0;
Do [vpomkonj=vvu[[i]]; fjed=q;
Do[fjed=fjed/.pr[[j]1]1->
(vtO[[jl1+teta*xvpomkonj [[j11),{j,1,n}];
tetamin=dskpowel [fjed,{teta},0,N[eps/10]];
pomeraj=tetamin[[1]];
Do[vt1[[j]1]1=N[vtO[[j]l]+pomeraj*vpomkonj[[j1]1],
{3,1,0}1;
vtO=vtl,
{i,1,n}1;
Dolvvu[[il]=vvu[[i+1]],{i,1,n-1}];
Do [vpomkonj [[i]1=vt1[[i]11-vx0[[i]],{i,1,n}];
vvu[[n]]=vpomkonj;
fjed=q;
Do[fjed=fjed/.pr[[jl1]1->

106 Bezuslovna optimizacija

(vx0[[jl]l+tetaxvpomkonj[[j11),{j,1,n}];
tetamin=dskpowel[fjed,{teta},0,N[eps/10]];
pomeraj=tetamin[[1]];

Do [vx1[[j]1]1=N[vxO[[j]]+pomeraj*vpomkonj[[j1]1],
{j,1,0}1;
rast=meral[vxl,vx0];
vx0=vx1;
funpom=q;
Do [funpom=N [funpom/.pr[[i]1->vx1[[i]]],{i,1,n}];
]
Return[{vx1l, funpom}];
]

2. GRADIJENTNI METODI

2.1. Opste napomene

Kao $to je receno u prvom poglavlju, metodi direktnog pretrazivanja (ne-
gradijentni metodi) zasnivaju se na uporedivanju vrednosti funkcije cilja
Q(x). Pocetno resenje x se proizvoljno odabira, a zatim se svako poboljsa-
nje reSenja u narednom koraku procenjuje na osnovu prethodnih resenja i
vrednosti funkcije cilja. Osnovni nedostatak metoda pretrazivanja je u tome
Sto oni imaju sluc¢ajni, a ne sistematski karakter. Na taj nacin se primenom
ovih metoda ne dobija garantovano najbolje reSenje, ve¢ samo, u izvesnom
smislu, zadovoljavajuce resenje. Osim toga, sve ove metode prati veliki broj
racunskih operacija pa se zato primenjuju samo za reSavanje zadataka ne-
linearnog programiranje manjih dimenzija.

Graficki metodi su ograniceni i to samo na zadatke kod kojih figurisu
jedna ili dve promenljive. Domen ograni¢enja (D) se predstavlja tako $to se
u ravni promenljivih graficki predstavljaju zadata ograni¢enja. Optimalno
reSenje se odabira iz raznih vrednosti dopustivog plana x iz domena D,
vizuelnom inspekcijom grafika funkcije.

Za razliku od ovih metoda, gradijetni metodi predstavljaju metode sistem-
atskog pretrazivanja i izracunavanja reSenja. Do reSenja se dolazi, polazeéi
od izabranog polaznog plana x(©) = (xgo), e ,x%o)) i teze¢i da se u jednom
koraku izracuna $to je moguée efikasniji plan x1) = (xgl), . ,x%l)). Da bi
se to postiglo potrebno je izra¢unati najbolji smer promene vrednosti ciljne
funkcije, koji se kod gradijentnih metoda izrazava u odnosu na smer gradi-

jenta (suprotan smer od smera gradijenta u procesu trazenja minimuma, a

Gradijentni metodi 107

upravo smer gradijenta pri trazenju maksimuma). Razlike kod pojedinih
gradijentnih metoda su u odnosu na veli¢éinu pomeranja u pravcu koji je
odreden gradijentnim vektorom.

Proces izracunavanja gradijenta funkcije Q(x) je obiman posao pa je
ponekad jednostavnije da se to izra¢unavanje vrsi povremeno, $to se efikasno
koristi u modifikovanim gradijentnim metodama.

Druga klasa metoda se zasniva na pretrazivanju minimuma (maksimuma)
funkcije Q(x) duz linije najveéeg pada, odnosno uspona. Algoritam ovih
metoda se sastoji u odredivanju smera najveéeg pada funkcije Q(x) koji je
suprotan pravcu gradijenta funkcije, a zatim se vrsi elementarni pomeraj
u tom smeru do susedne tacke u kojoj se, takode, odreduje smer najveteg
pada. Ovi metodi se nazivaju metodi najstrmijeg pada (steepest descent).

Analiticku interpretaciju gradijentnih metoda ilustrova¢emo za slucaj fun-

kcije Q(x) = Q(z1, ... ,o,) od n nezavisno promenljivih. Ako se u n-dimen-
zionalnom prostoru odabere smer s, onda je izvod funkcije Q(x) u tacki
x = (x1,... ,Zy) 1 usmeru s odreden izrazom
dQ <= 9Q dx;
2.1.1 = = %
() ds 4= 0x; ds’
=1
gde su:
0
9@ parcijalni izvodi funkcije Q(x);
(9xj
dacj
i kosinusi uglova koje smer s zaklapa sa koordinatnim osama;
S
dq : .
i izvod funkcije Q(x) u smeru s.
S
Uvodecéi oznaku
dacj
z; = —=
T ds
izraz (2.1.1) moze se napisati u obliku
dQ _ < 9Q
2.1.2 — = — 2z
() ds JZ:; axj “

Za slucaj kada se funkcija Q(x) minimizira (maksimizira), potrebno je odred-
iti onaj smer po kome izvod funkcije ima najmanju (najveéu) vrednost.

108 Bezuslovna optimizacija

Promenljive z; nisu medusobno nezavisne jer postoji relacija

koja se moze predstaviti u obliku
n
(2.1.3) 1= 2 =0.
j=1

d
Na taj nac¢in, postavljen je problem minimizacije funkcije —Q definisane

S
jednacinom (2.1.2), uz prisustvo ogranic¢enja (2.1.3). UopStena Lagrangeova
funkcija, uz pretpostavku da postoji samo jedno ograni¢enje oblika (2.1.3),
moze se napisati u obliku

n a n
@:@(X’A) 2287Q2]+)\0<1_ZZ]2>’
j=1 "7 j=1

gde je A\g Lagrangeov mnozitelj. Izracunavanjem parcijalnih izvoda uopste-
ne Lagrangeove funkcije @ po svakoj od promenljivih z; i izjednacavanjem
dobijenih jednac¢ina sa nulom dobija se sistem jednacina

oQ .
a—%—Q)\OZJZO,]:17...77’1,,
odakle sleduje
1 0Q
2.1.4 = i=1,...,n.
() Z] 2)\0 8.%,]7 J) » T

(2.1.5)

Kada se vrednost za Ao, data pomocéu (2.1.5), zameni u (2.1.4), dobija se
vrednost za z; koja odgovara smeru najveceg pada ciljne funkcije

—1/2

Gradijentni metodi 109

odnosno smeru najveéeg uspona

00 [~ ro0N\2] "

Metodi bezuslovne optimizacije bazirani na izvodima ciljne funkcije mogu
da grubo podeliti u dve klase. U prvu klasu spadaju metodi koji koriste
samo prvi izvod ciljne funkcije i oni se nazivaju gradijentni metodi prvog
reda. Najpoznatiji gradijentni metod prvog reda je Cauchyev metod na-
jstrmijeg opadanja. Ovaj metod ima linearnu konvergenciju i odlikuje se
dobrim napretkom prema tacki optimuma iz “dalekih” pocetnih aproksi-
macija, ali i sporom konvergencijom u blizini optimalne tacke. U drugu
klasu metoda spadaju oni koji koriste i prvi i drugi izvod ciljne funkcije (ili
neke njihove aproksimacije) i nazivaju se gradijentni metodi drugog reda.
Najpoznatiji metod drugog reda jeste Newtonov metod. Newtonov metod
se odlikuje kvadratnom konvergencijom, §to znaci da kada konvergira, on je
brzi od Cauchyevog metoda. Medutim, Newtonov metod je manje pouzdan
od Cauchyevog. Najbolje osobine Cauchyevog i Newtonovog metoda su ujed-
injene u tzv. metodima promenljive metrike. Ovi metodi imaju najmanje
linearni red konvergencije, uz asimptotski kvadratnu konvergenciju. Zato se
cesto kaze da se ti metodi odlikuju kvadratnim zavrSavanjem.

Navodimo osnovne pojmove koji su neophodni za razumevanje gradijent-
nih metoda optimizacije.

Vektor-gradijent V@ u n-dimenzionalnom prostoru ima n komponenti,
koje su jednake parcijalnim izvodima po svakom upravljackom parametru u
tacki x(®) | tj.

(2.1.6) VQ@%h:gmdQ@%n:{

9Q(x™)
8$i }11 n .

=1,...,

Zbog jednostavnijeg oznacavanja usvoji¢emo oznaku Q) = Q(x*)), tako
da je gradijent u tacki x*) oznacen na sledeé naéin

oQk) oQk) }

Ox1 ' Oz,

(2.1.7) vQ®) = {

Hesseova matrica je kvadratna matrica parcijalnih izvoda drugog reda funk-

110 Bezuslovna optimizacija

cije Q(x) u tacki x(¥)

[92Q™) 92Q") T
9z12 0 Ox,0wy,
(2.1.8) V2Q(x™) = H(x®) = :
20® 20®
| Jx,,0x1 &rng]
Gradijentni vektor VQ(x) je u svakoj tacki x(¥) = (:ng), . ,x%k)) prostora

normalan na povrs sa konstantnom vrednoséu Q(x) (to je linija u sluéaju
dva upravljacka parametra) i prolazi kroz zadatu tacku. Za slucaj dva up-
ravljacka parametra, ova ¢injenica se moze ilustrovati slikom 2.1.1.

X,
,/ g
/
{
EE SN
Ox,
R EI
W e0
Ko7 ox, -
ek
X,

Sl 2.1.1

Gradijentni vektor u svakoj tacki x*) je vektor koji ima smer najbrzeg
raséenja Q(x) od te tacke. Algoritam gradijentnih metoda optimizacije se
sastoji u tome da se od zadate pocetne ili izracunate tacke x*) prelazi na
sledeéu tacku x#* 1) sa korakom Ax(*®) u smeru gradijenta, pri izraéunavanju
maksimuma

(2.1.9) xk+D) — x(0) L Ax®) = xB) L WOy Qx*),
ili u obrnutom smeru od smera gradijenta pri izra¢unavanju minimuma

(2.1.10) xk+D) — x®) _ n*gQxk).

Gradijentni metodi 111

Pri zadatom parametru koraka h(*) = (hf;k)), 1 =1,...,n, kretanje u pravcu
gradijenta ostvaruje se formulama

(k)
(2.1.11) 2P = (B hE’“)agT, i=1,...,m,
pri nalazenju maksimuma, odnosno
(k)
(2.1.12) 2P =) hg'ﬂag?_, i=1,...,n,
£

pri nalazenju minimuma funkcije Q(x).
U formulama (2.1.11) i (2.1.12) kretanje je u smeru gradijenta samo ako

su sve veli¢ine hgk),z' =1,...,n, medusobno jednake. Medutim, u nekim
metodima se parametri koraka (tj. velic¢ine hgk),i: 1,...,n) mogu odabrati
proizvoljno.

U gradijentnim metodima mogu se koristiti formule sa koordinatama nor-
malizovanog gradijentnog vektora

oQk)
(2.1.13) 2D — R) Ozi =, i=1...n
oQk)
: (%
=1 Xy
U formuli (2.1.13), normirani gradijent-vektor samo ukazuje na smer na-
jbrze promene ciljne funkcije, ali ne odreduje brzinu napredovanja prema

ekstremumu. Ta brzina se zadaje parametrima koraka, hgk), 1=1,...,n.
Normalizacija gradijenta doprinosi stabilnosti metoda.

Teorijski se procedura gradijentnog pretrazivanja zavrSava u stacionarnoj
tacki u kojoj su sve koordinate gradijenta jednake nuli, tj. u kojoj je Eukli-
dova norma gradijenta jednaka nuli:

(2.1.14) VR =

Prema tome, moze se koristiti sledeéi kriterijum za prekid gradijentnog pre-
trazivanja:

(2.1.15)

112 Bezuslovna optimizacija
pri ¢emu je € zadati mali pozitivan broj. Kao kriterijum za prekid pre-
trazivanja moze se uzeti i CebiSevljeva norma gradijenta, tj. kriterijum

n

(2.1.16) >

i=1

<e

aQ™) ‘
&ri

2.2. O simbolickoj implementaciji

U [2], [13], [16], [37], [60] opisana je implementacija nekih metoda gra-
dijentne optimizacije u FORTRANu. Medutim, u ovim programima nije jed-
nostavno koristiti ciljne funkcije koje nisu definisane potprogramima, kao
§to je opisano u (1M) i (1U). Takode, u toku implementacije gradijentnih
metoda optimizacije, moraju se definisati funkcije kojima se izra¢unavaju i
parcijalni izvodi ciljne funkcije. Na taj nacin, primena proizvoljnog gradi-
jentnog metoda na novu funkciju je uslovljena ovim potprogramima.

S druge strane, ugradene funkcije u paketu MATHEMATICA [68], [69] u
kojima se koriste gradijentni metodi optimizacije nisu zadovoljavajuée. Na
raspolaganju je jedino funkcija FindMinimum.

Funkcija FindMinimum izra¢unava lokalni minimum date funkcije prema
zadatoj pocetnoj tacki. Polazeéi od zadate startne tacke, u ovoj funkciji se
minimum zadate funkcije izra¢unava koriste¢i putanju najstrmijeg pada.

FindMinimum[f, {x, xo}] trazi lokalni minimum funkcije f, polazeéi
od tacke x = z;

FindMinimum([f, {x,%0}, {y,yo},...] trazi lokalni minimum funkcije
f vise promenljivih;

FindMinimum[f, {x,{x¢,x1}}] trazi lokalni minimum funkcije f ko-
risteéi xg i x1 za prve dve vrednosti z (ovakav oblik se mora koristiti ako
simbolicki izvodi za f ne mogu biti nadeni);

FindMinimum[f, {x, xstart,xmin,xmax}] trazi lokalni minimum fun-

kcije f polazeéi od xstart, a pretrazivanje se zaustavlja kada x bilo kada
izade izvan opsega [xmin, xmazx].
U toku optimizacije u paketu MATHEMATICA, moze se koristi jedino metod
najstrmijeg pada. Nas cilj je da se razvije programski paket za optimizaciju.
Pored uslova (1M)—(3M) i (1U)—(3U), simbolicka implementacija gradi-
jentnih metoda povla¢i neke dodatne prednosti.

(1G) Automatsko diferenciranje u proceduralnim programskim jezicima
deli se na numericko diferenciranje (koje produkuje numericku aproksimaciju

Gradijentni metodi 113

za f'(z)) i simbolicko diferenciranje koje produkuje formulu za f’'(x). Izra-
¢unavanje parcijalnih izvoda pomocu kona¢nih razlika moze da se imple-
mentira u bilo kom programskom jeziku i za nas nije od interesa. Poznato
je da simbolicko diferenciranje nije podesan problem za implementaciju u
proceduralnim programskim jezicima: simbolicki algebarski izraz mora da
se podvrgne sintaksnoj analizi u kojoj se formira stablo izraza. Zatim se
zadati izraz konvertuje u inverznu poljsku notaciju, i najzad se formira sta-
blo parcijalnih izvoda [6], [31]. S druge strane, ovi problemi se mogu lako
reSiti u funkcionalnim programskim jezicima. U paketu MATHEMATICA moze
se koristiti operator diferenciranja D, koji je na raspolaganju kao ugradena
funkcija. U LISPu se mogu jednostavno implementirati funkcije za simbolicko
diferenciranje aritmetickih izraza. To se moze uraditi jednostavnom gener-
alizacijom principa koji su opisani u [12], [14], [44], [61].

(2G) Moguénost efikasne primene generisanih parcijalnih izvoda na
proizvoljne argumente. U programskom paketu MATHEMATICA, parcijalni
izvodi koji su generisani operatorom diferenciranja D mogu direktno da se
koriste kao funkcije. U programskom jeziku LISP, izrazi koji predstavljaju
parcijalne izvode ciljne funkcije mogu se jednostavno transformisati u odgo-
varajuce lambda funkcije koje su primenljive na zadatu listu argumenata.

(83G) Moze se konstruisati, na prirodan nacin, nova ciljna funkcija koja
zavisi od razli¢itih parametara kao, na primer, duzina koraka koji se koristi
kod metoda najstrmijeg pada ili kod metoda konjugovanih pravaca. Na taj
nacin, optimizacija po liniji (optimization along a line) je problem koji se
prirodno resava simbolickim procesiranjem.

2.3. Formiranje gradijenta

Komponente gradijenta ciljne funkcije mogu se definisati na razlicite na-
¢ine:

1° U slucaju kada je poznat analiticki izraz ciljne funkcije, izvodi se mogu
definisati analiticki iako to ponekad moze biti komplikovano.

2° Koordinate gradijenta mogu se definisati eksperimentalnim putem.

3° U velikom broju realnih tehnickih zadataka ne postoji eksplicitan izraz
za Q(x) ili je taj izraz veoma komplikovan, tako da je analiticko izrazavanje
izvoda nemoguce. U takvim sluc¢ajevima, koristi se numericko izracunavanje
koordinata gradijenta.

Postoji nekoliko metoda za numericko diferenciranje.

Metod A. Zadaju se prirastaji za svaki upravljacki parametar posebno.
Prirastaj koji odgovara upravljackom parametru x; ozna¢imo sa Ax;, i =

114 Bezuslovna optimizacija

1,... ,n. Tada se koriste slede¢e aproksimacije za parcijalne izvode:
Q _AQ _ Q(xgo), - ,xgo)—i—Axi, . ,x%o))—Q(mgo), - 7x§0)7 - ,x%o))
gde je ¢ = 1,... ,n. Za izracunavanje svih parcijalnih izvoda neophodno je

S =n + 1 izracunavanja vrednosti ciljne funkcije.

Metod B. Parcijalni izvodi 0Q/0z; mogu se taénije aproksimirati ako
se koriste tzv. dvostrani priraStaji za xz;, tj. tzv. centralne formule

oq Q(mgo), e ,a:go) + Ax;, ... ,a:g])) — Q(mgo), . ,a:go)—Axi, . ,a:g]))
ox; - 2Ax; ’
gde je i = 1,... ,n. U ovom sluc¢aju, neophodno je S = 2n izraCunavanja
vrednosti ciljne funkcije da bi se izracunale sve koordinate gradijenta. Uprkos
tome §to je metod A grublji u proceni izvoda Q) /dx;, on se preporucuje zbog
manjeg broja izrac¢unavanja vrednosti funkcije Q(x).

n, Q,, x", ax,, xmin,, xmax,, i=1...n

Gradijentni metodi 115

Pri numerickom izrac¢unavanju se preporucuje dvostruka ta¢nost (double
precision) pri programskoj realizaciji na rac¢unskim masinama.

Osnovni problem pri numerickom izrac¢unavanju parcijalnih izvoda jeste
izbor parametara za numericko diferenciranje Az;. Ne postoje metodi za
predvidanje najboljih vrednosti za Ax;.

Algoritam za numericko diferenciranje koji koristi jednostrani priraStaj
za parametre x;, ¢ = 1, ... ,n, prikazan je dijagramom na slici 2.3.1. U tom
algoritmu je predvidena moguénost da se provere ogranic¢enja u odnosu na
interval (zmin;, xmax;), pri dodavanju prirastaja Az, za svakoi =1,... ,n.
Implementacija numerickog diferenciranja u paketu MATHEMATICA je vrlo
jednostavna:

Numnablal[q-,prom List,pvred List,korak List,xmin,xmax] :=

Block[{i,n=Length[prom],j,x0=pvred,grad={},k1,k2},

Do [x0[[i]]=N[x0[[i]]+korak[[i]]];

If [N[xO[[i]]1]>N[xmax[[i]]],
k1=N[xmax[[i]]-pvred[[i]]]; xO0[[i]]=N[xmax[[i]]],
k1=N[korak[[i]]]

1;

9g=q; Dolqg=qg/.prom[[j1]1->x0[[j11,{j,n}];

x0[[i]]=N[pvred[[i]]]; qd=q;
x0[[111=N[x0[[i]]-korak[[il]];

If[N[xO[[i111<N[xmin[[i]1],
k2=N[pvred[[i]]-xmin[[i]]]; xO[[i]1=N[xmin[[i]]],
k2=N[korak[[i]111];
Do[qd=qd/.prom[[j11->x0[[j1],{j,n}];
pizv=N[(qg-qd)/(k1+k2)]; grad=Append[grad,N[pizv]];
x0[[i]]=pvred[[il],{i,n}

1;

N[grad]l 1

Numericko izrac¢unavanje gradijenta u paketu MATHEMATICA se ne raz-
likuje sustinski od odgovarajuéih procedura u programskim jezicima FOR-
TRAN ili C. Za nas je od prvenstvenog interesa simbolicko diferenciranje i
njegova primena u metodima optimizacije. U tu svrhu, u paketu MATHE-
MATICA napisana je sledec¢a funkcija nabl, kojom se za zadatu ciljnu funkciju
Q u unutrasnjoj formi i za zadatu tacku x(*) = 20 formira gradijent VQ(z0):

nabl[q_,prom List,x0 List]:=

Block [{n=Length[prom],i,dqdx={}},
Do [dqdx=Append [dqdx,D[q,prom[[i]1]1]],{i,n}];
Do [dqdx=dqdx/.prom[[i]1]->x0[[i]1]1,{i,n}];

116 Bezuslovna optimizacija

Return[dqdx]
]

Izrazom

Do [dqdx=Append [dqdx,D[q,prom[[i]1]]],{i,n}];
formira se vektor parcijalnih izvoda ciljne funkcije Q(x), odnosno formira se
gradijent VQ(x). U izrazu

Do [dqdx=dqdx/.prom[[i]]->x0[[1]],{i,n}];
izracunava se vrednost gradijenta V@Q(x) u tacki x0, tj. formira se vektor
VQ(x©) = VQ(a0).

U jeziku LISP nije komplikovana modifikacija poznatih procedura za paci-
jalne izvode, koje su date u referencama [12], [14], [44], [61], kako bi one
postale primenljive na proizvoljan SCHEME aritmeticki izraz. Takode, po-
zeljno je da se implementira nekoliko procedura za uproséavanje izraza koji
predstavljaju parcijalne izvode [61].

Simbolicko diferenciranje izraza u prefiksnoj notaciji u LISPu je implemen-
tirano u funkciji deriv, ekstenzijom odgovarajuéih funkcija iz [12], [14], [44],
[61]. Ovim je verifikovana prednost (1G) i u LISPu:

(define (deriv 1 x)
(cond ((number? 1) 0)
((atom? 1) (if (equal? 1 x) 1 0))
((equal? (car 1) ’sin)
(list ’* (append ’(cos) (cdr 1)) (deriv (cadr 1) x)))
((equal? (car 1) ’cos)
(1ist ’* (append ’ (- sin)x(cdr 1)) (deriv (cadr 1) x)))
((equal? (car 1) ’log)
(append ° (/) (list (deriv (cadr 1) x))(list (cadr 1))))
((equal? (car 1) ’expt)
(1ist ’* (append ’(*) (list (caddr 1))
(1ist (append ’(expt) (list (cadr 1))
(1ist (append ’(1-) (list (caddr 1))))

))
)
(deriv (cadr 1) x))
)
((equal? (car 1) ’+)
(izz 1 x))

((equal? (car 1) ’-)
(izr 1 x))

Gradijentni metodi 117

((equal? (car 1) ’%*)
(izp 1 %))
((equal? (car 1) ’/)
(izk 1 %))
))

; izvod zbira
(define (izz 1 x)
(let ((nl nl))
(set! nl (1list ’+))
(set! 1 (cdr 1))
(do O
((qull? 1) nl)
(set! nl (append nl (list (deriv (car 1) x))))
(set! 1 (cdr 1))
)))

; izvod razlike
(define (izr 1 x)
(let ((nl nl))
(set! nl (cons ’- nil)) (set! 1 (cdr 1))
(do ()
((null? 1) nl)
(set! nl (append nl (list (deriv (car 1) x))))
(set! 1 (cdr 1))
)))

; 1zvod proizvoda
(define (izp 1 x)
(1et ((n n))
(set! 1 (cdr 1)) (set! n (length 1))
(cond
((=n 1) (deriv (car 1) x))
(else (list ’+
(append ’ (*) (list (deriv (car 1) x)) (cdr 1))
(append ’ (%)
(1ist (car 1))
(1ist (deriv (append ’(*) (cdr 1)) x))
)))))

; izvod kolicnika

118 Bezuslovna optimizacija

(define (izk 1 x)
(let ((m n))
(set! 1 (cdr 1))
(cond
((=n 1) (deriv (car 1) x))
((=n 2)
(list ’/
(list ’-
(append ’(*) (list (deriv (car 1) x))
(1list (cadr 1)))
(append ’ (%)
(list (car 1))
(1ist (deriv (cadr 1) x))

))

(append ’ (expt) (list (cadr 1)) ’(2))
))

(else (1list ’/

(list ’-

(append ’ (x)
(1ist (deriv (car 1) x))
(1ist (append ’(*) (cdr 1)))
)
x (append ’ (%)
(1ist (car 1))
(list (deriv (append ’(*) (cdr 1)) x))
))
(append ’ (expt) (list (append ’ (%) (cdr 1))) ’(2)))
) D)))

U daljem tekstu sledi opis prednosti (2G) u LISPu. Neka izraz (deriv f x;)
predstavlja poziv funkcije kojom se oformljuje simbolicki parcijalni izvod
funkcije f(x) po nezavisnoj promenljivoj z;, 1 < i < n. Takode, neka je
ciljna funkcija predstavljena u unutrasnjoj formi ¢, koja je zadata listom

(Q(z1,... ,zy) (T, y2p)) -

Tada se gradijent ciljne funkcije VQ(x) moze predstaviti vektorom, koji je
oznacCen simbolom nabla i Cija je i-ta koordinata lambda-izraz koji odgovara
pozivu funkcije (deriv Q z;), 0 < i < n:

(define (symbder q)

Gradijentni metodi 119

(let (nabla (make-vector (length (cadr q))))
(do ((i 0))
((= n i) nabla)
(set! prom (vector-ref varg i))
(vector-set! nabla i (eval (list ’lambda (cadr q)
(deriv (car q) prom))))
(set! i (+1i 1))

)))
Elementi vektora grad = VQ(x™*)), koji predstavlja vrednost gradijenta u
zadatoj tacki (vektoru) vz0 =x*) = (ﬂ:ék), e ,x%k)), mogu da se generisu

primenjujuc¢i redom lambda-izraze sadrzane u elementima vektora nabla na
odgovarajuce vektore vz0:

(define (nabl q vxO)
(let (grad (make-vector (length (cadr q))))
(do ((i 0))
((= n 1) grad)
(vector-set! grad i (apply (vector-ref nabla i)
(vector->1list vx0)))

(set! i (+1i 1))

) D)

Sada sledi opis nekoliko pomoénih funkcija. Procedurom limit koordinate
vektora x odrzavaju se unutar zadatih granica [xmin, xmax]:

limit[x List,xmin List,xmax List]:=
Block [{x0=x,n=Length[x]},
Do[Which[xO[[i]]<xmin[[i]],x0[[i]l]=xmin[[i]],
x0[[i]]1>xmax[[1]1],x0[[i]]=xmax[[i]]
1,{i,n} 1;
Return[x0] 1]

n
Za zadati vektor vz =vx;, i=1,... ,n, njegova norma |jvz|= /> va?
i=1

moze se izracunati na sledeéi nacin:
norma[vx List] :=Block [{n=Length[vx],i,rezultat=0},
rezultat=Sum[vx[[i]]"2,{i,n}]; rezultat=Sqrt[rezultat];
Return[rezultat]]

120 Bezuslovna optimizacija

2.4. Algoritmi za gradijentne metode prvog reda

Koristedi funkcije za konstrukciju gradijenta ciljne funkcije i na neki nac¢in
odredenu veli¢inu koraka ay, moze se u k-tom koraku iteracije definisati
tranzicija iz tacke x®) u sledeéu aproksimaciju x**+1) koristeéi smer gradi-
jenta u tacki x(*) (za maksimizaciju) ili suprotan smer (za minimizaciju):

vQ (X(k))

(2.4.1) xkH) — x(®0) 4 o —227 L
IVQ (x®) |

ar € R.

Generalno, primenjivana su dva opSta metoda za izbor veli¢ine koraka «y.
U jednoj grupi metoda, koristi se neoptimalna vrednost koraka, koja moze
biti fiksirana kroz sve iteracije ili moze biti promenljiva u toku iteracija. U
metodima najstrmijeg pada koristi se optimalna vrednost koraka, §to znaci
da veli¢cinom koraka obezbeduje optimalna vrednost ciljne funkcije. U ovim
metodima, ciljna funkcija Q(x) se transformise u novu funkciju

VQ(X(k)) >
IVQ (xW) 1l)

Koristeéi novu funkeiju f(«), izra¢unava se oy, = min F'(«) nekim od metoda
«

jednodimenzionalne optimizacije, a zatim se nova aproksimacija x(*t1) u
odnosu na staru z(*), formira prema (2.4.1).

Ako se koriste neoptimalne (fiksne ili promenljive) vrednosti skalara ay,
te vrednosti moraju biti pazljivo kontrolisane da bi se izbeglo neocekivano
raséenje (ili opadanje) ciljne funkcije ili pak veliki broj iteracija. Neo¢ekivano
raséenje (ili opadanje) ciljne funkcije se javlja ako je korak nepodesno veliki s
obzirom na blizinu ekstremne tacke. S druge strane, koriS¢enje malog koraka
uzrokuje nepotrebno veliki broj iteracija.

2.4.1. OSNOVNI GRADIJENTNI METOD

Osnovni gradijentni metod je poznat i pod nazivom modifikacija Cauchy-
evog metoda. U originalnom Cauchyevom metodu obi¢no se dosta vremena
potrosi na jednodimenzionalnu optimizaciju kojom se nalazi optimalna duzi-
na koraka «ay. Takode, potrebna je izvesna programerska veStina za pisanje
odgovarajué¢ih programa kojom se funkcija Q(x) prevodi u funkciju f(«).
Da bi se izbegle ove potekoce koristi se osnovni gradijentni metod, koji je

Gradijentni metodi 121

zasnovan na konstantnom parametru koraka «j; = h u svim iteracijama.
Preciznije, u slucaju maksimuma, iteracije se racunaju prema pravilu

oQ :
(2.4.2) et =gk +n. =2 i=1,...,n, k=0,1,...,

' 8.%'1"

Za korak h treba uzeti dovoljno malu vrednost. Jedan od kriterijuma za
izbor veli¢ine koraka je

2
0<h<—
< <)\M,

gde je Ap; najveca sopstvena vrednost Hesseove matrice funkcije Q). Ako
ovaj metod u slu¢aju konvergencije, konvergira znatno sporije od originalnog
Cauchyevog metoda. Prednost ovakvog metoda je u tome §to je izbegnuta
konstrukcija nove funkcije i odgovarajuéa jednodimenzionalna optimizacija.

Ukazac¢emo sada na implementaciju osnovnog gradijentnog metoda.

U algoritmu se koristi ranije opisani potprogram nabl za formiranje koor-
dinata gradijenta u zadatoj tacki i potprogram limit za proveru ogranicenja
oblika

zmin; < z; < xmaz;, 1=1,...,n.

Ulazne velicine:
q-, prom_: ciljna funkcija i lista njenih parametara;
x© =20 = (29,... ,2%) = 201: izabrana pocetna tacka;
h_: lista koja predstavlja fiksirani parametar koraka h = {hq,... ,h,};

rmin_, xmax_: vektori

xmin = {xminy,... ,amin,} 1 xmax = {zmaz,...,rmazx,}
koji odreduju granice oblasti optimizacije;
eps_: zadata tacnost.

Lokalne promenljive:

izb: parametar koji odreduje lokalizaciju minimuma (izb = 1), odnosno
maksimuma (izb = 2).

Algoritam se moze iskazati kroz sledeée korake:

Korak 1. Izracunati ¢0 = Q(20), VQ(z0), S = |[VQ(x0)]];

Korak 2. While ciklus, koji se prekida kada je ispunjen uslov

S = [IVQ(z0)|| < eps.

122 Bezuslovna optimizacija

Unutar ciklusa izvrsiti sledeée korake:

Korak 2.1. Tzratunati novu tacku optimuma z0 = (29,... ,22):

h; 0Q
0 _ 04 2.
i TV B

1=1,...,n.

Korak 2.2. Izracunati ¢0 = Q(20), VQ(z0), S = [[VQ(x0)].

Korak 3. Izlazne veli¢ine su 0 i Q(x0).

Programska realizacija ovog algoritma je veoma jednostavna, ali ona ima
odredene nedostatke kao Sto su: veliki broj potrebnih izracunavanja i kon-
stantan parametar koraka koji implicira komplikovano ispunjenje kriterijuma
za prekid pretrazivanja u sluc¢aju ciljnih funkcija sa velikom osetljivoséu ek-
stremuma. U velikom broju sluc¢aja, konstantni korak postaje nepodesno
veliki u okolini ekstremuma.

OsnGrad[q-,prom List,x01 List,h List,
xmin List,xmax List,eps_]:=
Block[{i,n,q0,qm,xm,nabla,s,x0=x01,h0=h,it=0,
izb,Lista={}},
izb=Input["Zelite 1i maximum(2) ili minimum(1)7?"];
n=Length[x0];
q0=q; Do[q0=q0/.prom[[i]]->x0[[i]],i,n]; qO0=N[qO0];
qm=q0; xm=x0;
Lista=Append[Lista,xm];
nabla=nabl [q,prom,x0];
s=norma[nabla];
While[N[s]>=eps && it<=100,
If [izb==2,
Do [x0[[i]1]+=h0[[i]]*nabla[[i]]1/N[s],{i,n}],
Do [x0[[1]1-=h0[[i]]*nablal[[i1]1/N[s],{i,n}]
15
x0=1imit [x0,xmin,xmax]; x0=N[x0];
q0=q; Do[q0=q0/.prom[[i]]->x0[[i]],{i,n}]; q0=N[qO0];
If [(izb==1 && qO<gm) || (izb==2 && qO>qgm),
gm=q0; xm=x0; Lista=Append[Lista,xm]
1;
it+=1; nabla=nabl[q,prom,x0]; s=norma[nabla]
1;
{xm,qm, Lista}

Gradijentni metodi 123

]

Implementacije osnovnog gradijentnog metoda u LISPu opisana je u rado-
vima [49], [50].

2.4.2. MODIFIKACIJA OSNOVNOG GRADIJENTNOG METODA

U osnovnom gradijentnom metodu, u svakoj iteraciji je neophodno da
se izracunavaju izvodi ciljne funkcije. Numericko izracunavanje parcijalnih
izvoda ciljne funkcije @), koja zavisi od n parametara, zahteva minimalno
n + 1 izracunavanja vrednosti Q(x). Za veliki broj upravljackih parametara
n broj izracunavanja brzo raste, dok brzina konvergencije znatno opada. S
druge strane, zbog ve¢ opisanih poteskoca oko implementacije simbolickog
diferenciranja, modifikovani gradijentni metod predstavlja pokusSaj da se
izbegne izracunavanje gradijenta u svakoj iteraciji. Cilj ovog metoda je da
se smanji broj izracunavanja (Q(x), odnosno da se simbolicko diferenciranje
sto rede koristi. Posle izracunavanja gradijenta u tacki x(9, iteracije se
izvrSavaju u tom pravcu, sve dok se ne dostigne maksimum za taj pravac.
Zatim se ponovo izra¢unava gradijent i lokalizuje ekstremum u novom smeru.

Algoritam modifikacije gradijentnog metoda moze se iskazati u sledeéim
koracima:

Korak 1. U zadatoj pocetnoj tacki x(©) izracunava se gradijent ciljne funk-
cije, tj. parcijalni izvodi

Q)

—_—, 1=1,... ,n.

8.%'i

Korak 2. Proverava se neki od kriterijuma za prekid pretrazivanja, na pri-

mer,
n 2
= L () <=

i=1

Ako je uslov ispunjen, zavrgiti algoritam, inace preéi na sledeci
korak.

Korak 3. lzvrSavati iterativne korake jedan za drugim, sve dok se vrednosti
funkcije poboljsavaju, bez izracunavanja gradijenta, Sto odgovara
formuli

k
(’f+1):x(’f)i£.%}((o)) i=1,...,n.

! ! S ox;

124 Bezuslovna optimizacija

Xy
Sl. 2.4.1

Kada se vrednost ciljne funkcije pogorsa, izracunati gradijent u
dostignutoj tacki, a zatim preéi na Korak 2.

Na slici 2.4.1 prikazano je kretanje prema maksimumu saglasno ovom
metodu. Isprekidanom linijom je oznaceno pretrazivanje prema osnovnom
gradijentnom metodu. Put prema ekstremumu koji koristi osnovni gradi-
jentni metod je kradi i ortogonalan je na nivoske linije povrsi. Medutim,
osnovni gradijentni metod zahteva da se u svakoj iteraciji formira gradijent
ciljne funkcije, i saglasno tome potrebno je vise vremena u svakoj iteraciji u
odnosu na modifikovani gradijentni metod.

Implementacija modifikacije osnovnog gradijentnog metoda:

Ulazne velic¢ine i formalni parametri su kao i u proceduri za osnovni gradi-
jentni metod.

Korak 1. Izracunati ¢0 = Q(x0), gradijent nabla = VQ(z0) i normu gradi-
jenta S = ||VQ(z0)|| = norma(nabla).

Korak 2. While ciklus, koji se prekida kada je ispunjen uslov
S =[VQ(z0)|| < eps.

Unutar ciklusa izvrsiti sledeée korake:

Korak 2.1. Tzrac¢unati novu tacku optimuma z1 = (x},... ,zl):
hi 0Q .
(2.4.5) x%zx?igl-axi, i=1,...,n.

Korak 2.2. z1 = limit(x1, zmin, xmax).
Korak 2.3. Izracunati ¢l = Q(x1).

Gradijentni metodi 125

Korak 2.4. While ciklus, koji se izvrSava sve dok je ispunjen jedan od
uslova izb==2 && q1>q0 ili izb==1 && q1<qO.

Unutar ciklusa izvrsiti sledeée korake:
Korak A. Postaviti q0 = g1, 20 = z1.
Korak B. Izracunati novu tacku optimuma x1 prema (2.4.5).
Korak C. Izracunati x1 = limit(x1, xmin, xmax) i q1 = q(z1).
Korak 3. Izlazne veli¢ine su x1 i Q(x1).

Odgovarajuca programska realizacija u paketu MATHEMATICA izgleda:

ModGrad[q-,prom_List,x01 _List,h List,
xmin List,xmax List,eps_]:=
Block[{i,n,nabla,s=eps+1,x0=x01,q0,xm,qm,
it=0,h0=h,izb, Lista={} },
izb=Input["Zelite 1i maximum(2) ili minimum(1)7?"];
n=Length[x0];
q0=q; Do[q0=q0/.prom[[i]]1->x0[[i]],{i,n}];
q0=N[q0] ;
gqm=q0; xm=x0;
Lista=Append[Lista,xm];
While[N[s]>=eps && it<=100,
nabla=nabl [q,prom,x0];
s=norma[nabla] ;
If [izb==2,
Do [x1[[i]1]1=x0[[i]]1+hO[[i]]*nabla[[il]/s,{i,n}],
Do[x1[[i11=x0[[i]1-hO[[i]l]*nablal[[i]l]/s,{i,n}]
1
x0=1imit [x0,xmin,xmax]; x0=N[x0];
q0=q; Do[q0=q0/.prom[[il1->x0[[i]]1,{i,n}]; q0=N[q0];
it+=1;
While[(izb==1 && qO<gm) | | (izb==2 && qO0>qm),

gm=q0; xm=x0; Lista=Append[Lista,xm];

If [izb==2,
Do[x0[[i]1]1=x0[[i]11+hO[[i]l]#*nablal[il],{i,n}],
Do[x0[[1]1=x0[[i]]-hO[[i]]*nablal[[i]],{i,n}]

1;

x0=1imit [x0,xmin,xmax]; x0=N[x0];

q0=q; Dol[q0=q0/.prom[[i]]1->x0[[i]],i,n];

it+=1

126 Bezuslovna optimizacija

]
15
{xm,qm, Lista}

2.4.3. GRADIJENTNI METODI SA AUTOMATSKOM KOREKCIJOM
KORAKA

U algoritmu za osnovni gradijentni metod, sustinski nedostatak pred-
stavlja izbor parametra koraka u svim iteracijama, koje su definisane for-

mulama
9Q(x*)
(k+1) (k) ox; .
T =z th——— i=1,...,n.
' ' IVQG®)
Brzina konvergencije zavisi od vrednosti promenljivih h;, ¢ = 1,... ,n za

svaki upravljacki parametar. Pri izboru manjih vrednosti za konstantne
parametre h;, broj iteracija potrebnih za lokalizaciju ekstremuma znatno
raste i zahteva veliki broj izra¢unavanja vrednosti ciljne funkcije. Pri koris-
¢enju vecih vrednosti za h;, u oblasti ekstremuma mogu se dogoditi “pre-
skakanja”, naroCito u slucaju jako izrazenog ekstremuma. Ovo je razlog za
uvodenje automatske korekcije parametra koraka. Najcesée se koriste dve
modifikacije koje ¢e ovde biti opisane.

A. Jedan od algoritama za automatsku korekciju koraka koristi smanjenje
parametra koraka, koje je definisano na slede¢i nacin:

D) _ hgk) , ako Q) > Q(*k—1)
' 050" | ako Q) < Q=1

pri ¢emu je k redni broj iteracije. Ako je korak u gradijentnom pravcu
uspesSan, duzina koraka ostaje nepromenjena, dok u slu¢aju neuspesnog ko-
raka njegova duzina se skrac¢uje na polovinu.

Kod ovog metoda mogu se predvideti dva kriterijuma za prekid pretrazi-
vanja. Prvi je poznati kriterijum (2.1.5) od ranije, a drugi je da parametri
koraka postanu manji od unapred zadatih vrednosti hmin;, i = 1,... ,n. Veé
je ranije napomenuto da je upotreba i jednog i drugog kriterijuma za prekid
algoritma sadrzi opasnost da se pretrazivanje prekine dalje od ekstremuma.

Blok dijagram algoritma je prikazan na slici 2.4.2.

Odgovarajuca programska realizacija u paketu MATHEMATICA izgleda:

Gradijentni metodi 127

(AutGrad)

-0 3 P —
x, b, ax, xmin, xmax,, n. e (=1..n)

0, = 0(x")
Il
nabla —> ((;TQ (i=1..n)
- @©
§= Z(ﬂ : <e da
~\0X;
| Oy, %, (i=1..n)
10, h(20)
lexlﬁ’s*a—l @i=1...n)
0, =0(x")
ne
0 >0,
ne
Iy <hmin; G = da
= mlni (l 71,...,}’1)
xV = x! =
s QO Ql hi _ hz’ /2 <]5

Sl 2.4.2

AutGrad[q_,var List,x List,h List,hmin List,

xmin List,xmax List,eps_]:=
Block[{x0=x,q0,xm,qm,nab1a,1=1,s=eps+1,hO=h,1g=True,
ind=True,i,n,it=0,izb, Lista={} },

izb=Input["Zelite 1i maximum(2) ili minimum(1)7?"];

n=Length[var];

q0=q; Dol[q0=q0/.var[[i]l]1->x0[[i]1],{i,n}];

xm=x0; qm=q0;

Lista=Append[Lista,xm] ;

While[N[s]>=eps && lg && it<=100,

If[ind,
nabla=nabl [q,var,x0] ;

128 Bezuslovna optimizacija

1=1;
s=norma[nabla];
1
If[izb==2,

Do[x0[[i]11=x0[[i]1+hO[[i]]*nabla[[i]]1/N[s],{i,n}],
Do[x0[[i]11=x0[[i]1-hO[[i]]*nabla[[i]]1/N[s],{i,n}]
1;
x0=N[x0]; x01=1imit[x0,xmin,xmax]; x0=N[x0];
q0=q; Dol[q0=q0/.var[[i]l]1->x0[[i]],{i,n}];
it+=1;
If [(izb==2 && qO>qm) || (izb==1 && qO0<gm),
1=2; xm=x0; gm=q0;
Lista=Append[Lista,xm] ;ind=False,
If[1==1,
lg=False;
Do[Which[hO[[i]]>hmin[[i]], 1g=Truel,{i,n}];
If[1g, Do[hO[[il1/=2,{i,n}] 1;
ind=False,
ind=True;

]
13
{xm,qgm, Lista}
]

Pri primeni algoritma sa automatskom korekcijom koraka, konvergencija
je brza ako pretrazivanje zapoc¢ne sa nekim relativno velikim pocetnim ko-
rakom hO;, 1 =1,... ,n.

B. Korekcija koraka na osnovu vrednosti ciljne funkcije u poslednje tri
iteracije. U slucaju maksimizacije uzimamo
thk)’ QW) > Q=1 5 QUk=2),
(k+1) _ (k) -
hgk), u ostalim slu¢ajevima.
Ako su poslednja tri koraka bila uspesna h; se uvetava dva puta, ako je

poslednji korak bio neuspesan h; se smanjuje dva puta, dok u ostalim sluca-
jevima korak ostaje nepromenjen.

Gradijentni metodi 129

Svi algoritmi sa automatskom korekcijom koraka imaju sustinski nedos-
tatak. U slu¢aju nekih ciljnih funkcija, na primer kod tzv. jaruznih moze
da se izvrsi lokalizacija dalje od ekstremuma zbog prevremenog ispunjenja
kriterijuma h; < hmin; (i = 1,...,n) za prekid pretrazivanja.

Numericki eksperimenti.

In[1]:= OsnGrad[x~ 2+y"2,{x,y},{1.,-1.2},{0.1,0.2}, {-5,-5},{5,5},0.001] (*minimum®*)

Out[1]= {{0.011051, 0.00153783}, 0.000124489,
{{1., -1.2}, {0.935982, -1.04636}, {0.869311, -0.897291}, {0.799729, -0.753648},
{0.726953, -0.616482}, {0.650685, -0.487127}, {0.570633, -0.367266},
{0.486544, -0.259025}, {0.398273, -0.165039}, {0.305891, -0.0884749},
{0.209829, -0.0329053}, {0.111036, -0.00192001}, {0.011051, 0.00153783} }}

In[2]:= OsnGrad[x”~ 2+y"2,{x,y},{1.,-1.2},{0.1,0.2}, {-5,-5},{5,5},0.001] (*maksimum™*)

out[2]= {{5., -5.}, 50., {{1., -1.2}, {1.06402, -1.35364}, {1.12582, -1.51088},
{1.18557, -1.67126}, {1.24343, -1.83438}, {1.29953, -1.99993}, {1.35402, -2.16764},
{1.407, -2.33726}, {1.45857, -2.50861}, {1.50884, -2.68151}, {1.55788, -2.85581},
{1.60577, -3.03139}, {1.65258, -3.20812}, {1.69837, -3.38592}, {1.7432, -3.56469},
{1.78713, -3.74436}, {1.83021, -3.92485}, {1.87247, -4.10611}, {1.91396, -4.28809},
{1.95472, -4.47072}, {1.99478, -4.65397}, {2.03418, -4.83779}, {2.07294, -5.},
{2.11124, -5.}, {2.15014, -5.}, {2.18964, -5.}, {2.22976, -5.}, {2.27048, -5.},
{2.31183, -5.}, {2.3538, -5.}, {2.39639, -5.}, {2.43961, -5.}, {2.48346, -5.},
{2.52795, -5.}, {2.57307, -5.}, {2.61882, -5.}, {2.66522, -5.}, {2.71226, -5.},
{2.75994, -5.}, {2.80827, -5.}, {2.85724, -5.}, {2.90685, -5.}, {2.95711, -5.},
{3.00802, -5.}, {3.05957, -5.}, {3.11176, -5.}, {3.1646, -5.}, {3.21808, -5.},

{3.2722, -5.}, {3.32696, -5.}, {3.38236, -5.}, {3.43839, -5.}, {3.49505, -5.},
{3.55235, -5.}, {3.61026, -5.}, {3.6688, -5.}, {3.72796, -5.}, {3.78774, -5.},
{3.84812, -5.}, {3.90911, -5.}, {3.9707, -5.}, {4.03289, -5.}, {4.09567, -5.},
{4.15904, -5.}, {4.22299, -5.}, {4.28752, -5.}, {4.35261, -5.}, {4.41827, -5.},
{4.48449, -5.}, {4.55125, -5.}, {4.61857, -5.}, {4.68642, -5.}, {4.75481, -5.},
{4.82372, -5.}, {4.89315, -5.}, {4.96309, -5.}, {5., -5.}}}

In[3):= ModGrad[x" 24y~ 2,{x,y},{1.,-1.2},{0.1,0.2}, {-5,-5},{5,5},0.001] (*minimum*)

Out[3]= {{1.20669 10— | -0.0289502}, 0.000838114,
{{1.,-1.2}, {0.935982, -1.04636}, {0.871963, -0.892711}, {0.807945, -0.739067},
{0.743926, -0.585423}, {0.679908, -0.431779}, {0.615889, -0.278134},
{0.551871, -0.12449}, {0.487852, 0.029154}, {0.423834, 0.182798},
{0.286772, 0.199846}, {0.213729, 0.0632486}, {0.140686, -0.0733483},
{0.0369759, -0.0195819}, {0.00261738, -0.0290823}, {-0.000605112, -0.0289481},
-6 {-0.0000564267,-0.0289503}, {0.0000129496, -0.0289502}, {1.20761 10, -0.0289502},
{-2.77137 107, -0.0289502}, {-2.58443 108, -0.0289502},
{5.93109 1072, -0.0289502}, {5.53101 10~19, -0.0289502},
{-1.26933 10719, -0.0289502}, {1.20669 1011, -0.0289502} } }

In[4]:= ModGrad[x"~ 24y~ 2,{x,y},{1.,-1.2},{0.1,0.2}, {-5,-5},{5,5},0.001]

(*maksimum*)

Out[4]= {{5., -5.}, 50., {{1., -1.2}, {1.06402, -1.35364}, {1.12804, -1.50729},

130 Bezuslovna optimizacija

{1.19206, -1.66093}, {1.25607, -1.81458}, {1.32009, -1.96822}, {1.38411, -2.12187},
{1.44813, -2.27551}, {1.51215, -2.42915}, {1.57617, -2.5828}, {1.64018, -2.73644},
{1.7042, -2.89009}, {1.76822, -3.04373}, {1.83224, -3.19738}, {1.89626, -3.35102},
{1.96028, -3.50466}, {2.0243, -3.65831}, {2.08831, -3.81195}, {2.15233, -3.9656},
{2.21635, -4.11924}, {2.28037, -4.27289}, {2.34439, -4.42653}, {2.40841, -4.58017},
{2.47242, -4.73382}, {2.53644, -4.88746}, {2.60046, -5.}, {2.66448, -5.},

{2.7285, -5.}, {2.79252, -5.}, {2.85653, -5.}, {2.92055, -5.}, {2.98457, -5.},
{3.04859, -5.}, {3.11261, -5.}, {3.17663, -5.}, {3.24065, -5.}, {3.30466, -5.},
{3.36868, -5.}, {3.4327, -5.}, {3.49672, -5.}, {3.56074, -5.}, {3.62476, -5.},
{3.68877, -5.}, {3.75279, -5.}, {3.81681, -5.}, {3.88083, -5.}, {3.94485, -5.},
{4.00887, -5.}, {4.07289, -5.}, {4.1369, -5.}, {4.20092, -5.}, {4.26494, -5.},
{4.32896, -5.}, {4.39298, -5.}, {4.457, -5.}, {4.52101, -5.}, {4.58503, -5.},

{4.64905, -5.}, {4.71307, -5.}, {4.77709, -5.}, {4.84111, -5.}, {4.90512, -5.},
{4.96914, -5.}, {5., -5.}}}

In[5]:= AutGrad[x" 24+y°2,{x,y},{1.,-1.2},{0.1,0.2},{0.001,0.002}, {-5,-5},{5,5},0.001]
(*minimum*)
Out[5]= {{-2.29231 1038, -0.0289502}, 0.000838114,
{{1., -1.2}, {0.935982, -1.04636}, {0.871963, -0.892711}, {0.807945, -0.739067},
{0.743926, -0.585423}, {0.679908, -0.431779}, {0.615889, -0.278134},
{0.551871, -0.12449}, {0.487852, 0.029154}, {0.423834, 0.182798},
{0.286772, 0.199846}, {0.213729, 0.0632486}, {0.140686, -0.0733483},
{0.0369759, -0.0195819}, {0.00261738, -0.0290823}, {-0.000605112, -0.0289481},
{-0.0000564267, -0.0289503}, {0.0000129496, -0.0289502},{1.20761 105, -0.0289502},
{-2.77137 107, -0.0289502}, {-2.58443 10—8 | -0.0289502},
{5.93109 10—9 , -0.0289502}, {5.53101 10~19 | -0.0289502},
{-1.26933 10719, -0.0289502}, {-1.18371 10~ '1 -0.0289502},
{2.71652 10~12 | -0.0289502}, {2.53328 1013, -0.0289502},
{-5.8137 10~14 | -0.0289502}, {-5.42154 10~ 15, -0.0289502},
{1.2442 10715 | -0.0289502}, {1.16028 10~16, -0.0289502},
{-2.66275 1017 | -0.0289502}, {-2.48314 10~ 18 -0.0289502},
{5.69863 10~ 19.-0.0289502},{5.31423 1020, -0.0289502},
{-1.21958 1029 | -0.0289502}, {-1.13731 102!, -0.0289502},
{2.61005 1022 | -0.0289502}, {2.43399 1023 | -0.0289502},
{-5.58584 10~24 | -0.0289502}, {-5.20905 10~2%, -0.0289502},
{1.19544 10725, -0.0289502}, {1.1148 1026, -0.0289502},
{-2.55839 10727, -0.0289502}, {-2.38582 1028, -0.0289502},
{5.47528 10729, -0.0289502}, {5.10595 10730 | -0.0289502},
{-1.17178 10—30,-0.0289502}, {-1.09274 10—31 | -0.0289502},
{2.50776 10732 | -0.0289502}, {2.3386 1033, -0.0289502},
{-5.36691 1034 | -0.0289502}, {-5.00489 10—3°, -0.0289502},
{1.14859 10735, -0.0289502}, {1.07111 1036, -0.0289502},
{-2.45812 10737, -0.0289502}, {-2.29231 1038, -0.0289502}} }

In[6]:= AutGrad[x" 2+y~2,{x,y},{1.,-1.2},{0.1,0.2},{0.001,0.002}, {-5,-5},{5,5},0.001]
(*maksimum*)

Out[6]= {{5., -5.}, 50., {{1., -1.2}, {1.06402, -1.35364}, {1.12804, -1.50729},
{1.19206, -1.66093}, {1.25607, -1.81458}, {1.32009, -1.96822}, {1.38411, -2.12187},

Gradijentni metodi 131

{1.44813, -2.27551}, {1.51215, -2.42915}, {1.57617, -2.5828}, {1.64018, -2.73644},
{1.7042, -2.89009}, {1.76822, -3.04373}, {1.83224, -3.19738}, {1.89626, -3.35102},
{1.96028, -3.50466}, {2.0243, -3.65831}, {2.08831, -3.81195}, {2.15233, -3.9656},
{2.21635, -4.11924}, {2.28037, -4.27289}, {2.34439, -4.42653}, {2.40841, -4.58017},
{2.47242, -4.73382}, {2.53644, -4.88746}, {2.60046, -5.}, {2.66448, -5.},

{2.7285, -5.}, {2.79252, -5.}, {2.85653, -5.}, {2.92055, -5.}, {2.98457, -5.},
{3.04859, -5.}, {3.11261, -5.}, {3.17663, -5.}, {3.24065, -5.}, {3.30466, -5.},
{3.36868, -5.}, {3.4327, -5.}, {3.49672, -5.}, {3.56074, -5.}, {3.62476, -5.},
{3.68877, -5.}, {3.75279, -5.}, {3.81681, -5.}, {3.88083, -5.}, {3.94485, -5.},
{4.00887, -5.}, {4.07289, -5.}, {4.1369, -5.}, {4.20092, -5.}, {4.26494, -5.},
{4.32896, -5.}, {4.39298, -5.}, {4.457, -5.}, {4.52101, -5.}, {4.58503, -5.},
{4.64905, -5.}, {4.71307, -5.}, {4.77709, -5.}, {4.84111, -5.}, {4.90512, -5.},
{4.96914, -5.}, {5., -5.}}}

Rezultati dobijeni paketom MATHEMATICA, kroz zahteve date u Out[1], Out[3] i
Out[5], prikazani su na slikama 2.4.3, 2.4.4 i 2.4.5, respektivno.

U‘S" " : ' . \

Sl. 2.4.3

2.4.4. CAUCHYEV METOD NAJSTRMIJEG PADA

Ovaj metod se razlikuje od osnovnog gradijentnog algoritma po tome §to
se parametar oy, koraka odreduje kao reSenje jednodimenzionalnog optimiza-
cionog problema

(24.3) F(ag) = H}Xin Q (x(k) + aVQ(x(k))) = min F(a), a>0.

132 Bezuslovna optimizacija

S

Sl. 2.4.5

Napomene. (i) U Cauchyevom metodu se moze koristiti normalizovani gradi-
jent
ko VQE®)

= <=/ p=0,1,...
IVQ(x®)]|

(i) Takode, moze se dogoditi da funkcija F'(h) ima nekoliko lokalnih min-
imuma. Dogovorno se moze uzeti lokalni minimum koji je najblizi polaznoj
tacki.

(iii) Za prekid iterativnog procesa moze se uzeti jedan od sledeca dva
kriterijuma:

1° Norma gradijenta je manja od zadatog broja ¢;

2° Kriterijum koji detektuje smanjenje optimalne vrednosti «

logu® || < || Lagu”],

Gradijentni metodi 133

tj.
oy < Loy,
gde je 0 < L < 1 izabrani realan broj.
Algoritam Cauchyevog metoda moze se iskazati kroz sledeée korake:

Korak 1. Specificirati polaznu aproksimaciju x(9) i kriterijum zaustavljanja,
tj. realan broj 0 < L < 1. Staviti k£ = 0.

Korak 2. Tzracunati Q(x*) i VQ(x*).

Korak 3. Izracunati normalizovani gradijent:

ut = vQ(x™)
IVQE®)|-
Korak 4. Resiti problem jednodimenzionalne optimizacije (2.4.3), pri ¢emu
se u slucaju maksimizacije uzima znak +, odnosno znak - za slucaj
minimizacije.

Korak 5. Izracunati novu aproksimaciju x*t1) prema formuli

xF+1) = x(k) 4 akuk.

Korak 6. Ako je ap < Lag, proces se zaustavlja. Priblizna vrednost min-
imuma je x* = x**!. U suprotnom, vratiti se na Korak 2, pri
cemu je xF = xF+1,

Ovaj metod ima vecu brzinu konvergencije u odnosu na osnovni gradi-
jentni metod, ali ima krupan nedostatak Sto se u njoj najvise vremena obi¢no
potrosi na jednodimenzionalnu optimizaciju kojom se izracunava optimalna
duzina koraka. Rukovodeéi se ovom ¢injenicom, u ovoj knjizi je dat algori-
tam za efikasno resavanje simbolicke konstrukeije nove funkcije F'(«). Ideja
simbolicke implementacije je da se konstruiSe nova ciljna funkcija

Fla) =Q (x(k) + (XVQ(X(k))) ,

na koju se mogu primeniti ranije implementirani metodi jednodimenzionalne
optimizacije, sa ciljem da se izra¢una min Q (x(k) + aVQ(x(k))) u toku min-
«
imizacije, ili max Q (x(k) + (XVQ(X(k))) u toku maksimizacije. Pri tome se
(6%
uvek mora imati u vidu uslov a > 0.

Pored ranijih prednosti (1G), (2G) i (3G), moze se istaci i sledeca pred-
nost:

134 Bezuslovna optimizacija

(4G) Ako ciljna funkcija nije zadata potprogramom, u proceduralnim
programskim jezicima nije jednostavno generisati novu funkciju f(a), ko-
risteé¢i (2.4.5) ili (2.4.6). Poznat je sledeéi problem optimizacije po pravcu!
kao jednodimeznionalni optimizacioni problem u n-dimenzionalnom prostoru
[15]:

Za datu tacku x* i pravac s”

naci korak * za koji je
(2.4.4) Q(x" + \'sh) = m}%n Q(x" + AsF).

Niz jednodimenzionalnih optimizacionih potproblema oblika (2.4.4) generise
se u razli¢itim metodima optimizacije za viseargumentne funkcije. Jedan od
takvih metoda je Cauchyev metod.

1z referenci [2], [13], [15], [60] moze se zakljuciti da problem optimizacija
po pravcu nije jednostavno reSiv u proceduralnim programskim jezicima. U
algoritmima koji su koriséeni u literaturi, funkcija F(«) se moze definisati
samo pod pretpostavkom da je ciljna funkcija definisana potprogramom.
Univerzalni algoritam za automatsko generisanje funkcije F'(a), koji koristi
proizvoljnu ciljnu funkciju @, nije jednostavan za implementaciju. U ovoj
knjizi dajemo algoritme bazirane na simbolickom generisanju funkcije F'(«)
za proizvoljnu ciljnu funkciju @. Funkcija () ne mora da bude zadata pot-
programom, ve¢ moze da se nalazi u listi parametara procedure kojom se
implementira neki od metoda optimizacije.

Neka je zadat analiticki izraz ciljne funkcije @@ u formalnom parametru
q-, neka je lista promenljivih zadata parametrom prom., i neka je tekucéa
iteracija x(®) zadata vektorom z. Tada se nova funkcija

F(h) =Q <X(k) + hVQ(x(k)))

moze jednostavno formirati slede¢im naredbama:

qexp=q;

Do [gexp=qexp/.prom[[i]]->N[x[[i]]]-h*N[norgrad[[i]]],{i,n}];
u slu¢aju minimuma, ili naredbama

qexp=q;

Do [qexp=qexp/.prom[[i]]1->N[x[[i]]]+h*N[norgrad[[i]]],{i,n}];
u sluéaju maksimuma. Unutrasnja forma funkcije F'(h) jeste funkcija ¢iji je
analiticki izraz zadat pomocu

Q (21" £ h(VQ™M)),,... 2l £ n(VQx™M)),).

1) U anglosaksonskoj literaturi poznat kao optimization along a line

Gradijentni metodi 135

dok je lista parametara jednaka {h}.

Pre implementacije Cauchyevog metoda navodimo potprogramom jed
proverava jednakost dve liste [1 i [2.
jed[1l1 List,12 List]:=
Block[{n=Length[11],i,uslov=True,uslovl},
Do[uslov1=N[11[[i]]]==N[12[[i]]]; uslov=uslov && uslovi,
{i,n}];
Return[uslov]]
U funkciji kojom se implementira Cauchyev metod, za kriterijum zaus-
tavljanja se uzima jednakost dve uzastopne aproksimacije optimalne tacke.

Cauchy[q-,prom_List,x0 List,eps_]:=
Module[{ql,qexp,i=1,tacka,n=Length[prom],
grad,it=0,q0,norgrad,metod,qcrt,pom,h,s=eps+1,
izb,qm,hk,pret,Lista={}},
izb=Input["Unesi <1> za minimum, a <2> za maksimum"];
Print["Izaberi metod jednodimenzionalne optimizacije."];
Print["<1> skeniranje konstantnim korakom"] ;
Print["<2> skeniranje promenljivim korakom"] ;
Print["<3> simplexI metod"];
Print ["<4> simplexII metod"];
Print["<5> zlatni presek"];
Print["<6> metod dihotomije"];
Print["<7> DSC metod"];
Print["<8> Powelov metod"];
Print["<9> DSC-Powelov metod"];
metod=Input[];
pom=x0; hk=10;
While[it<50 && N[hk]>eps,
q0=q; Do[q0=q0/.prom[[i]]1->pom[[i]],{i,n}];
Lista=Append[Lista,pom] ; grad=nabl [q,prom,pom] ;
s=norma[grad]; norgrad=grad/N[s];
it+=1;
(* Formiranje simbolicke funkcije F(h) *)
qexp=q;
Which[izb==1,
Do [qexp=qexp/.prom[[i]]->
N[pom[[i]]]-h*N[norgrad[[il]],{i,n}],
izb==2,

Do [qexp=qexp/.prom[[i]]->

136

] .

Bezuslovna optimizacija

N[pom[[i]]1]+h*N[norgrad[[i]1],{i,n}]

3

(*Izbor metoda jednodimenzionalne optimizacijex)
Which[metod==1,hk=skk[qexp,{h},0,1,0.01],

1;

metod==2,hk=spk[qexp,{h},0,1,0.5,eps/10],
metod==3,hk=simplexI[qexp,{h},0,1,0.5,eps/10],
metod==4,hk=simplexII[qexp,{h},0,0.1,eps/10],
metod==5,hk=zlatni[qexp,{h},0,1,eps/10],
metod==6,hk=dih[qexp,{h},0,1,eps/10],
metod==7,hk=Dsk [qexp,{h},0.,0.1,eps/10],
metod==8,hk=Powel [qexp,{h},0.,0.1,eps/10],
metod==9,hk=dskpowel [qexp,{h},0.,0.1,eps/10]

1

hi=h1[[1]];

(*Jednodimenzionalni metodi vracaju listux)

pret=pom;

If [izbor==1,
Do[pom[[i]]=N[pom[[i]]-hil*norgrad[[i]]],{i,n}],
Do [pom[[i]]=N[pom[[i]]+hl*norgrad[[i]]],{i,n}]

1

qm=q; Do[gm=qm/.prom[[i]]->pom[[i]],i,n];

Lista=Append[Lista,pom] ;

If[jed[pom,pret],it=50];

{pom,N[gm], Lista}

]

Test primeri:

In[1]:= Cauchy[x"2+y"2,{x,y},{1.0,-1.2},0.0001]
Unesi <1> za minimum, a <2> za maksimum 1
Izaberi metod jednodimenzionalne optimizacije.
<1> skeniranje konstantnim korakom

<2> skeniranje promenljivim korakom

<3> simplex] metod

<4> simplexII metod

<5> zlatni presek

<6> metod dihotomije

<7> DSC metod

<8> Powelov metod

<9> DSC-Powelov metod

72

Gradijentni metodi

qgexp = (1. - 0.640184 h$1) + (-1.2 + 0.768221 h$1)
Rezultat jednodimenzionalne minimizacije min gexp(h) je
h

h=1.
Optimalna tacka je
pom= {0.359816, -0.431779}
U novim iteracijama dobijaju se redom sledeéi rezultati:
2 2

gexp = (0.359816 - 0.640184 h$1) + (-0.431779 + 0.768221 h$1)
h=0.56205

-6 -6
pom= {4.92869 10 ,-5.91442 10 }

-6 2 -6 2
qexp = (4.92869 10 - 0.640184 h$1) +(-5.91442 10 + 0.768221 h$1)
h= 0.

-8 -8

pom= {4.44694 10 ,-5.33596 10 }

Out[1]={{4.44664 10—8 , -5.33596 10—8 }, 4.82451 10—15 ,
{{1., -1.2}, {0.359816, -0.431779}, {0.359816, -0.431779},
4.44664 10—8,-5.33596 10—8 , 4.44664 10—8, -5.33596 10—8 ,
4.44664 10—8 , -5.33596 10—8 }}}

Ovi rezultati su predstavljeni na slici 2.4.6.
0.5
0.25

n.2%

Sl. 2.4.6

In[2]:=Cauchy[8*(x-1)"2+3*(y-2) "2+ Cos[(x-1)*(y-2)],{x,y },{0,3},
{-10.,-10.},{10,10.},0.001]

Unesi <1> za minimum, a <2> za maksimum 1

Izaberi metod jednoimenzionalne optimizacije.

<1> skeniranje konstantnim korakom

<2> skeniranje promenljivim korakom

<3> simplex] metod

137

138 Bezuslovna optimizacija

<4> simplexII metod
<5> zlatni presek
<6> metod dihotomije
<7> DSC metod
<8> Powelov metod
<9> DSC-Powelov metod
72
Out[2]= {50, {1.00101, 2.}, 0.0015625, 1.00001} {{1.00101, 2.}, 1.00001}
In[3]:= fl[x_y_]:=8*(x-1)"2+3*(y-2) "2+Cos[(x-1)*(y-2)]
In[4]:=Cauchy|f1,{x,y},{0,3},{-10.,-10.},{10,10.},0.001]
Koriste¢i u toku jednodimenzionalne optimizacije skeniranje sa promenljivim korakom,
dobijaju se sledeée vrednosti za liste {it, N[pom], N[gm]}:

{1, {-0.946338, 3.32204}, 34.7065}
{2, {-1.92133, 3.54263}, 75.208}
{3, {-2.89087, 3.78607}, 131.467}
{4, {-3.88139, 3.92071}, 200.692}
{5, {-4.87073, 4.06383}, 289.402}
{6, {-5.85818, 4.21937}, 390.171}
{7, {-6.85353, 4.31192}, 510.227}
{8, {-7.84231, 4.45882}, 642.659}
{9, {-8.83798, 4.54766}, 794.757}
{10, {-9.83253, 4.64841}, 958.876}
{15, {-10., 5.0574}, 995.442}

{20, {-10., 5.57608}, 1006.3}

{25, {-10., 6.14525}, 1019.5}

{30, {-10., 6.7954}, 1036.2}

{35, {-10., 7.6116}, 1062.92}

{40, {-10., 8.58989}, 1097.31}
{45, {-10., 9.74617}, 1147.08}
{46, {-10., 10.}, 1161.}

Out[4]={{-10., 10.},1161., { {-0.946338, 3.32204},{-1.92133, 3.54263},{-2.89087, 3.78607},
{-3.88139, 3.92071}, {-4.87073, 4.06383},{-5.85818, 4.21937}, {-6.85353, 4.31192},
{-7.84231, 4.45882},{-8.83798, 4.54766},{-9.83253, 4.64841}, {-10., 5.0574},

{-10., 5.57608},{-10., 6.14525},{-10., 6.7954}, {-10., 7.6116},

{-10., 8.58989}, {-10., 9.74617},{-10., 10.} } }

Mogu se istaci sledeéi opsti zakljuéci koji proizilaze posle poredenja rezul-
tata dobijenih softverom koji je opisan u ovoj knjizi sa odgovarajuéim rezul-
tatima koji su dobijeni primenom softvera koji je napisan u proceduralnim
programskim jezicima.

1. Numericke moguénosti jezika SCHEME ne zaostaju za numerickim
mogucnostima proceduralnih programskih jezika FORTRAN ili C. Numericke
moguénosti programskog jezika MATHEMATICA su daleko veée. S druge stra-
ne, u funkcionalnim programskim jezicima ostaje bogatstvo simbolicke ob-
rade podataka, koje se itekako moze iskoristiti u implementaciji metoda

Gradijentni metodi 139

optimizacije. To je osnovna ideja koja je koriséena pri izradi softvera za
simbolicku optimizaciju.

2. Implementacija gradijentnih metoda optimizacije u funkcionalnim pro-
gramskim jezicima uzrokuje ubrzanje konvergencije implementiranih me-
toda. PoboljSanje konvergencije nastalo je kao posledica simbolicke im-
plementacije parcijalnih izvoda i simbolicke implementacije problema op-
timizacije po pravcuy.

Adekvatni programski jezici za implementaciju metoda optimizacije nisu
proceduralni programski jezici, ve¢ programski jezici primenljivi istovremeno
i u numerickoj i u simbolickoj obradi podataka. Kao predstavnici takvih
jezika izabrani su MATHEMATICA i SCHEME. Naravno, i drugi funkcionalni
programski jezici, a verovatno i odgovarajuéi programski jezici koji ée u
buduénosti biti razvijeni, mogu da se koriste saglasno principima koji su
opisani u ovoj knjizi.

2.4.5. METOD RELAKSACIJE

Ovaj metod je analogon Gauus-Seidelovom metodu, s tom razlikom §to
se niz upravljackih parametara po kojima se vrsi optimizacija odreduje na
osnovu optimalno odredene koordinate gradijenta.

Za lokalizaciju optimuma, poc¢ev od zadate pocetne tacke, koristi se up-
ravljacki parametar x, za koji ciljna funkcija ima najvecu izmenu, a koji je

definisan izrazom
9Q _ 9Q

8.7];0 63:1

max ‘
K2
Kriterijum za prekid pretrazivanja je

i=1

Programska implementacija ima oblik:

Relaxm[q_,prom List,x List,eps_]:=
Block[{Lis={},metod,rad=True,p,pr=prom,
x0=x1=x,qm=q0=q,del=1,n=Length[prom] ,naj,gde},
Lis=Append[Lis,x0];
Print ["Izaberi metod jednoimenzionalne optimizacije."];
Print["<1> skeniranje konstantnim korakom"];
Print ["<2> skeniranje promenljivim korakom"];

140 Bezuslovna optimizacija

Print ["<3> simplexI metod"];
Print["<4> simplexII metod"];
Print["<5> zlatni presek"];
Print["<6> metod dihotomije"];
Print["<7> DSC metod"];
Print["<8> Powelov metod"];
Print["<9> DSC-Powelov metod"];
metod=Input[];
dqdxp=nabl[q0,pr,x0];
While[rad && del>=eps,
naj=Max [dqdxp] ;
gde=Position[dqdxp,naj]l [[1]]1[[1]1];
qu=g;
Do [qm=gm/.prom[[i]]1->x0[[1]],{i,gde-1}];
gm=qm/ .prom[[gde]]->p;
Do [qm=qgm/.prom[[1]1->x0[[i]],{i,gde+1,n}];
(*jednodimenzionalna optimizacija po px*)
Which[metod==1,pO=skk[qm,{p},0,1,0.01],
metod==2,pO=spk[gm,{p},0,1,0.5,eps/10],
metod==3,pO=simplexI[qm,{p},0,1,0.5,eps/10],
metod==4,pO=simplexII[qm,{p},-1,0.1,eps/10],
metod==5,p0=zlatni[qm,{p},-1,1,eps/10],
metod==6,p0=dih[qm,{p},-1,1,eps/10],
metod==7,p0=Dsk [qm,{p},-1,0.1,eps/10],
metod==8,p0=Powel [gm, {p},-1,0.1,eps/10],
metod==9,pO=dskpowel [qm,{p},-1,0.1,eps/10]
1;
x0[[gde]]l=pO[[1]];
If[jed[x0,x1],rad=False,
x1=x0;
Lis=Append[Lis,x0];
dqdxp=nabl[q0,pr,x0];
del=Sqrt [Sum[dqdxp[[i]]~2,{i,n}]]

13
Do[q0=q0/.prom[[i]11->x0[[i]],{i,n}];
{x0,90,Lis}

Gradijentni metodi 141

2.5. Gradijentni metodi drugog reda

Osim problema (1U)—-(3U), (1M)—-(3M), (1G)—(4G), koji su tesko re-
§ivi bez simbolicke manipulacije podacima, osnovni problem vezan za gradi-
jentne metode drugog reda su sledeci:

(1N) Obrazovati Hesseovu matricu parcijalnih izvoda drugog reda ciljne
funkcije Q(x) u tacki x(*):

- 02Q™) 92Q"*) 7
0z, T 0x10xy,
V2QE®W) =HxW)=|
92Q") 92Q")
| 0z,,021 0zr,°

Parcijalni izvodi drugog reda u paketu MATHEMATICA mogu se simbolic-
ki formirati pomoc¢u operatora diferenciranja D. Neka je unutrasnja forma
ciljne funkcije) zadata analitickim izrazom ¢_ i listom argumenata prom_=
82

(%ciamj

{z1,... ,z,}. Tada se parcijalni izvod drugog reda moze generisati

simbolicki izrazom:
D[q,prom[[i]],prom[[j]1]1]1]
Takode, pomocéu ugradene funkcije Append nije problem da se ovako do-
bijeni simbolicki parcijalni izvodi drugog reda ugrade u matricu, koja ¢ée
predstavljati Hesseovu matricu u simbolickom obliku:
hes[q-,prom List,x0 List]:=
Block[{n,i,j,hesa={},dqdx},
n=Length [prom] ;
Do [dqdx={};

Do [dqdx=Append [dqdx,D[q,prom[[i]],prom[[j1111,{j,n}];

hesa=Append [hesa,dqdx],

{i,n}
15
Do [hesa=hesa/.prom[[i]]->x0[[i]1],{i,n}];
hesa

]

2.5.1. NEWTONOV METOD

Da bi se povecala efektivnost gradijentnog pretrazivanja koristi se kva-
dratna aproksimacija ciljne funkcije Q(x) u oblasti zadate tacke x| tako

142 Bezuslovna optimizacija

da u iterativnoj proceduri ucestvuju i drugi izvodi. Kvadratna aproksimacija
Q(x) funkcije Q(x), u okolini tacke x(¥), dobija se kada se iz Taylorovog
razvoja funkcije Q(x) u tacki x(*) odbace ¢lanovi treceg i viseg reda:

~ 1
Q(x) = Q(x(k)) + VQ(x(k))Ax(k) + §(AX(I€))Tv2Q(X(k))AX(k).
Na osnovu ove kvadratne aproksimacije funkcije @Q(x) dobijamo

VQ(X) ey = VQ(xM) + V2Q(xF)Ax®) |

odakle je
(2.5.1) Ax®) = — [v?cg(x(k))] T YoM,

Newtonov optimizacioni metod koristi iterativni korak koji je zasnovan
na formuli (2.5.1), tako da se Newtonova iterativna procedura definise na
sledec¢i nacin:

D) (k) [sz(XUc))] L)

(2.5.2)
— x® — B (x®)vQx™),

gde je, zbog jednostavnijeg oznaCavanja, uvedena oznaka
v2Q(x®) = H(x™®).

Konvergencija Newtonovog metoda je obezbedena ako je ciljna funkcija
Q(x) dvaput diferencijabilna i inverzija Hesseove matrice pozitivno definitna,
ti. H-1(x®)>0.

Iz (2.5.2) proizilazi da su pravac napredovanja prema optimamalnoj vred-
nosti, kao i veli¢ina koraka, u potpunosti definisani pozitivno definitnom
Hesseovom matricom H(x*)). Uporedivanjem Newtonovog optimizacionog
metoda sa gradijentnim metodima prvog reda, lako je zakljuciti da je kod
Newtonovog metoda korak pomeranja u pravcu gradijentnog vektora jednak
H1(x(k),

Newtonov optimizacioni metod se odlikuje kvadratnom konvergencijom u
blizini optimalne vrednosti. Za kvadratnu funkciju @(x) dovoljan je jedan
korak za nalazenje optimuma.

Gradijentni metodi 143

U toku implementacije Newtonovog metoda proizilazi jo§ jedan novi prob-
lem, koji je pogodan za simbolicku implementaciju, kao i za veliki broj
ugradenih funkcija iz linearne algebre u programskom paketu MATHEMAT-
ICA:

(2N) U svakoj iteraciji je neophodno da se izvrsi inverzija Hesseove ma-
trice tipa n x n. Osim toga, potrebni su analiticki izrazi za parcijalne izvode
drugog reda funkcije Q(x), $to za neke slozenije ciljne funkcije moze da bude
veliki problem.

U implementaciji Newtonovog metoda imamo:
Ulazne velicine:
q-, prom_: ciljna funkcija i lista njenih parametara;
201_: izabrana pocetna tacka;
eps_: zadata tacnost lokalizacije optimuma.
Lokalne promenljive:
1zb: parametar koji odreduje lokalizaciju minimuma ili maksimuma;

nabla, hesa: gradijent i Hesseova matrica ciljne funkcije.

Algoritam Newtonovog metoda moze se iskazati slede¢im koracima:
Korak 1. Izracunati ¢0 = Q(x0), VQ(z0), S = |VQ(z0)].

Korak 2. While ciklus, koji se prekida kada je ispunjen uslov
S =||VQ(z0)| < eps.

Unutar ciklusa izvrsiti sledece korake:
Korak 2.1. Formirati Hesseovu matricu V2Q(x®)) = H(x*).

Korak 2.2. Izracunati novu tacku optimuma x0:
-1
20 = 20 + [v?cg(x(’f))} vQ(x®).

Korak 2.3. Izracunati ¢0 = Q(z0), VQ(x0), S = [|[VQ(z0)]|.
Korak 3. Izlazne veli¢ine su z0 i ¢O0.
Zbog ociglednih prednosti koje omoguéuje MATHEMATICA u inverziji Hes-

seove matrice, navedena je samo implementacija u tom jeziku. Detalji vezani
za implementaciju u LISPu se mogu naéi u [51].

newton[q_,prom List,x01 List,eps_]:=
Block[{i,n,qO,nabla,hesa,s,xO=x01,xm,qm,it=0,

144 Bezuslovna optimizacija

izb,Lista={}},
izb=Input["Zelite 1i minimum(1l) ili maksimum(2)? "];
n=Length[x0] ;
q0=q; Dol[q0=q0/.prom[[il]1->x0[[il],{i,n}]; q0=N[q0l;
xm=x0; qm=q0; Lista=Append[Lista,xm];
nabla=nabl [q,prom,x0];
s=N[norma[nabla]];
Print[s,xm,qnm];
While[N[s]>=eps && i1t<=100,
hesa=hes[q,prom,x0] ;
If [Det[hesal==0,
Print["Hesseova matrica je singularna "];
Return[],
If[izb==2, x0=x0+
(Transpose [Inverse [hesa] . Transpose[{nabla}]]1 [[1]1]),
x0=x0-
(Transpose [Inverse[hesa] .Transpose[{nabla}]]1 [[11]);
1;
q0=q; Do[q0=q0/.prom[[i]1->x0[[il],{i,n}1;
If [(izb==2 && qO>qm) | | (izb==1 && q0<qm),
gm=q0; xm=x0; Lista=Append[Lista,xm];
1
it+=1;
nabla=nabl [q,prom,x0];
s=N[norma[nablal];
]
1;
{xm,qm, Lista}
]
Numericki eksperimenti.
U slucaju kvadratne funkcije cilja, Newtonov metod dostize optimalnu vrednost veé u
prvoj iteraciji.
In[1]:= newton[x"2/y"2-1,{x,y},{10,21},0.0001] (*minimum*)
Out[1]= {{10, 21}, -0.773243, {{10, 21}}}
Redom su dobijene sledeé¢e vrednosti za normu gradijenta:

0.0502309, 0.0502309, 0.0251154,0.0125577,0.00627886,
0.00313943,0.00156971,0.000784857,0.000392429,0.000196214.

In[2]:= newton[x"2+y"2-1,{x,y},{10.2,21.3},0.0001] (* minimum *)
out[2]= {{0., 0.}, -1., { {10.2, 21.3}.{0., 0.}}}

Gradijentni metodi 145

Za nekvadratne funkcije cilja potreban je veéi broj iteracija.
In[3]:= newton[x"2/y"2-1+3*Sin[x-1],{x,y },{10.2,21.3},0.0001] (*minimum*)

Out[3]={{5.71234,220.524}, -3.99933, {{10.2,21.3},{5.8583, 22.3557},
{5.70864, 29.4268}, {5.71092, 39.2436}, -3.97882},{5.71157, 52.3278},{5.71193, 69.7725},
{5.71213, 93.0317}, {5.71224, 124.044} {5.71231, 165.392},{5.71234, 220.524}}}

Dobijene su sledece vrednosti za normu gradijenta:

2.87965,2.87965,0.459669,0.0032172,0.00321018,0.00175982,0.000975228,
0.000543868,0.00030443,0.000170766.

Rezultati dobijeni u Out[3] prikazani su na slici 2.5.1.

250r

Sl 2.5.1

2.5.2. MODIFIKACIJA NEWTONOVOG METODA

Praksa pokazuje da Newtonov metod nije narocito prikladan za nek-
vadratne funkcije. Newtonov metod je brz (u slucaju konvergencije), ali
“hirovit”. Ako je pocetna tacka x(?) dalje od ekstremuma x*, korak defini-
san u (2.5.1) moze se pokazati prevelikim i tada metod nema konvergenciju
prema resenju. Osim toga, veliki je problem inverzija Hesseove matrice. Na-
jzad, Hesseova matrica moze da bude singularna ili blizu singularne. Iz tih
razloga se koristi modifikovani Newtonovov metod u kome se uvodi parame-
tar koraka, koji se u k-toj iteraciji oznacava sa ay:

(2.5.3) x kD) = x(®) 4 o [v?cg(x(k))] T vox®),

Izbor parametra «; bi trebalo da garantuje napredovanje prema optimumal-
noj vrednosti.

146 Bezuslovna optimizacija

Jedan od nacina da se poveta pouzdanost Newtonovog metoda je da se
uzme optimalna duzina parametra koraka, koja se dobija kao resenje sledeceg
jednodimenzionalnog optimizacionog problema

(2.5.4) Glayg) = m}%n G(h) = mth <x(k) +h {VQQ(X(k))} B VQ(X(k))> .

Sada se moze istaéi jo§ jedna prednost koja se dobija primenom sim-
bolickog diferenciranja:

(3N) Znatno je pogodniji problem za funkcionalne programske jezike da
se formira nova funkcija G(h), definisana sa (2.5.4). Funkcija G(h) se formira
kao kod Cauchyevog metoda. Navedene su dve funkcije za implementaciju
ove modifikacije Newtonovog metoda u jeziku MATHEMATICA:

newtonm[q_,prom List,x01_List,eps_]:=
Block[{i,n,q0,nabla,hesa,s,v,x0=x01,it=0,h,hk,
gexp,metod,izb, Lista={} },
izb=Input["Zelite 1i minimum(1) ili maksimum(1)?"];
Print["Izaberi jednoimenzionalnu optimizaciju."];
Print ["<1> skeniranje konstantnim korakom"];
Print["<2> skeniranje promenljivim korakom"];
Print["<3> simplexI metod"];
Print["<4> simplexII metod"];
Print ["<5> zlatni presek"];
Print["<6> metod dihotomije"];
Print["<7> DSC metod"];
Print ["<8> Powelov metod"];
Print["<9> DSC-Powelov metod"];
metod=Input[];
n=Length [x0];
q0=q; Do[q0=q0/.prom[[il1->x0[[il],{i,n}];
Lista=Append[Lista,x0];
nabla=nabl [q,prom,x0];
s=norma[nabla];
While[s>=eps && it<=100,
hesa=hes[q,prom,x0];
If [Det[hesa]==0,
Print["Hesseova matrica je singularna "];
Return[{}],
v=nmnomatvec [Inverse [hesa], nablal;

]
1;

Gradijentni metodi 147

qexp=q;
If[izb==1,
Do [qexp=qexp/.prom[[i]]->
N[xO[[i]11-h*N[v[[i]1],{i,n}],
Do [qexp=qexp/.prom[[i]]->
N[xO[[i]]1+h*N[v[[i]]],{i,n}]

1;

Print["qexp = ",qexp];

Which[metod==1,hk=skk[qexp,{h},0,1,0.01],
metod==2,hk=spk [qexp,{h},0,1,0.5,eps/10],
metod==3,hk=simplexI[qexp,{h},0,1,0.5,eps/10],
metod==4,hk=simplexII[qexp,{h},0,0.1,eps/10],
metod==5,hk=zlatni [qexp,{h},0,1,eps/10],
metod==6,hk=dih[qexp,{h},0,1,eps/10],
metod==7,hk=Dsk [qexp,{h},0.,0.1,eps/10],
metod==8,hk=Powel [gqexp,{h},0.,0.1,eps/10],
metod==9,hk=dskpowel [qexp,{h},0.,0.1,eps/10]

1;

hk=hk[[1]];

If[izb==1,
x0=x0-hk*v, x0=x0+hk*v

1;

q0=q; Do[q0=q0/.prom[[i]]1->x0[[i]],{i,n}];

Lista=Append[Lista,x0];

it+=1;

Print [{x0,q0}1;

nabla=nabl [q,prom,x0];

s=norma[nabla] ;

{x0,q0, Lista}

]

Numericki eksperimenti.

Testira se problem minimizacije u slede¢em izrazu:

In[1]:= newtonm[x"2+y"2,{x,y},{-2,3},0.0001]
Neka je za reSavanje problema jednodimenzionalne optimizacije ap = min G(h) izabran
h

metod skeniranja sa promenljivim korakom. Optimalna vrednost se dostize u prvoj it-
eraciji. Simboli¢ka funkcija G(h) data je izrazom

gexp = (3. - 3. h)2 + (-2. + 2. h)?

148 Bezuslovna optimizacija

Rezultat je

Out[1]= {{0., 0.}, 0.{{0., 0.}}}

Implementacija modifikovanog Newtonovog metoda u jeziku LISP opisana
je u [51].

2.6. Metodi promenljive metrike

Metodi promenljive metrike objedinjuju pozitivna svojstva gradijentnih
metoda prvog reda i Newtonovog optimizacionog metoda, tj. ovi metodi se
odlikuju brzim pocetnim napredovanjem prema optimalnoj tacki i kvadrat-
nom konvergencijom u blizini optimalne tacke. Osnovna ideja je da pre-
trazivanje po¢ne gradijentnim metodom prvog reda, Sto daje velike pocetne
skokove. Preciznije, pocetne iteracije su oblika:

XM = xF 4+ 0, VQ(xF).
U blizini ekstremuma, potrebno je da iteracije imaju sledeéi oblik:
—1
X = xF 4 [VQQ(Xk)] VQ(xk),

Sto garantuje zavrSavanje sa kvadratnom konvergencijom. Medutim, umesto
inverzije Hesseove matrice, obi¢no se koristi neka njena aproksimacija. Modi-

fikaciju matrice [VQQ(Xk)] ~! oznacavacemo sa H k- Takve modifikacije New-
tonovog metoda se mogu opisati pomocu

<M = x4 0, H, VQ(xY).
U pocetnim iteracijama se postavlja Hy = I, §to implicira
x! =x%+ oo VQ(x).

Pri tome se moze uzeti da je korak o odreden iz jednodimenzionalne opti-
mizacije

F(op) = min Q <x(0) — aVQ(x(O))> = min F(«), a >0,

u sluéaju minimuma, odnosno kao reSenje jednodimenzionalnog optimiza-
cionog problema

F(ap) = max Q <X(0) + onQ(x(k))> = max F'(«), a >0,

Gradijentni metodi 149

u slucaju maksimuma. Ovim se obezbeduje pocetno napredovanje pomocu
Cauchyevog metoda. Takode, moze se uzeti fiksirana vrednost parametra
a. Medutim, da bi se ostvarila kvadratna konvergencija, potrebno je da Hy
u svakoj iteraciji bude priblizno jednaka sa inverzijom Hesseove matrice, tj.
H, ~ [VQQ(Xk)]il

Svaka modifikacija Newtonovog metoda sa konkretnim “pravilom upot-
punjavanja” matrice Hy prema gornjem pravilu naziva se metod promenljive
metrike. Do sada je definisan veéi broj metoda promenljive metrike.

2.6.1. METOD MARKUARDA

Ovaj metod predstavlja kombinaciju osnovnog gradijentnog metoda prvog
reda i Newtonovog metoda. Prema minimumu se napreduje saglasno formuli

~1
(2.6.1) x(k+) — x (k) 4 [H(x(k)) +)\(k)I] vQ(x®),

Parametar A(®) odreduje kretanje prema ekstremumu. Za veliko A*) (A(*) >
103) u izrazu (2.6.1) dominira dijagonalna matrica A*)I, te napredovanje
odgovara gradijentnim metodima prvog reda. Za A*) = 0 napredovanje je
kao u Newtonovom metodu. U pocetku se uzima parametar \(*) sa velikom
vrednoséu, na primer \(©) = 10* i tada proizvod AOT “potiskuje” uticaj
Hesseove matrice H (X(k)), te se proces pretrazivanja odvija prema pravcu
gradijenta VQ(x(?)). Kada se u k-toj iteraciji poboljsa vrednost ciljne funk-
cije, parametar \(¥) se smanjuje. Tada se uzima novi korak A**1 < X(#¥) pa
se sa tako odredenim korakom nacini nova iteracija. U protivnom, uzima
se AFTD = BA(E) pri Gemu je § > 1, a zatim se ponavlja prethodni korak.
Generalno posmatrano, svaka uspesna iteracija smanjuje korak optimizacije,
a neuspesna povecava korak. Na taj nacin, Sto je aproksimacija bliza opti-
malnoj tacki, formula (2.6.1) je sve pribliznija Newtonovim iteracijama. S
druge strane, $to je aproksimacija dalja optimalnoj tacki, formula (2.6.1) je
sve pribliznija gradijentnim metodima prvog reda. Time se konvergencija
ovog metoda menja od linearne do kvadratne.

Metod Markuarda opisan je na sledeéi naéin:

Korak 1. Izracunati

0= Q(20) = Q(z"), VQ(20) = VQ(x?), § = [VQ(20)|.

Korak 2. Formirati While ciklus, koji se prekida kada je ispunjen uslov

S = [IVQ(z0)]| < eps

150

Bezuslovna optimizacija

ili kada se prekora¢i maksimalan broj iteracija.

Unutar cik
Korak 2.1.

Korak 2.2.

Korak 2.3.
Korak 2.4.

lusa izvrsiti sledece korake:

Ako nova aproksimacija x1 nije “bolja” od x0 formirati gradi-
jent VQ(20)=VQ(x(?), izracunati S=||VQ(z0)]| i formirati
Hesseovu matricu V2Q(x(9) = H(z0).

Izracunati novu tacku =1 prema (2.6.1) ili (2.6.2):
21 = 20 + [H(20) + \I] ' VQ(x0).

Izracunati q1 = Q(z1).

Ako je nova aproksimacija z1 “bolja” od x0, postaviti A=\/2,
q0 = q1, 0 = x1; inace, postaviti A := 2\.

Korak 3. Izlazne veli¢ine su 20 i ¢0.

U implementaciji metoda predvidena je moguénost da se algoritam pre-
kine na osnovu maksimalnog broja iteracija ng(= 100).
mark[q_,prom List,x01 List,eps_]:=
Block [{x0=x01,lambda=10000,it=0,q0,q1,i,n,s,sk=eps+1,

izb=
n=Le

nabla,hesa,izb,e, ind=True,Lista={}},
Input ["Maximum(2) ili minimum(1)?"];
ngth[prom] ; e=IdentityMatrix[n];

q0=q; Do[q0=q0/.prom[[il]1->x0[[il],{i,n}];

List
Whil
If

1;
a=
a=
If
ql
If

11
{x0,

a=Append[Lista,x0] ;

e[sk>=eps && it<=100,

[ind,

nabla=nabl[q,prom,x0]; hesa=hes[q,prom,x0];
sk=norma[nabla]//N;

Inverse[hesa-lambda e] .Transpose[{grad}];
Transpose[s] [[1]];

[izb==2, x1=N[x0+s], x1=N[x0-s] 1;

=q; Dolql=q1/.prom[[i]]1->x1[[il],{i,n}];
[(izb==2&&N[q1]1>N[q0]) | | (izb==1&&N[q1]1<N[q0]),
q0=ql; x0=x1; lambda /=2;
Lista=Append[Lista,x0]; ind=True,

lambda *=2; ind=False

q0,Lista}]

Gradijentni metodi 151

Numericki eksperimenti. U ovom primeru je ilustrovana “hirovitost” Newtonovog
metoda, kao i “dostiznost” osnovnog gradijentnog pretrazivanja. Osnovni gradijentni
metod konvergira sporo, ali dostizno prema optimalnoj vrednosti. Prikazane meduvred-
nosti sadrze redom normu gradijenta i listu koja sadrzi tacku optimuma i optimalnu
vrednst.

In[1]:= OsnGrad[x"2+4y"2+Cos[x*y],{x,y},{1.0,1.0},{0.1,0.2},{-10,-10},{10,10},0.001]

Zelite li maximum(2) ili minimum(1)? 1

1.63841 {{0.884147,0.768294},2.15001}

1.61724 {{0.755585, 0.572067},1.8062}

1.51714 {{0.628432, 0.406545},1.52775}

1.32668 {{0.51302, 0.27569}, 1.32921}

1.09728 {{0.414302, 0.179877},1.20123}

0.879062 {{0.332781, 0.114096}, 1.12304}

0.69548 {{0.266658, 0.0709839},1.07597}

0.54931 {{0.213461, 0.0435998},1.04742}

0.434945 {{0.170809, 0.0265572},1.02987}

0.345485 {{0.136659, 0.0160893},1.01893}

0.275136 {{0.109331, 0.00971366},1.01205}

0.219503 {{0.0874658, 0.00585142},1.00768}

0.175317 {{0.069973, 0.0035198},1.00491}

0.140121 {{0.0559785, 0.00211533},1.00314}

0.112036 {{0.0447828, 0.00127052},1.00201}

0.0896015 {{0.0358262, 0.000762823},1.00128}

0.0716687 {{0.028661, 0.00045789},1.00082}

0.0573293 {{0.0229288, 0.000274809},1.00053}

0.0458609 {{0.018343, 0.000164914},1.00034}

0.0366876 {{0.0146744, 0.0000989597},1.00022}

0.0293495 {{0.0117395, 0.0000593801},1.00014}

0.0234794 {{0.00939164, 0.0000356297},1.00009}

0.0187834 {{0.00751331, 0.0000213784},1.00006 }

0.0150267 {{0.00601065, 0.0000128273},1.00004 }

0.0120213 {{0.00480852, 7.69648 10~6},1.00002}

0.0096170 {{0.00384681, 4.61792 10~6},1.00001}

0.0076936 {{0.00307745, 2.7707710~6},1.00001}

0.0061549 {{0.00246196, 1.6624710~6},1.00001}

0.0049239 {{0.00196957,9.97481 10~ 7},1.}

0.0039391 {{0.00157565,5.9849 10~ 7 },1.}

0.0031513 {{0.00126052,3.59094 10~ 7},1.}

0.0025210 {{0.00100842,2.15457 10~ 7},1.}

0.0020168 {{0.000806735,1.29274 10~ 7},1.}

0.0016134 {{0.000645388,7.75644 10~8},1.}

0.0012907 {{0.000516311,4.65386 10~3},1.}

0.0010326 {{0.000413048,2.79232 10~8},1.}

Za iste pocCetne vrednosti Newtonov metod divergira.
In[2]:= newton[x"2+y"2+Cos[x*y],{x,y},{1.0,1.0},0.001]

Zelite li minimum(1) ili maksimum(2)? 1
1.63841 {{1., 1.},2.5403}

152 Bezuslovna optimizacija

1.63841 {{1., 1.}, 2.5403}

21.4296{{1., 1.}, 2.5403}
48.1237 {{1., 1.}, 2.5403}
Out[2]= {{1., 1.}, 2.5403}

Medutim, ako se pode od pocetne tacke koja je bliza optimalnoj, Newtonov metod
konvergira vrlo brzo:

In[3]:= newton[x"2+y"2+Cos[x*y],{x,y},{0.5,0.5},0.001]
Zelite li minimum(1) ili maksimum(2)? 1

1.23927 {{0.5, 0.5}, 1.46891}

1.23927 {{-0.191011, -0.191011}, 1.0723}

0.530406 {{0.007367, 0.007367}, 1.00011}

0.0208375 {{-3.99921 10~7-3.99921 10~ 7},1.}

Out[3]= {{-3.99921 1077 ,-3.99921 10"}, 1.,
{{0.5,0.5},{-0.191011,-0.191011},{0.007367,0.007367},{-3.9992 10~ 7,-3.9992 10~ "} }}

Markuardov metod se ponasa i po Newtonovom i po gradijentnom metodu. Za polaznu
tacku {1.0,1.0} divergira:

In[4]:= mark[x"2+y"2+Cos[x*y],{x,y},{1.0,1.0},0.001]
Zelite li maximum(2) ili minimum(1)? 1

1.63841 {{1.01159,1.01159}, 2.56718}

1.63841 {{1.02321, 1.02321},2.59412}

1.63841 {{59.7137,59.7137}, 7130.44}
1.63841 {{-38.8171, -38.8171},3013.9}

1.63841 {{-13.8673,-13.8673}, 383.82}

Out[4]= {{-13.8673, -13.8673}, 383.82, {{1.01159, 1.01159},{1.02321, 1.02321},...,
{{59.7137, 59.7137},{{-38.8171, -38.8171},.. ., {-13.8673, -13.8673}}}

Kada konvergira, ¢ini to sporije od Newtonovog metoda:

In[5]:= mark[x"2+y"2+Cos[x*y],{x,y },{0.5,0.5},0.001]
Zelite li maximum(2) ili minimum(1)? 1
1.23927 {{0.508876,0.508876}, 1.48457}
1.23927 {{0.517982, 0.517982},1.50083}
1.23927{{0.536925, 0.536925}, 1.53531}
1.23927 {{0.578019, 0.578019}, 1.61292}
1.23927 {{0.675898, 0.675898}, 1.81113}
1.23927 {{0.971925, 0.971925}, 2.47531}
1.23927 {{3.47696, 3.47696}, 25.0668}
1.23927 {{-1.29979, -1.29979}, 3.26052}
1.23927 {{-0.498613, -0.498613}, 1.46648}
1.23927 {{-2.2984, -2.2984}, 11.1051}
1.23678 {{0.493634, 0.493634}, 1.45781}
1.23678 {{2.27569, 2.27569}, 10.8072}
1.22778 {{-0.47622, -0.47622}, 1.42796}
1.22778 {{-2.19697, -2.19697}, 9.76738}

Gradijentni metodi 153

1.19552 {{0.420648, 0.420648}, 1.33828}

1.19552 {{1.95225, 1.95225}, 6.83854}

1.08506 {{-0.286505, -0.286505}, 1.1608}

1.08506 {{-1.39148, -1.39148}, 3.51509}

0.777138 {{0.116438, 0.116438}, 1.02702}

0.777138 {{0.681125, 0.681125}, 1.82216}

0.327103 {{-0.0310068, -0.0310068}, 1.00192}

0.327103 {{-0.227341, -0.227341}, 1.10203}

0.0876583 {{0.00757654, 0.00757654}, 1.00011}

0.0876583 {{0.0585557, 0.0585557}, 1.00685}

0.0214291 {{-0.0018397, -0.0018397}, 1.00001}

0.0214291 {{-0.0142744, -0.0142744}, 1.00041}

0.00520346 {{0.000446541, 0.000446541}, 1.}

0.00520346 {{0.00346556, 0.00346556}, 1.00002}

0.00126301 {{-0.000108384, -0.000108384}, 1.}

0.00126301 {{-0.000841169, -0.000841169}, 1.}

0.000306556 {{0.0000263068, 0.0000263068}, 1.}
Out[5]= {{0.0000263068, 0.0000263068}, 1.,
{{0.508876, 0.508876},{0.517982, 0.517982},{0.536925, 0.536925},
{0.578019, 0.578019},{0.675898,0.675898},{0.971925, 0.971925},
{3.47696, 3.47696},{-1.29979,-1.29979},{-0.498613, -0.498613},
{-2.2084, -2.2984}, {0.493634,0.493634},{2.27569, 2.27569},
{-0.47622, -0.47622}, {-2.19697,-2.19697},{0.420648, 0.420648},
{1.95225, 1.95225}, {-0.286505,-0.286505},{-1.39148, -1.39148},
{0.116438, 0.116438},{0.681125,0.681125},{-0.0310068, -0.0310068},
{-0.227341, -0.227341},{0.00757654, 0.00757654},{0.0585557, 0.0585557},
{-0.0018397, -0.0018397}, {-0.0142744,-0.0142744},
{0.000446541, 0.000446541},{0.00346556, 0.00346556},
{-0.00010838,-0.00010838},{-0.0008411,-0.0008411},{0.0000263,0.0000263} } }

Osnovni nedostatak Markuardovog metoda je neophodnost da se raspola-
ze Hessovom matricom H (x) za funkciju Q(x) kao i invertovanje te matrice
u svakoj iteraciji, narocito za veliki broj n upravljackih parametara. U
mnogim sluc¢ajevima Hesseova matrica je nepoznata ili je njeno izracunavanje
komplikovano. Zbog toga su uc¢injeni mnogi pokusaji da se izgradi metod koji
ima preimué¢stva nad gradijentnim metodom prvog reda i nad Newtonovim
metodom, ali da koristi samo prve izvode.

Razradene su dve grupe takvih metoda: metod konjugovanih gradijenata
i kvazi-newtonovski metodi. Metodi konjugovanih gradijenata se koriste pre
svega za kvadratne funkcije. U kvazi-newtonovskim metodima definiSe se
aproksimacija Hessove matrice ili njene inverzne matrice, ali samo pomocu
prvih izvoda funkcije Q(x). Od ovih metoda izlozi¢emo tzv. Davidon-
Fletcher-Powell (DFP) metod.

154 Bezuslovna optimizacija

2.6.2. METOD DAVIDON-FLETCHER-POWELL (DFP)

U ovom metodu se umesto matrice H~'(x(*)) koristi njena adekvatna
aproksimacija n(x(k)), tako da iterativna procedura ima oblik

(2.6.2) xk+D) = x®) 4 B (x () v Q(x®)).

Ponekad se kvazi-newtonovski metodi nazivaju gradijentni metodi sa velikim
korakom ili metodi sa promenljivom metrikom, jer se matrica n(x(®)) = n(*)
menja kroz svaku iteraciju. Velika grupa kvazi-newtonovskih metoda zasno-
vana je na promeni matrice n(x) u svakoj iteraciji, $to je definisano pomocu
rekurentne relacije

nFHD = pE) L Ap®).

U ovoj jednakosti An®) je matrica koja koriguje smer pretrazivanja. Nacin
izracunavanja korigujuée matrice An®) odreduje modifikaciju kvazi-newto-
novskog metoda.

U DFP metodu korigujuéa matrica An®*) i n*+1) se izra¢unavaju prema
formulama

(2.6.3) p*FD = k) L AR _ B

gde su

(2.6.4) Al — AxE)(AxE)T
- (AxH)T(Ag®)’

(2.6.5) g _ 10 (Ag™)(Ag™)T (™))"
B (Ag) ™) (Ag®)

(2.6.6) Ax®) = x(k+1) _ ¢ (k)

(2.6.7) Ag) = vQx**Y) — vQx™).

Kao i u Newtonovom metodu, neophodno je da matrica n(**1) bude po-
zitivno definitna.

Algoritam DFP metoda moze se iskazati pomoc¢u sledeéih koraka:

Korak 1. Zadati pocetnu tacku x(©), maksimalan broj iteracija Nj, i kon-
stante 1 ieg;,, 1 =1,...,n.

Korak 2. Staviti k = 0.

Korak 3. Za pocetnu matricu (9 uzeti jediniénu matricu.

Korak 4.
Korak 5.
Korak 6.

Korak 7.

Korak 8.

Korak 9.

Gradijentni metodi 155

Izracunati VQ(x@).
k:=k+1.

Formirati novu funkciju po simbolu A na sledeéi nacin:
F(h) = Q (x) = hx n(x")VQ(x)) .

Ovo je u skladu sa rekurentnom formulom (2.6.2).

Izracunati h(*) iz uslova minimizacije f(h), tj. f(h(¥)) = m}in f(h),
pri ¢emu koristiti neki od metoda jednodimenzionalne optimiza-
cije.

Koristeéi formulu (2.6.2) i izracunatu vrednost h(*) odrediti vek-
tor x(*+1) i vrednost Q(x*+1)).

Izracunati VQ(x(*+1)).

Korak 10. Na osnovu formula (2.6.6) i (2.6.7), izracunati Ax®*) i Ag().

Korak 11. Proveriti jedan od kriterijuma za prekid pretrazivanja:

AQEM)| _ | Qx*) — xM)

<eéq,

Qx®) Q(x(*))
(ii) |Am§k)| < &g,, ako z; — 0,

Korak 12. Ako nije ispunjen kriterijum za prekid pretrazivanja izracunati

n*++1) po formulama (2.6.3), (2.6.4) i (2.6.5), a zatim se vratiti
se na Korak 4.

Dfplqg-,prom List,xOp_List,eps_]:=
Block[{gradl,hk,n=Length[prom] ,m0,ml,grad2,g01,s,x01,

ng=eps+1,p,r,Nk=100,1i,t,a,b,k=0,x0=x0p,q0,x1,ql,xh,qm,

izb,qexp,h,metod, Lista={}},
izb=Input["Zelite 1i minimum(1) ili maksimum(1)?"];

Lista=Append[Lista,x0];

(x Korak 3 %)

mO=IdentityMatrix[n];

(x Korak 4 x*)

gradi=nabl[q,prom,x0];

izb=Input ["Unesi <1> za minimum, <2> za maksimum"];

Print["Izaberi jednoimenzionalnu optimizaciju."];

156

Print["<1>
Print["<2>
Print ["<3>
Print["<4>
Print ["<5>
Print["<6>
Print ["<7>
Print ["<8>
Print["<9>

Bezuslovna optimizacija

skeniranje konstantnim korakom"];
skeniranje promenljivim korakom"];
simplexI metod"];

simplexII metod"];

zlatni presek"];

metod dihotomije"];

DSC metod"];

Powellov metod"];

DSC-Powellov metod"];

metod=Input[];

(* Korak 11 x*)

While[Nk>k && Abs[hk]>=eps && Abs[ng]l>=eps,
q0=q; Do[q0=q0/.prom[[i]]1->x0[[i]],{i,n}];
(x Korak 5 *)

k++;

I

(x Korak 6 x*)
If [izb==1, xh=x0-h*(m0.gradl), xh=x0+h*(m0.gradl) 1;

qexp=q;

Do [qexp=qexp/.prom[[i]]->xh[[i]], {i,n}];

(x Korak 7 x*)

Which[metod==1,hk=skk[qgexp,{h},0,1,0.01],
metod==2,hk=spk [qexp,{h},0,1,0.5,eps/10],
metod==3,hk=simplexI[qexp,{h},0,1,0.5,eps/10],
metod==4,hk=simplexII[qexp,{h},0,0.1,eps/10],
metod==5,hk=zlatni [qexp,{h},0,1,eps/10],
metod==6,hk=dih[qgexp,{h},0,1,eps/10],
metod==7,hk=Dsk [qexp,{h},0.,0.1,eps/10],
metod==8,hk=Powel [qexp,{h},0.,0.1,eps/10],
metod==9,hk=dskpowel [qexp,{h},0.,0.1,eps/10]

1;

hk=hk[[1]]; Print["Korak je hk=",hk];
(* Korak 8 *)
If [Abs [hk]>=eps,
If[izb==1,
x1=x0-hk* (m0.gradl), x1=x0+hk*(m0.gradl)];
ql=q; Dolq1=q1/.prom[[il1->x1[[i]],{i,n}];
(* Korak 10 *)
grad2=nabl[q,prom,x1]; gOl=grad2-gradl;
(* Korak 12 *)
If [izb==1,x01=-hk* (m0.gradl) ,x01=hk*(m0.gradl)];

Gradijentni metodi 157

p=Partition[x01,1].{x01}; r=x01.g01;
a=N[(1/r) p]l;
s=m0.Partition[g01,1].{g01}.Transpose[m0] ;
t=g01.m0.g01; b=N[(1/t) s]; ml=mO+a-b;
If [(izb==2&&q1>q0) || (izb==1&&q1<=q0),
gradl=grad2; x0=x1; qO0=ql; mO=ml;
Lista=Append[Lista,x0];
1]
1;
{x0,q0,Lista}
]

Algoritmi kojima je implementiran DFP metod u programskom jeziku
LISP opisani su u [51].

Konvergencija ovog algoritma se moze dokazati samo u sluc¢aju kvadratne

ciljne funkcije sa pozitivno definitnom Hesseovom matricom. U ovom meto-
du se mogu koristiti numericki izracunate vrednosti, ali ne i analiticki izrazi
oQ
63:,; '
U nizu test primera vrSena je uporedna analiza kvazi-newtnovskih metoda
koji koriste analiticke izraze za parcijalne izvode ciljne funkcije sa kvazi-
newtnovskim metodima koji koriste numericke aproksimacije za parcijalne
izvode ciljne funkcije. Praksa pokazuje da u slu¢aju numerickih izracunava-
nja parcijalnih izvoda, ponekad se ne stize do reSenja zadatka. Ova ¢injenica
ide u prilog opravdanju simbolicke implementacije metoda numericke opti-
mizacije.

za

2.6.3. METOD KONJUGOVANIH GRADIJENATA

Sukscesivne aproksimacije za minimum ciljne funkcije @ u metodu konju-
govanih smerova generiSu se pomocu iterativne formule

X = x* 4 g, dF

pri éemu je oy, optimalna duzina koraka u smeru d*, odnosno resenje jednodi-
menzionalnog optimizacionog problema

gn>1101 Q (xk + O’dk) .

158 Bezuslovna optimizacija

Osim toga je

d’=-vQ (XO) ,
d" = -vQ (x*) + nd",
Ve (M) 1P

TEZIve I

Iz poslednje dve jednakosti zaklju¢ujemo da je

k_ «* (VQ("VQ(xF)) k—1
4= VR Fome vy ¢

gde (-) oznacava skalarni proizvod dva vektora.
Pocetna aproksimacija x° je proizvoljna. Algoritam se prekida u sluéaju
kada je ||d¥|| < e, pri éemu je ¢ unapred zadat mali pozitivan broj.
Algoritam metoda konjugovanih gradijenata moze se iskazati slede¢im ko-
racima:

Korak 1. Inicijalizacija: postaviti k = 0, izabrati startnu tacku x(©), unap-
red definisanu toleranciju ¢ i izracunati Q(x(?) i dy = VQ(x).

Korak 2. Ako je |[VQ(x®)|| < e, prekinuti algoritam; inace, preéi na sledeéi
korak.

Korak 3. U k-toj iteraciji odrediti minimum funkcije Q(x) koriste¢i jednodi-
menzionalno pretrazivanje u pravcu dg, tj. izracunati tekucu
duzinu koraka «j, koja ispunjava uslov

i (k) _ = mi (k) _ (k)
(2.4.20) gl;r(]lQ(X ady) gl>1r01Q <x aVQ(x))
za sluc¢aj minimuma, odnosno

(2.4.21) min Q(x* + ady,) = EH;I(}Q <X(k) + aVQ(X(k)))

a>0

za slucaj maksimuma.
Korak 4. Odrediti x*+1) pomoéu:

xF+) = x(B) _ o, dg.

Korak 5. Tzracunati Q(x*+1)) i vQ(x*+1).

Gradijentni metodi 159

Korak 6. Izracunati tekuéi pravac dgyq:

dk»+1 = —VQ(X(k)) +)\kdlm

gde je Ap =0 i
o IvQud e
E= TS~
IVQ(x®)|2
Korak 7. Postaviti x*) = x(*k+1) d, = dii1, £ = k + 1, izracunati

Q(x™) 1 VQ(x*), a zatim se vratiti na Korak 2.

Sledi implementacija u paketu MATHEMATICA. Dovoljno je napomenuti da
je implementacija Koraka 3 i 4 analogna opisanoj implementaciji koja je
koris¢éena kod Cauchyevog i DFP metoda.

Mkg[q-,prom List,x01 List,eps_]:=
Block[{qO,ql,dO,dl,x0=x01,it,A=a,p,X1,grad1,grad2,h,hk,
n=Length[prom], gm,tacka,izbor,ind,qexp,
metod,Lista={}},
izbor=Input ["Unesi <1> za minimum, <2> za maksimum"];
Print["Izaberi jednoimenzionalnu optimizaciju."];
Print["<1> skeniranje konstantnim korakom"];
Print ["<2> skeniranje promenljivim korakom"];
Print["<3> simplexI metod"];
Print ["<4> simplexII metod"];
Print["<5> zlatni presek"];
Print["<6> metod dihotomije"];
Print["<7> DSC metod"];
Print ["<8> Powelov metod"];
Print ["<9> DSC-Powelov metod"];
metod=Input[];
q0=q;
Do[q0=q0/.prom[[1]1->x0[[i]],{i,n}];
Lista=Append[Lista,x0];
gradl=nabl[q,prom,x0];
dO=gradl; 1it=0;
While[N[norma[d0]]>=eps && it<50,
it++; Print["it=",it];
qexp=q;
If[izbor==1,
Do [qexp=qexp/.prom[[i]]->

160

1;

Bezuslovna optimizacija

N[x0[[i]]1]1-h*N[dO[[i]]1],{i,n}],

Do [qexp=qexp/.prom[[i]]->

N[xO[[i]11+h*N[d0[[i]1],{i,n}]

Which[metod==1,hk=skk[qexp,{h},0,1,0.01],

metod==2,hk=spk[qexp,{h},0,1,0.5,eps/10],
metod==3,hk=simplexI[qexp,{h},0,1,0.5,eps/10],
metod==4,hk=simplexII[qexp,{h},0,0.1,eps/10],
metod==5,hk=zlatni[qexp,{h},0,1,eps/10],
metod==6,hk=dih[qexp,{h},0,1,eps/10],
metod==7,hk=Dsk [qexp,{h},0.,0.1,eps/10],
metod==8,hk=Powel [qexp,{h},0.,0.1,eps/10],
metod==9,hk=dskpowel [qexp,{h},0.,0.1,eps/10]

15

hk=hk[[1]];

Print["Korak =",hk,"x0=",N[x0],"d0=",N[d0]];

If [s>=eps,

If [izbor==1, x1=N[x0-hk*d0], x1=N[x0+hk*d0]];
90=q; Do[q0=q0/.prom[[i]]->x0[[i]],i,n];
ql=q; Dolql=q1l/.prom[[i]1]1->x1[[i]],i,n];
grad2=nabl [q,prom,x1];
dl=+grad2-N[(grad2.grad2)/(gradl.gradl)] d0;
d0=N[d1]; x0=N[x1]; qO=N[q1];
Lista=Append[Lista,x0];
gradl=grad?2,
it=50

]

1;

{N[x0],N[q0],Lista}

]

Moze se pokazati da je metod konjugovanih gradijenata jedan od metoda
promenljive metrike u kojoj se inverzija Hessiana generiSe ppomocu

_IYQ] it

H. =1
. IVQ (xF=1) 2

Metodi konjugovanih gradijenata se odlikuju kvadratnim zavrSavanjem.
Medutim, oni su osetljivi na izbor duzine koraka. Ukoliko duzine koraka
nisu adekvatne, ovi metodi mogu postati neefikasni i inferiorni u odnosu na
druge metode promenljive metrike.

Gradijentni metodi 161

Pozitivna osobina metoda konjugovanih gradijenata je da ne koristi ma-
trice koje mogu da budu loSe uslovljene za ra¢unanje smerova pretrazivanja.

Opis implementacije metoda konjugovanih gradijenata u jeziku LISP opi-
san je u [50].

2.7. Poredenje gradijentnih i negradijentnih metoda

U ovom odeljku naveS¢emo neke prednosti i nedostatke gradijentnih i
negradijentnih metoda, kao i neka dodatna zapazanja.

Prednosti gradijentnih metoda:

1° Brza konvergencija za analiticki zadate parcijalne izvode, sto se poseb-
no odnosi na algoritme koji koriste parcijalne izvode drugog reda.

2° Gradijentni metodi drugog reda imaju brzu konvergenciju za kvadra-
tne funkcije ili funkcije koje su bliske kvadratnim.

Nedostaci gradijentnih metoda:

1° Gradijentni metodi lokalizuju ekstremum koji je najblizi pocCetnoj
tacki.

2° Moguénost konvergencije prema sedlastoj tacki za funkcije sa malom

osetljivoséu ekstremuma (plato) ili za jaruzne ciljne funkcije.

3° Tesko se odabiraju parametri neophodni za algoritam, kao Sto su
parametri za numericko diferenciranje dx; ili parametri za prekid algoritma
i

4° Smer kretanja prema ekstremumu i brzina konvergencije zavise od
vrednosti upravljackih parametara i veli¢ine parametara koraka h;.

5° Za veliki broj upravljackih parametara zahtevaju veliki broj izracuna-
vanja vrednosti ciljne funkcije.

Prednosti negradijentnih metoda:
1° Laki su za algoritmizaciju i programsku implementaciju.
2° Kriterijumi za prekid procesa se lako ostvaruju.

3° Neke od tih metoda imaju visoku efektivnost za veliki broj upravljackih
parametara.

4° Ne namecu se uslovi za oblik ciljne funkcije i njene izvode.

Nedostaci negradijentnih metoda:

1° U nekim optimizacionim zadacima broj izracunavanja vrednosti ciljne
funkcije je veliki u odnosu na gradijentne metode.

2° Konvergiraju prema lokalnom ekstremumu.

162 Bezuslovna optimizacija

Neka zapazanja za gradijentne metode prvog reda:

1° Osnovni gradijentni metod i njegova modifikacija konvergiraju mnogo
sporije 1 nepouzdanije od metoda najstrmijeg pada. Ako se koristi fiksirana
ili podesiva vrednost za skalar h, ta vrednost mora da se pazljivo kontrolise
da bi se izbeglo neocekivano udaljavanje od ekstremuma ciljne funkcije ili
preterano veliki broj iteracija u dostizanju ekstremuma. Prvi sluc¢aj se do-
gada kod prevelikog koraka h, dok se drugi slucaj srece ako je h isuvise malo
ili ako je h preveliko, tako da dolazi do oscilovanja oko ekstremuma.

2° Taénost |[VQ(x®))|| < ¢ se tesko dostize.

3° Moze se dogoditi da metod divergira i tada vrednosti ciljne funkcije
osciluju izmedu dve vrednosti.

4° Brzina konvergencije znatno zavisi od izbora pocetne tacke.

5° Ukoliko se izabere manji prirastaj argumenta prilikom numerickog
diferenciranja, priblizavanje prema optimalnoj tacki je sporije, ali sigurnije,
§to dovodi do bolje ta¢nosti rezultata.

6° Cauchyev metod najstrmijeg pada ima mnogo brzu konvergenciju u
odnosu na osnovni gradijentni metod i njegove modifikacije. Problem ovog
metoda je u tome da se ne moze uvek jednostavno naci resSenje jednodimen-
zionalnog optimizacionog problema.

3. GLOBALNA OPTIMIZACIJA
3.1. Uvod

Ciljna funkcija koja u dozvoljenoj oblasti ima viSe od jednog ekstremuma
naziva se mnogoekstremalna ili multimodalna. Ovi ekstremumi se nazi-
vaju lokalni, a najbolja (najveda ili najmanja) vrednost izmedu njih se
naziva globalni ekstremum. Funkcija Q(x), definisana unutar dozvoljene n-
dimenzionalne oblasti I';, ima apsolutni (globalni) ekstremum, na primer
maksimum, u tacki x*, u oznaci

Qx") =maxQ(x), xeTl,,
xX
ako je za sve x € I',, ispunjena nejednakost

Q(x*) > Qx).

Funkcija) se naziva mnogoekstremalna i ima lokalni maksimum ako moze
da se odredi podoblast I'. C T'x takva da za svako x € I'¢ postoji tacka
x! € T'. za koju vaze sledeée dve nejednakosti:

Q(x") > Q(x), QKx*)>Q(x").

Globalna optimizacija 163
Oblast I'. se naziva oblast lokalnog ekstremuma x'. Dva ili vise lokalna
ekstremuma sa jednakim vrednostima se nazivaju ekvivalentni. Prema tome,
neki optimizacioni zadatak moze da se tretira kao mnogoekstremalni ako
postoje ne manje od dva neekvivalentna ekstremuma.

Do sada je razraden veliki broj metoda za nalazenje globalnog ekstremu-
ma. Za mnoge od njih je matematicki dokazana konvergencija, ali do sada
nije razvijen numericki algoritam koji za razuman broj iteracija garantuje
nalazenje globalnog ekstremuma. Za korektno i pouzdano izracunavanje
globalnog ekstremuma neophodno je da se pronadu sve lokalne ekstremne
vrednosti i da se izmedu njih izabere najveca. U realnim tehnickim zadaci-
ma broj lokalnih ekstremuma moze da bude veliki (na stotine), te je takav
metod nepraktican. Neophodno je da se sprovede algoritam koji izracunava
globalni ekstremum, bez pronalazenja svih ekstremnih vrednosti.

Pretrazivanje globalnog ekstremuma krace se naziva globalno pretraziva-
nje. Metodi za globalnu optimizaciju klasifikuju se po razli¢itim kriteriju-
mima, pri ¢emu su najvaznije sledeée grupe: gradijentni, stohasticki, kombi-
novani i heuristicki. Cisto gradijentni metodi su malo koriséeni za globalno
pretrazivanje. Najpoznatiji je metod “teSkog topa” u razli¢itim modifikaci-
jama. Najrasprostranjeniji su metodi za slu¢ajno pretrazivanje. Njihova
osnovna prednost nad ostalim metodima je Siroka mogucéa oblast za ispiti-
vanje od zadate tacke, mali broj izra¢unavanja, itd.

Do sada je medu metodima za nalazenje lokalnog ekstremuma razraden
jedan metod za nalazenje globalnog ekstremuma - metod skaniranja sa kon-
stantnim i malim korakom. Medutim, neophodnost skaniranja sa veoma
malim korakom, koji garantuje da se globalni ekstremum neée propustiti,
ogranicava primenu ovog metoda. On se moze iskoristiti samo za slu¢aj ma-
log broja upravljackih parametara (n < 3,4) i lako izra¢unljivom ciljnom
funkcijom.

3.2. Metodi i implementacija

3.2.1. SLUCAJNO PRETRAZIVANJE SA SKANIRANIM POCETNIM
TACKAMA

U ovom metodu su zadate granice [xmin;, xmin;], i = 1,... ,n, za svaki
upravljacki parametar. Algoritam se moze iskazati kroz sledece korake:
Korak 1. Izracunati korak skaniranja po svakom upravljackom parametru.

Preporucuje se

TMax; — rmin;
L b

A.%'i =

164 Bezuslovna optimizacija

za L =4,5.
Korak 2. Sukscesivno izvrSavati skeniranje u dozvoljenoj oblasti zmin; <
x; <xzmazx;, i=1,... ,n, pri ¢emu se svaka tacka mreze za skeni-

ranje uzima za pocetnu tacku x0;.

Korak 3. Od svake pocetne tacke izvrsiti slucajno pretrazivanje (neko od
ranije opisanih) i zapamtiti koordinate koje daju najbolje vred-
nosti ciljne funkcije.

Korak 4. Globalni ekstremum je najbolja vrednost od svih izra¢unatih lokal-
nih ekstremuma.

Implementacija ovog algoritma, za sluc¢aj dve promenljive, u programskom
jeziku MATHEMATICA data je slede¢im programom:

Metodl[q-,var_List,ximin Real,x2min Real,
x1max_Real,x2max Real] :=
Block[{deltal,delta2,ql,W,pom,i,j,izbor,tacka,x1,x2,
dl=x1min, gl=xlmax,d2=x2min, g2=x2max,qnaj,
a={},b,hmin,x0,r},
izbor=Input["Zelite 1i minimum(1) ili maksimum(2)7"];
deltal=(x1max-x1min)/2; delta2=(x2max-x2min)/2;
(* r broji pocetne tacke za slucajno pretrazivanje *)
(* x0 je lista tacaka za skeniranje *)
r=0; x0={};
For[x1=d1l,x1<=gl,xl+=deltal,
For [x2=d2,x2<=g2,x2+=delta2, x0=Append[x0,x1,x2]; r+=1]
1;
hmin=Input["Unesite minimalnu vrednost hmin u listi"];
b=Input["Unesite vrednost kojom se koraci skracuju"];
tacka=Table[0,r,2]; W=Table[0,{r}];
Do[a=x0[[i]];
tacka[[i]]=First[S1luOblq,var,a,{deltal,delta2},
hmin,b,{x1min,x2min}, {x1max,x2max},izbor]];
ql=q; pom=tackal[i]];
Dolql=q1/.var[[jl1]->pom[[j1],{j,2}]; Wl[ill=q1;
{i,r}
1;
If [izbor==2, gnaj=Max[W], gqnaj=Min[W]];
j=1; While[W[[jl]'=gnaj,j++];
Return[{tackal[[j]],W[[j11}]

Globalna optimizacija 165
Graficka interpretacija ovog metoda za dva upravljacka parametra je pri-

kazana na slici 3.2.1. Put od svake pocetne tacke prema lokalnom ek-
stremumu, prikazan je isprekidanom linijom.

:\-51/; Ax “.‘-_;#;:
N ===

Ty

N
;

T,

Sl 3.2.1

Pri povec¢anju broja upravljackih parametara povecava se i broj pocetnih
tacaka, samim tim i opsti broj neophodnih izra¢unavanja pri trazenju ek-
stremuma. Zbog toga je ovaj metod preporucljiv za mali broj upravljackih
parametara n < 4,5.

Numericki rezultati.

In[1]:= Metod1[2*x+y "~ 2*Sin[x-y],{x,y},0.1,0.4,5.0,7.5]
Zelite li minimum(1) ili maksimum(2)? 1

dl=2.45d2 = 3.55

Unesite minimalnu vrednost hmin u obliku liste {0.01,0.01}
Unesite vrednost kojom se koraci skracuju b= 4
x0[[1]] = {0.1, 0.4}

1 za minimum, 2 za maksimum 1

{{1.63946, 2.30492}, -0.00125122}

{{2.26141, 4.33353}, -11.9458}

{{4.4097, 5.75353}, -23.4348}

{{5., 7.17353}, -32.3917}

{{3.69285, 5.71547}, -22.0029}

{{4.59578, 6.81853}, -27.7651}

{{4.89394, 7.08478}, -31.0627}

{{4.97002, 7.15135}, -31.9626}

{{4.99239, 7.1678}, -32.2844}

{{4.99862, 7.17215}, -32.3784}

166 Bezuslovna optimizacija

tacka={4.99862, 7.17215}
q[xO0[[i]]]= -32.3784

x0[[2]] = {0.1, 3.95}

1 za minimum, 2 za maksimum 1
{{0.1, 2.53}, -3.98005}

{{0.1, 0.4}, 0.152717}
{{0.429579, 2.885}, -4.41427}

{{3.3986, 5.42637}, -19.6269}
{{3.40006, 5.42878}, -19.6351}
{{3.40102, 5.43017}, -19.6412}
{{3.40188, 5.43156}, -19.6461}
{{3.40299, 5.43294}, -19.6537}
{{3.40222, 5.4304}, -19.6537}

tacka={3.40222, 5.4304}
q[xO[[i]]]= -19.6537 x0[[3]] = {0.1, 7.5}

1 za minimum, 2 za maksimum 1
{{0.1, 5.44077}, 24.1474}

{{0.1, 7.145}, -35.0372}

{{0.1, 7.394}, -46.1212}

{{0.1, 7.47781}, -49.4973}

{{0.1, 7.49114}, -50.0128}

{{0.1, 7.49861}, -50.2994}

tacka={0.1, 7.49861} q[x0[[i]]]= -50.2994 x0[[4]] = {2.55, 0.4}

1 za minimum, 2 za maksimum 1
{{1.52522, 0.4}, 3.19482}

{{0.1, 0.4}, 0.152717}

{{0.1, 0.4}, 0.152717}
{{0.279122, 1.12439}, -0.387614}
{{0.340372, 1.91541}, -2.98801}
{{0.419942, 2.65035}, -4.71097}
{{0.803343, 3.00535}, -5.68507}
{{1.17478, 3.37884}, -6.85335}

{{1.7646, 3.85844}, -9.36795}
{{1.76597, 3.86077}, -9.3736}
{{1.76555, 3.85776}, -9.37359}

tacka={1.76555, 3.85776} q[xO[[i]]]= -9.37359 x0[[5]] = {2.55, 3.95}

1 za minimum, 2 za maksimum 1
{{3.31281, 5.37}, -18.8668}
{{4.96145, 6.79}, -34.6581}
{{3.23786, 5.37}, -17.9358}
{{4.79576, 6.38095}, -31.1208}
{{5., 6.9501}, -34.8706}

Globalna optimizacija 167

{{4.91416, 6.81316}, -34.113}
{{4.97366, 6.92792}, -34.5629}
{{4.99337, 6.94456}, -34.7929}
{{4.99976, 6.9467}, -34.8834}
{{4.99762, 6.94531}, -34.8564}

tacka={4.99762, 6.94531} q[xO[[i]]]= -34.8564 x0[[6]] = {2.55, 7.5}

1 za minimum, 2 za maksimum 1
{{2.09014, 4.8621}, -4.36022}
{{3.99013, 6.64427}, -12.6968}
{{5., 7.5}, -23.6641}

{{5., 7.5}, -23.6641}

{{5., 7.5}, -23.6641}

{{5., 7.5}, -23.6641}

{{5., 7.5}, -23.6641}

{{5., 7.5}, -23.6641}

{{5., 7.5}, -23.6641}

tacka={5., 7.5}
q[xO[[i]]]= -23.6641 x0[[7]] = {5., 0.4}

1 za minimum, 2 za maksimum 1
{{3.47656, 0.4}, 6.96352}
{{2.95282, 0.4}, 5.99449}
{{2.70782, 0.4}, 5.53411}
{{0.397538, 0.4}, 0.794682}
{{0.1, 0.4}, 0.152717}
{{1.17101, 2.85733}, -5.76787}
{{2.43919, 4.27733}, -12.7672}
{{4.25787, 5.69898}, -23.6899}
{{5., 7.11898}, -33.2538}
{{4.01001, 5.69898}, -24.2319}
{{4.59886, 6.63246}, -30.1643}
{{4.85095, 7.03023}, -30.8512}
{{4.97044, 7.0968}, -32.8492}
{4.99593, 7.11225}, -33.2502}
{{4.99889, 7.1176}, -33.2464}

tacka={4.99889, 7.1176} q[x0[[i]]= -33.2464 x0[[8]] = {5., 3.95}

1 za minimum, 2 za maksimum 1
{{5., 6.7504}, -34.8349}
{{3.16047, 5.3304}, -17.1434}
{{4.70784, 6.32089}, -30.5023}
{{5., 6.91704}, -35.006}
{{4.92631, 6.82829}, -34.2392}
{{4.98243, 6.88114}, -34.8623}
{{4.99633, 6.91149}, -34.9715}
{{4.99886, 6.91439}, -34.9983}

tacka={4.99886, 6.91439} q[x0[[i]|]= -34.9983 x0[[9]] = {5., 7.5}

168

Bezuslovna optimizacija

1 za minimum, 2 za maksimum 1
{{4.00548, 5.29516}, -18.927}

{{4.88917,

6.81154}, -33.7807}

{{4.76936, 6.45654}, -31.8662}
{{4.98222, 6.93043}, -34.686}
{{4.9065, 6.78422}, -34.0618}
{{5., 6.95261}, -34.8579}
{{4.97687, 6.93043}, -34.6014}
{{4.99181, 6.94707}, -34.755}
{{4.99948, 6.94955}, -34.865}
{{4.99911, 6.94693}, -34.8721}
{{5., 6.94904}, -34.8758}
{{4.99891, 6.94701}, -34.8685}

tacka={4.99891, 6.94701} q[xO[[i]]]= -34.8685
W={-32.3784,-19.6537,-50.2994,-9.37359 -34.8564,-23.6641,-33.2464,-34.9983 -34.8685 }

Out[1]= {{0.1, 7.49861}, -50.2994}

3.2.2. SLUCAJNO PRETRAZIVANJE 1Z SKUPA SLUCAJNIH
POCETNIH TACAKA

Ako se pretpostavi da su lokalni ekstremumi ravnomerno rasporedeni u
nekoj dozvoljenoj oblasti, pretrazivanje moze da se organizuje pocev od
ravnomerno rasporedenih slucajnih tacaka u toj oblasti. Algoritam pre-
trazivanja je tada slededi:

Korak 1.

Korak 2.

Korak 3.

Korak 4.

Generisati pocetnu tacku unutar dozvoljene oblasti [xmin, xmax]
na sluc¢ajan nacin:

x0; = zmin; + a;(xmaz; — xmin;), i=1,....,n,

pri ¢emu je «; slucajan broj u intervalu [0,1]. Broj neuspesnih
pretrazivanja postaviti na 0.

Pocev od pocetne tacke x(izvrsiti slucajno pretrazivanje ekstre-
muma i zapamtiti rezultat.

Generisati novu pocetnu sluc¢ajnu tacku i izvrsiti Korak 2 ovog al-
goritma. AKo je izrac¢unati lokalni ekstremum bolji od prethodnog,
on se pamti umesto prethodnog. Ako je izracunati lokalni ek-
stremum losiji od prethodnog, poveéava se broj neuspesnih pre-
trazivanja za jedinicu i algoritam se nastavlja od Koraka 1.

Kriterijum za prekid pretrazivanja je dostizanje zadatog broja ne-
uspesnih pretrazivanja (koji ¢emo oznaciti sa K) nakon posled-
njeg najboljeg rezultata ciljne funkcije. Broj Ky se izracunava

Globalna optimizacija 169
prema empirijskoj formuli

2" +4, zan <3,
N 2n+4, zan > 3.

Ako lokalni ekstremumi nisu ravnomerno rasporedeni, tj. ako se gomi-
laju u nekoj oblasti, naro¢ito na granicama oblasti, verovatnoé¢a nalazenja
globalnog ekstremuma se smanjuje.

Ovaj metod je upotrebljiv i za veéi broj upravljackih parametara.

Sleded¢i program je implementacija ovog algoritma u programskom jeziku
MATHEMATICA:

Metod2[q-,var List,xmin List,xmax List]:=
Block[{n,k,q0=q,ql=q,c,c1,1=0,izbor,alfa},

Print["Zelite 1i minimum(1) ili maksimum(2)"];

izbor=Input[]; n=Lengthlvar];

c=Table[0,{n}];c1=Table[0,{n}];

If [n<=3,k=2"n+4,k=2*n+4] ;

Do[alfa=Random[];
cl[i])=xmin[[i]]+alfa*(xmax[[i]]-xmin[[i]]),
{i,n}

1

c=limit[c,xmin,xmax] ;

Do[q0=q0/.var[[i]1->c[[il],{i,n}];

While[1<k,

Do[alfa=Random[];
c1[[i]]=xmin[[i]]+alfa*(xmax[[i]]-xmin[[i]]),
{i.n)

1
cl1=limit[c1,xmin,xmax] ;
Dol[qi=q1/.var[[i]1->c1[[il],{i,n}];

If [Or[And [q1>q0, izbor==2],And[q1<q0,izbor==1]],

q0=ql; c=cl,
1+=1
1;

ql=q;
1
Return[{c,q0}]

]

170

Bezuslovna optimizacija

Numericki rezultati.

In[1]:= Metod2[2*x+y"2*Sin[x-y],{x,y},{1.0,2.0},{3.0,4.0}]
Zelite li minimum(1) ili maksimum(2)
Zelite li minimum(1) ili maksimum(2) 1
tacka = {1.81901, 3.11227}

{{1.81901, 3.11227}, -5.67754}

tacka = {2.96403, 3.66739}

tacka = {1.41685, 3.52614}

{{1.41685, 3.52614}, -7.84039}

tacka = {1.49381, 3.17747}

tacka = {1.18545, 2.5532}

tacka = {1.80318, 2.71164}

tacka = {2.72822, 2.80788}

tacka = {2.70974, 2.7814}

tacka = {2.48753, 3.94771}

{{2.48753, 3.94771}, -10.5141}

tacka = {2.73322, 3.39859}

tacka = {2.99058, 2.09387}

Out[1]= {{2.48753, 3.94771}, -10.5141}

3.2.3. PRICEOV METOD

Priceov metod je heuristicki metod. Unutar dozvoljene oblasti generiSe se
pocetni skup od M ravnomerno rasporedenih slucajnih tacaka. Na slucajan
nacin se odabiraju sukscesivno grupe od elemenata tog skupa, analiziraju se
i izraCunavaju nove tacke, a zatim se zamenjuju najlosije tacke. Na taj nacin
“nivo” najlosijeg rezultata Q(*) neprestano raste (pri nalazenju maksimuma

72 Q(x)).

Pri takvom podizanju “nivoa” najloSijeg rezultata, tacke koje

ostaju pocinju da se grupisu oko globalnog maksimuma.

Priceov algoritam za izra¢unavanje maksimuma moze se opisati na slede¢i

nacin:
Korak 1.

Korak 2.
Korak 3.
Korak 4.

U dozvoljenoj oblasti generise se M ravnomerno rasporedenih slu-
¢ajnih tacaka xU) | sa koordinatama :CEJ),Z':L ceoyn,j=1,... M,
prema formuli

(4

;" = xmin;+a

©)

U (emazi—xming), i=1,...,n;j=1,...,M.

Izracunava se QU) = Q(x\9)), j=1,..., M.
Staviti K =0, IT = 0.

Odrediti tacku x(*) koja daje najlosiji rezultat Q) kao i tacku
x(®) sa najboljim rezultatom Q®), za funkciju Q(x).

Korak 5.

Korak 6.

Korak 7.

Korak 8.
Korak 9.

Korak 10.
Korak 11.

Korak 12.

Korak 135.
Korak 14.
Korak 15.

Globalna optimizacija 171
Proveriti kriterijum za zavrSetak procesa
Hx(b) _ X(w)H <e,

Ukoliko je taj uslov ispunjen, prekinuti algoritam, a za izlaz uzeti
x®) i Q®),

Od M slucajnih tacaka na slucajan nacin izabrati My = n + 1
tacaka. Od njih se opet slu¢ajno odabira jedna, koja se naziva
pol i oznacava sa xP). Izracunava se centar tezista x(¢) za ostalih
M, — 1 = n tacaka pomocu

(©) 1 0 o)

c l D .

x, = — E x,) —x |, i=1,...,n.
' 1_1<ll ' ')

Izracunava se tacka xV) pomocu

) — 9x(©) _ @)

i postavlja IT = IT + 1.
Izracunati vrednost Q) = Q(xN)).

Ako je Q) > Q) odbaciti x(*) i zameniti sa x(V):

N)

i QW =W,

(@) — x(

Algoritam se nastavlja od Koraka 5.

Za QW) < QW) postaviti K = K + 1.

Ako je K < IT/2, ignorisati xV) i produziti od Koraka 6. Inace
prec¢i na Korak 12.

Izrac¢unava se nova probna tacka
(@ _ % <X<c> n X(N)) .

Izracunava se Q(@) = Q(x()).
Ako je Q@) < Q) ignorisati x(%) i produziti od Koraka 6.
Ako je QU@ > Q™) tacka x(*) se zamenjuje tackom x(“):

N)

i QW =W,

<) —

172 Bezuslovna optimizacija

Algoritam se nastavlja od Koraka 5.
Potrebne su slede¢e pomoéne funkcije:

izracunajlq-,x List,var List]:=

Block([{ql},
ql=q; Dolql=ql/.var[[il]1->x[[i]1],i,n];
Return[q1]

]

limitn[x_,xmin_,xmax_]:=
Block [{x0=x},
Which[x0<xmin,xO=xmin, x0>xmax,x0=xmax] ;
Return [x0]
]

Slededi program je implementacija prethodnog algoritma u paketu MATH-
EMATICA:

MetodPrice[ql_,var List,xmin List,xmax List,eps_]:=
Block[{q0,q=ql,uspesno,l,n,x1,M,xlbest,p,

k=O,IT=O,qmax,qmin,r,alfa,b=O,w=O,i,j,jl},

n=Length[var]; M=n+8;

x1=Table[0,{M},{n}]; qO=Table[0,{M}];

Do[Dol[alfa=Random[];
x1[[j,i]]=xmin[[i]]+alfa*(xmax[[i]]-xmin[[i]]);
x1[[j,1]]1=limit [x1[[j,1]] ,xmin[[i]] ,xmax[[i]]],

{i,n}
1,

{j,M-3}
1;
Do[qO0[[j1]]=izracunajlq,x1[[j1]1],var],{j1,M-3}];
qmin=q0[[1]];
Do[If[gqmin>q0[[i]],qmin=q0[[i]1]1],{i,M-3}1;
gmax=Max [q0] ;
Do[If [gmax==q0[[j]],b=j]; If[qmin==qO0[[j]1],w=j],
{j,M-3}
1;
x1best=x1[[bl];
While[Sqrt [Sum[(x1[[b,i11-x1[[w,1]11)"2,{i,n}]1]>=eps,
uspesno=True;
While [uspesno,
Do[r=Random[Integer,{1,M-3}1;

Globalna optimizacija 173

Do[x1[[j,i]1=x1[[r,1i]1],{i,n}],
{j,n}

1;

p=Random[Integer,{1,n+1}];

Do[x1[[M-2,i]]=

N[(Sum[x1[[1,i]1],{1,n+1}1-x1[[p,i1]1)/n],
{i,n}

1;

Do[x1[[M-2,i]]=
limit[x1[[M-2,i]],xmin[[i]] ,xmax[[i]1]],
[i.n)

1;

Do[x1[[M-1,il1=2*x1[[M-2,i1]-x1[[p,il],
{i,n}

1

Do[x1[[M-1,i]]=
limit[x1[[M-1,i]],xmin[[i]],xmax[[i]]],
[i.n)

1;

IT=IT+1; qO[[M-1]]=izracunajl[q,x1[[M-1]],var];

If[qO0[[M-1]]1>gmin,

x1[[w]]l=x1[[M-1]]; gmin=q0[[M-1]]; uspesno=False,
k=k+1;
If [k>=(IT/2),
Do[x1[[M,i]]=
N[(x1[[M-2,i]]+x1[[M-1,i]]1)/2],
{i.n)
1;
Do[x1[[M,i]]=
limit[x1[[M,i]] ,xmin[[i]],xmax[[i]]],
[i.n)

1;
q0[[M]]=izracunajlq,x1[[M]],var];
If[qO[[M]]>gmin,

x1[[w]1=x1[[M]]; qmin=qO[[M]]; uspesno=False
1 11171,
Return[{(x1[[w]]+x1lbest)/2, (qmnin+qmax)/2}]
]

174 Bezuslovna optimizacija

Nedostatak ovog algoritma jeste odsustvo kriterijuma za dodeljivanje ade-
kvatne vrednosti M. Price je predlozio M izmedu 1 i 100 za N = 2,3.
Neophodno je da se pronade optimalan broj M u zavisnosti od broja up-
ravljackih parametara n. Uvelanjem broja M uvecava se i verovatnoca za
nalazenje globalnog ekstremuma, ali i naglo raste broj potrebnih izrac¢una-
vanja vrednosti ciljne funkcije Q.

Znacajno povecanje brzine konvergencije ovog algoritma moze se ocekivati
ako se algoritam, umesto na skup od M sluc¢ajno generisanih tacaka unutar
dopustive oblasti, primenjuje na skup izra¢unatih lokalnih minimuma koji
se dobijaju pocev od zadatog broja slucajnih pocetnih tacaka.

3.2.4. METOD “TESKOG TOPA”

Za ovaj algoritam je karakteristicno da se pri kretanju prema ekstremumu
svakoj tacki pridodaje masa. Na taj nacina se tacka moze posmatrati kao
“mali top”. Koristeé¢i pridodatu masu, moze da se preskoci neki od lokalnih
minimuma koji nije mnogo izrazen.

Rekurentna formula za kretanje prema minimumu je sledeéa:

(k)
2D — g _ p®) 822 + 8™ <x§k) - xgk_l)) , i=1,2,...,n,
Zq

pri ¢emu je hgk) parametar koraka, a ﬁi(k) je masa “teskog topa”.

Pri pretrazivanju maksimuma funkcije Q(x) koristi se

(k)
A <l WP B (o) =12
Zq

Masa se uzima iz uslova 0 < Bi(k) < 11 predstavlja funkciju i-te koordinate

gradijenta
k) oQk)

Da bi “top” mogao da preskoci lokalni minimum, potrebno je funkciju f
definisati tako da ispunjava sledec¢a dva uslova:

aQ*)
8.%'i ’

(i) ﬂl(k) je obrnuto proporcionalno vrednosti

(i)

Globalna optimizacija 175

Razli¢ite modifikacije ovog metoda se razlikuju prema izboru funkcije f
koja odreduje “masu”. Moze se uzeti, na primer

Ovaj metod daje mogucnost da se preskoci neki od lokalnih ekstremuma,
ali ne garantuje nalazenje globalnog ektremuma ako se krece samo od jedne
pocetne tacke. Algoritam bi trebalo da se ponovi vise puta, polazeéi od
razli¢itih pocetnih tacaka. Pored teskoca u formiranju masa Bi(k), ovaj algo-
ritam ima sve nedostatke gradijentnih metoda.

metod4[q-,var List,h List,epsilon_]:=

Block[{p,rezultat,pom,qnaj,j=1,z,x0,x1,90=q},

Print["Zelite 1i min(1) ili max(2)?"];

z=Input[];rezultat=Table[0,{2}];

p=Table[0,{2}];

n=Length[var];

Do[Print ["Unesite prvu pocetnu tacku(u obliku liste): "I;
x0=Input[];
Print ["Unesite drugu pocetnu tacku(u obliku liste): "J;
x1=Input[];
rezultat[[d]]=Last[teskitop[q0,x0,x1,var,h,epsilon,z]];
pl[d]]1=First[teskitop[q0,x0,x1,var,h,epsilon,z]],{d,2}
1;

If [z==1,qnaj=Min[p],qnaj=Max[pl];
While[p[[j]l]'!'=qgnaj,j++];

Return[{p[[j]],rezultat[[j1]}]

]

teskitoplq-,cO0_List,cl List,var List,h List,epsilon_,z_]:=
Block[{q0=q,91=9,92,Q=9,%2,a,beta,x0=c0,x1=c1},
n=Length[var] ;x2=Table[0,{n}] ;beta=Table[0,{n}];
Do[q0=q0/.var[[1]1->x0[[i]l],{i,n}];
Dol[qil=q1/.var[[i]1->x1[[i]],{i,n}];
While[Abs[ql-q0]>epsilon,
a=nabl[Q,var,x1];
Do[betal[[i]]1=N[1.0/(1.0+Abs[a[[i]1]1)],{i,n}];
If[z==1,Do[x2[[i]1]=x1[[i]1]1-h[[i]l]1*al[[i]l]+betal[[i]1]*
(x1[[1]11-x0[[i11),{i,n}],

176 Bezuslovna optimizacija

Do[x2[[i]]=x1[[i]]+h[[i]l]*a[[i]]+beta[[i]]*
(x1[[1]11-x0[[i11),{i,n}]1];
q0=ql;ql=q; Dolql=q1l/.var[[i]]->x2[[i]],{i,n}];
x0=x1; x1=x2;
1;
Return[{ql,x1}]
]

3.2.5. METOD TUNELA

Ovaj metod su razvili Levy, Montavlo i Gomez osamdesetih godina. Pri-
pada grupi heuristickih metoda. Sastoji se iz dve faze: minimizaciona i
tunelna. Graficka ilustracija ovog metoda, u slu¢aju jednog upravljackog
parametra, data na slici 3.2.2.

Q(x)

Mininmtizaciona faza

Tunelna faza

Sl 3.2.2

Algoritam ovog metoda, u slu¢aju minimuma, moze se opisati na sledeéi
nacin:

Korak 1. Izabrati pocetnu tacku xo (tacka 1 sa grafika).

Korak 2. Koriste¢i neki od metoda za nalazenje lokalnog ekstremuma (gradi-
jentni ili negradijentni) nalazi se minimum funckcije Q(x), $to
predstavlja tekuce priblizavanje globalnom minimumu Q* i odgo-
varajuée vrednosti * upravljackog parametra (tacka 2 na grafiku).
Ovaj korak predstavlja fazu minimizacije.

Globalna optimizacija 177

Korak 3. Formirati novu funkciju

(3.2.1) T(x) = o))
> (zi—ap)?

i=1

Korak 4. Nekim od poznatih metoda optimizacije nalazi se minimum funk-
cije T(x), tj. tacka x() u kojoj je T(x™)) = 0 ili T(x(M)) ~ 0.
Ova faza se naziva tunelna faza.

Korak 5. Dobijena tacka x(T) se uzima za novu pocetnu tacku zo = x(T) i
algoritam se ponavlja od Koraka 2.

Korak 6. Ove dve faze se ponavljaju opisanim redom, sve dok ne odredi
tacka x* (tacka 6 na grafiku) u kojoj je T'(x™)) = 0.

Za algoritam je veoma vazno da se lokalni minimum funkcije Q(x) §to
tacnije odredi. Obi¢no se ovaj minimum odreduje sa taénoséu AQ ciljne
funkcije. Konvergencija algoritma se moze poboljSati ako se tacnost AQ
ugradi kao korigujuéi parametar u T'(x), tako da funkcija (3.2.1) dobija oblik

(3.2.2) T(x) = Q@ - AQ)

Veliki problem u ovom algoritmu je odredivanje kriterijuma za prekid.

Slededi program je implementacija prethodnog algoritma u paketu MATH-
EMATICA:

Metod5[ql_,var_List,xmin List,xmax List,epsilon Real,yyO_List]:=
Block[{T1,q,Q=q1,0,P,P1,n,h,hmin,elha,f, k,T,c=var,broj,y0=yy0},
Print["Unesite broj iteracija"l;
k=Input[]; n=Length[var]; o=Table[0,{2}];
Do[q=q1l;
Print["Izaberite jedan od metoda"];
Print["1-SLUCAJNI SMEROVI"];
Print ["2-SLUCAJNO PRETRAZIVANJE SA OBRNUTIM KORAKOM"];
Print ["3-SLUCAJNO TRAZENJE SA UKAZANOM SLUCAJNOSCU"];
Print[];Print["Unesite broj metoda"];
broj=Input[];
h=Input ["Parametar koraka u obliku liste"];

178 Bezuslovna optimizacija

elha=Input["Parametar kojim se koraci skracuju"l;
hmin=Input["Tacnost lokalizacije ekstrema u obliku liste"];
Which[broj==1,
o=First[SluDir[q,var,y0,h,hmin, elha,xmin,xmax]],
broj==2,0=First[S1lulb[q,var,y0,h,hmin, elha,xmin,xmax]],
broj==3,0=First[SluCon[q,var,y0,h,hmin, elha,xmin,xmax]]
1;
P=q1l;
Do[P=P/.var[[j11->0[[j1],{j,n}];
T=Abs [(Q-(P-0.001)) 2] /Sum[(c[[i1]]1-(o[[i1]]-
hmin[[i1]11))"2,{i1,n}];
T1=T,;
h=Input["Unesite parametar koraka u obliku liste
(razlicit od param. koraka za f-ju q)"]1;
elha=Input ["Parametar kojim se koraci skracuju"];
hmin=Input["Tacnost lokalizacije ekstrema(u obliku liste)"];
Print ["PAZNJA!:birajte min(2)"];
Which[broj==1,
o=First[SluDir[T,var,y0,h,hmin, elha,xmin,xmax]],
broj==2,0=First [S1u0b[T,var,y0,h,hmin, elha,xmin,xmax]],
broj==3,0=First[SluCon[T,var,y0,h,hmin, elha,xmin,xmax]]
1;
yO=0; P1=T1;
Do[P1=P1/.var[[j1]1->y0[[j1],{j,n}]; q=qi;
Dolq=q/.var[[j1]1->y0[[j1],{j,n}];
If [P1>epsilon,
Return[{Print["T:",{o,P1}," q:", {o,q}1}11,{f,.k}
1;
Return[{o,q}]
]

IIT GLAVA

Uslovna optimizacija

U ovoj glavi se izuc¢avaju problemi implementacije metoda uslovne op-
timizacije u kojima se izraCunava minimum ili maksimum ciljne funkcije

Qx) =Q(z1,... ,x,), x € D,, na nekom skupu koji je odreden uslovima
koji su definisani drugim funkcijama:

(T, ... ,xn) =g, £=1,...,n1<mn,
(1.1.1) (n) = o ,

\I’j(xl,...,xn)z\lfgj,]:1,...,m2.

Prvi uslovi se nazivaju funkcionalna ogranic¢enja tipa jednakosti, dok se
drugi uslovi nazivaju ogranicenja tipa nejednakosti, ili ograni¢enja defin-
isana hiperpovrSima. Zadatak optimizacije koji ukljucuje ogranicenja svih
tipova naziva se opsti zadatak optimizacije.

1. O SIMBOLICKOJ IMPLEMENTACIJI

1.1. Postojeéi programi

U literaturi su poznati programi za implementaciju metoda uslovne op-
timizacije, koji su napisani u proceduralnim programskim jezicima, prven-
stveno u FORTRANu ([2], [13], [19], [70]) i C jeziku ([24], [71]). Medutim,
proceduralni programski jezici nisu pogodni za implementaciju uslovnih op-
timizacionih metoda, $to ¢e biti izu¢avano u ovom poglavlju. U radu [52]
izuCavana je implementacija metoda kaznenih funkcija pomoéu metoda sim-
bolickog procesiranja koji su dostupni u programkim jezicima LISP i MATH-
EMATICA. U ovoj glavi bi¢e implementiran i detaljnije objasnjen veéi broj
metoda za uslovnu optimizaciju.

Takode, moze se primetiti nedostatak ugradenih funkcija u jeziku MATH-
EMATICA za implementaciju metoda uslovne optimizacije. U programskom
paketu MATHEMATICA dostupno je nekoliko funkcija za uslovnu numericku
optimizaciju. Funkcije ConstrainedMin i ConstrainedMax dozvoljavaju da
se specificira linearna funkcija cilja koja se minimizira ili maksimizira, za-
jedno sa skupom linearnih ogranic¢enja tipa nejednakosti. U svim slucajevima
se pretpostavlja da promenljive mogu uzimati samo nenegativne vrednosti.

180 Uslovna optimizacija

Moze se zakljuciti da je jedino linearno programiranje implementirano u
paketu MATHEMATICA. Sintaksa ovih funkcija se moze opisati na sledeéi nacin.

ConstrainedMin[f, {inequalities}, {x, y, ...}] nalaZenje min-
imuma funkcije f, u regionu koji je specificiran sa inequalities.
ConstrainedMax[f, {inequalities}, {x, y, ...}] nalaZenje ma-

ksimuma funkcije f, u regionu koji je specificiran sa inequalities.

Ocigledno da ugradene funkcije nisu dovoljne za veliki broj raznovrsnih
metoda uslovne optimizacije.

1.2. Osnovne prednosti

U ovoj glavi se izuc¢ava implementacija metoda uslovne optimizacije, ko-
riste¢i simbolicko procesiranje u funkcionalnim programskim jezicima MAT-
HEMATICA i LISP. Prakti¢no, ucinjen je pokusaj (prvi ovakve vrste, koliko
je autorima poznato), da se ujedine moguénosti simbolickog i numerickog
procesiranja u implementaciji metoda uslovne optimizacije. Jasno je da se u
toku simbolicke implementacije metoda uslovne optimizacije podrazumevaju
sve prednosti koje proizilaze iz simbolicke implementacije metoda bezuslovne
optimizacije.

Posmatra se slede¢i opsti nelinearni problem matematickog programi-
ranja:

Minimizirati: Q(x), x €Iy CR"
(1.2.1) P.O.: fi(x) <0, ieP={1,...,p}
hj(x)=0, jeQ={1,...,q}.

Mogu se odmah napomenuti sledee prednosti koje su zajednicke za sim-
bolicku implementaciju svih metoda uslovne optimizacije.

(1C) Moguénost da implementacione procedure sadrze ciljnu funkciju i
data ogranicenja u listi formalnih parametara.

(2C) Moguénost da se generise vektor ili lista ¢iji su elementi izabrane
funkcije. U programskom jeziku MATHEMATICA, funkcije koje su zadate kao
elementi vektora mogu da se primenjuju na listu argumenata. Takode, u
programskom jeziku LISP, funkcije kao elementi vektora mogu kasnije da se
transformisu u odgovarajuce lambda-izraze i da budu primenjene na zadatu
listu argumenata.

Za proceduralne programske jezike je nepodesan problem de se proizvoljne
ciljne funkcije i ogranicenja ugrade u listu parametara procedure kojom se
implementira optimizacioni problem. Obi¢no je ciljna funkcija definisana
potprogramom, a ograni¢enja su definisana potprogramima i ugradena u

O simbolickoj optimizaciji 181

niz ([36], [37], [60]). Prema tome, primena nove ciljne funkcije i novih
ograniCenja je uslovljena ovim definicijama. Na primer, u [36] je svako
ogranicenje tipa jednakosti, svako ogranic¢enje tipa nejednakosti i ciljna funk-
cija identifikovano nekom indeksiranom promenljivom — R[i]. Na taj nacin,
problem (1.2.1) je zapaméen na sledeéi nacin:

R(1) = fi(x),... ,R(p) = fp(x),
R(p+1) = hi(x),... . R(p + q) = hy(x),
Rp+q+1)=Q(x).
Svaka primena uslovne optimizacione procedure zahteva modifikaciju eleme-

nata niza R, tj. odgovarajucu intervenciju u kodu. Osim toga, dimenzija
problema je limitirana dimenzijom niza R.

Primer 1.2.1. Uslovni program

Minimizirati: — x1 — o
P.O.: fi(xy,20) =23 + 23 —1<0,
hl(m'l,.%'g) = - —|—.%'% =0

je reprezentovan na sledeéi nacin:

R(1) = X (1) % %2 + X (2) % %2 — 1,

R(2) = —X(1) + X(2) * %2,

R(3)=—-X(1) — X(2).
Primetimo da je definicija ciljne funkcije, kao i ogranic¢enja, striktno vezana
za vrednosti globalnog niza X.

Kao efikasniju alternativu, opisa¢emo algoritam koji omogucéuje koriséenje
ciljne funkcije i ograni¢enja u listi formalnih parametara, u programskim
jezicima MATHEMATICA i LISP. U tu svrhu je uvedena unutrasnja forma po-
desna za nelinearne uslovne probleme. Nelinearni uslovni problem (1.2.1) se
transformise u slede¢u LISPovsku unutrasnju formu:

Q@) @ CA@ o fo@)) (ha(z) o hg(a))

Analogna unutradnja reprezentacija u MATHEMATICA je zadata sledeéim
izrazima:

@), Az}, { i@ - fple) }o (@) - he(z)

Ako neki od uslova tipa jednakosti ili nejednakosti odsustvuje, odgovara-
juca lista je prazna.

Primer 1.2.2. Nelinearni uslovni optimizacioni problem
Minimizirati: — x1 — o

PO.. 22 +22-1=0

182 Uslovna optimizacija

reprezentovan je u sledecoj unutrasnjoj formi u LISPu:

(0 (-0 (+ x1 x2)) (x1 x2)

O

((- (+ (*x x1 x1) (x x2 x2)) 1))
)

Odgovarajuc¢a unutrasnja forma u MATHEMATICA je
-x1-x2, {x1,x2},

{}

{x1~2+x2"2-1}

Prvi element unutrasnje forme je proizvoljna aritmeticka funkcija u MAT-
HEMATICA ili SCHEME, drugi predstavlja listu argumenata te funkcije, treci
element je lista funkcija koje formiraju ogranic¢enja tipa nejednakosti, dok
se ¢etvrti argument interpretira kao lista funkcija koja je sadrzana u ogra-
nicenjima tipa jednakosti. Prema tome, funkcija sadrzana u LISPovskoj un-
utras$njoj formi g proizvoljnog nelinearnog uslovnog problema optimizacije,
moze da se selektuje izrazom (car gq), a odgovarajucéa lista parametara izra-
zom (cadr gq). Slicno, lista funkcija koje formiraju ograniCenja tipa jed-
nakosti moze da se izdvoji pomoc¢u izraza (caddr q), a lista funkcija koje
formiraju ogranicenja tipa nejednakosti koriste¢i (cadddr ¢). Napomenimo
da korisnik mora da postavi uslovni optimizacioni zadatak u opisanoj un-
utrasnjoj formi. Motivacija za izbor takve unutrasnje forme jeste slicna un-
utrasnja forma za linearne uslovne optimizacione probleme u MATHEMATICA
(vidi funkciju ConstrainedMin.)

Na taj nacin je opisana prednost (1C).
Vektor vf koji sadrzi funkcije sadrzane u ograni¢enjima tipa nejednakosti

u unutrasnjoj formi ¢, koja je primenljiva u SCHEME, moze da se konstruise
kako sledi:

(set! vf (make-vector (set! 1f (length (caddr q)))))
(if (< 0 1f) (set! vf (list->vector (caddr q))))

Na slican nac¢in se moze generisati vektor vh koji sadrzi funkcije iz ogranice-
nja tipa jednakosti:

(set! vh (make-vector (set! 1h (length (cadddr q)))))

(if (< 0 1h) (set! vh (list->vector (caddr g))))

Lista ogranicenja tipa jednakosti i nejednakosti u MATHEMATICA sadrzana
je u tre¢em i ¢etvrtom delu unutrasnje forme zadatog uslovnog problema, re-
spektivno. U ovim izrazima se koristi sposobnost funkcionalnih programskih
jezika da plasiraju proizvoljnu selektovanu funkciju u listu ili vektor, sto je

Ogranicenja data jednakostima 183

nepodesan problem za proceduralne programske jezike. To je deo prednosti

(20).

2. OGRANICENJA DATA JEDNAKOSTIMA

2.1. Uvod
Posmatrac¢emo ciljnu funkciju Q(x), ¢iji upravljacki parametri ispunjavaju
uslov

x eIy

pri ¢emu su nametnuta funkcionalna ogranicenja zadata jednakostima
0i(x1,... x,) = wo,, J=1,...,n1,

tj.

(2.1.1) Vi@, ... xn) = @i(X1,. .., Ty) — o, =0, j=1,...,n.

Svaki vektor x koji ispunjava ograni¢enja (2.1.1) naziva se dopustivo resenje.
Zadatak uslovne optimizacije je da se izracuna vektor x* za koji je Q(x*) =
@Qmin 1 koji ispunjava zadata ogranicenja. ReSenje x* se naziva minimalno
resenje postavljenog problema ako vazi

(2.1.2) Q(x") < Q(x)
za svako dopustivo reSenje x. Ako je
(2.1.3) Q") 2 Q(x)

za svako dopustivo reSenje x, tada je x* maksimalno resenje postavljenog
problema. Ako (2.1.2), odnosno (2.1.3) vazi za svako dopustivo resenje u
nekoj okolini N(x*) = {x € R" : ||x — x*|| < e} tacke x*, tada je x* lokalno
minimalno, odnosno lokalno maksimalno reSenje postavljenog problema. Re-
Senje x* se naziva uslovni ekstremum funkcije Q(x).

Neophodan uslov za postojanje reSenja ovog zadatka jeste ni; <n. Zaista,
u sluéaju ny = n, zadatak se svodi na reSavanje sistema jednac¢ina (2.1.1) i
izrac¢unavanje vrednosti ciljne funkcije u vektoru koji je dobijen kao resenje
tog sistema. U nekim sluc¢ajevima, tako postavljeni problemi su nekorektni,
i nemaju reSenja. Za reSavanje ovakvih problema razvijeno je vise metoda:
metod eliminacije promenljivih, metod Lagrangeovih mnozitelja, projekcija
na gradijentni vektor, graficko reSenje za slucaj n = 2, itd.

184 Uslovna optimizacija

2.2. Metodi eliminacije promenljivih

Problem optimizacije sa zadatim ogranicenjima tipa (2.1.1) se moze resiti
tako §to se iz zadatih ogranicenja eliminiSe n; promenljivih. Dobijene vred-
nosti upravljackih parametara se zamenjuju u analiticki izraz funkcije Q(x) =
Q(xy1,... ,x,), ¢ime se problem svodi na optimizacioni zadatak funkcije od
n — ny upravljackog parametara, i to bez ogranicenja [60].

2.3. Metodi Lagrangeovih mnozitelja

Za reSavanje optimizacionih problema sa ograni¢enjima tipa jednakosti
najcéesée je koriséen Metod Lagrangeovih mmnoZitelja. Ideju da se problem
sa ogranicenjima tipa jednakosti svede na problem bez ogranicenja koristio
je Lagrange jos 1788. godine. Metod se zasniva na slede¢em poznatom,
potrebnom uslovu optimalnosti.

Teorema 2.3.1. Neka su funkcije Q i v, j = 1,...,n1 (n1 < n), defin-
isane u R™ i neprekidno diferencijabilne u nekoj okolini N(x*) dopustivog
resenja problema sa ogranicenjima (2.1.1) tipa jednakosti. Pretpostavimo da
je rang Jacobieve matrice

V?/)l (X*)

Vi, (x7)
jednak ny. Ako je x* lokalno minimalno ili lokalno maksimalno resenje
problema sa ogranicenjima tipa jednakosti, tada se gradijent funkcije cilja
Q u tacki x* moZe izraziti kao linearna kombinacija gradijenata funkcija
ogranicenja Vr, k=1,... ,n1, u tacki x*, tj. postoje realni brojevi A\j,...,
Ay, takvi da je

(2.3.1) VQ(x*) + Z A Vibe(x*) = 0.

k=1

Cinjenica da lokalni optimum x* ciljne funkcije Q mora da zadovolji
ogranicenja tipa (2.1.1) i jedna¢inu (2.3.1) izrazava se pomocu Lagrangeove
funkcije (ili Lagrangiana), koja se definiSe na sledeéi nacin:

(2.3.2) L) = Q(x) + > Mt (x).
k=1
Ocigledno je L(x,\) funkcija od n promenljivih x = (z1,... ,2,) i ny pro-

menljivih A = (A,..., A\,).

Ogranicenja data jednakostima 185

Neka su Lagrangeovi mnozitelji oznaceni sa
)\iZCCn_H, izl,...,nl.
U ovom slu¢aju, funkcionalni pristup se moze upotrebiti za efikasnu ma-
nipulaciju sa izracunljivim (slack) promenljivima, §to je izrazeno sledeé¢im
prednostima simbolicke implementacije:

(83C) Jednostavna ekstenzija liste parametara ciljne funkcije listom iz-
racunljivih promenljivih. Tako uvedene izrac¢unljive promenljive se mogu
koristiti kao tipovi podataka prve vrste.

(4C) Simbolicki generisane izrac¢unljive promenljive i tezinski koeficijenti
mogu se jednostavno ugraditi u unutrasnju formu transformisane funkcije.

Lagrangeovi mnozitelji se u paketu MATHEMATICA mogu oznaciti pomoc¢u
indeksiranih promenljivih A\; = z[n+1], i = 1,... ,n;. Tada se Lagrangeova
funkcija L(x,\) moze formirati slede¢om funkcijom:

prevedi[jednacine List,pr List,np]:=

Block[{jed=jednacine,i},
Do[jed=jed/.pr[[il]1->x[i],{i,Length[pr]}];
For[i=2,i<np+2,i++, jed[[i]] *= x[n+i-1] 1;
Return[jed]]

Na osnovu Teoreme 2.3.1, potreban uslov za postojanje lokalnog opti-
muma se moze izraziti na sledeéi nacin:

Teorema 2.3.2. Ako je dopustivo re§enje x* lokalni optimum problema sa
ogranicengima tipa (1.1.1), tada postoji vektor * = (A1,... , \n,) takav da je

(2.3.3) VL(x*,*) =
Ako se parcijalni izvodi funkcije L posmatraju u odnosu na promenljive
T1yeev s T, poslednja jednakost postaje
57/% .
(2.34) 63:@ +Z)\ :0, i=1,...,n.

Metod Lagrangeovih mmnoZitelja se sastoji u izracunavanju vektora x* i
A* pomoc¢u (2.3.3) i (2.3.4). Napomenimo da se parcijalni izvodi u (2.3.3)
mogu uzeti po svakoj od n+mny promenljivih 21, ... , 2,5, A1,... , Ap,. U tom
sluéaju, izvodi po x daju (2.3.1), dok izvodi po A daju (2.1.1).

Ako se za Lagrangeove mnozitelje upotrebe oznake

Aj:xn-‘rj? jzl,...,’l’Ll,
tada se sistem jednac¢ina (2.1.1), (2.3.4) moze zapisati u obliku
(2.3.5) Fi(x)=Fi(z1,... ,Tntn,) =0, 1=1,... ,n+n;.

186 Uslovna optimizacija

Svi izrazi oblika

0Q(x) . Ip(x) 0 = ,
&ri +]; k axl axl Q(X) + kzl k¢k (X) y L) > 1,
mogu da se ugrade u listu slede¢om funkcijom flista, koja se primenjuje na
rezultat funkcije prevedi:
flistal[jed List]:=
Block[{i,j,p,dqdx={}},
For[i=1,i<=n+n1,i++,

p=D[jed[[1]],x[il];
For[j=2,j<=nl+1,j++, p+=D[jed[[j]1],x[1]] 1;
dqdx=Append [dqdx, p]
1;
Return[dqdx]]

Primer 2.3.1. Trazi se maksimum funkcije Q(z1, 22, z3) =Q(x), pri zada-
tim ogranicenjima

p1(71, T2, 73) = Po1,

Pa(T1,T2,73) = Po2.
Vektor x* = (x7,x3,2%) u kojoj je vrednost funkcije maksimalna, kao i
parametri A 1 Ao, definiSu se kao reSenja sledeteg sistema jednacina:

({91'1 ! 8.%'1 8.%'1

oQ 01 Opa
D + A1 B Ao B 0,
oQ Oy Oa
923 + M\ O3 + A s 0,

Ne treba izgubiti iz vida ¢injenicu da su postavljeni uslovi izrazeni pomoéu
sistema Lagrangeovih jednacina samo potrebni, tako da je dobijeno resenje
samo kandidat za lokalni minimum. Za proveru da li je x* zaista lokalni
minimum, trebalo bi korititi neki od dovoljnih uslova za optimum. Jedan od
najceséih uslova se moze formulisati na sledeé¢i nacin:

Teorema 2.3.3. Neka su Q i Yg, k= 1,... ,n1, dvaput neprekidno difer-
encijabilne funkcije. Ako postoji vekor * takav da je

VL(x**) =0

Ogranicenja data jednakostima 187

i ako za svako z # 0 koje zadovoljava
Vip(x*)z2=0, k=1,... ,n,
vazi
(z, VAL(x*,*)z) > 0,
tada je x* izolovano lokalno minimalno resenje problema sa ogranicenjima
tipa (2.1.1). Ako se znak > u poslednjoj nejednakosti zameni sa <, tada je

x* izolovano lokalno maksimalno resenje.

Simbol V2L(x*, *) oznacava drugi parcijalni izvod funkcije L(x, \), uzet u
tacki (x*,*), ali samo u odnosu na vektor x. Ovaj dovoljan uslov moze se
izraziti i na sledeéi nacin: Potrebno je da vazi uslov (2.3.3) i da kvadratna
forma matrice V2L(x*, *) bude pozitivno definitna na nula-prostoru Jaco-
bieve matrice ogranic¢enja (osim u koordinatnom pocetku).

Sistem nelinearnih jednacina (2.3.5) moze se resiti na vise razlicitih nacina,
na primer kori§énjem Newtonovog metoda, minimizacionog metoda, itd.

2.3.1. NEWTONOV METOD

Ako se skup funkcija (Fy,...,F,4,,) predstavi kao vektor-funkcija F,
tada se sistem (2.3.5) moze zapisati u slede¢oj vektorskoj formi:

(2.3.5a) F(x) = 0.
Ovaj sistem moze se re§iti razli¢itim iterativnim postupcima. Neka je k-ta
aproksimacija resenja sistema (2.3.5a) data sa x(*) = (w&k),... ,a:gi)m), a

njena greska £(®). Tacno resenje x* je

(2.3.6) x* = x®) 4)
Zamenom (2.3.6) u (2.3.5a) dobija se
(2.3.7) F(x*) +e0) = 0.

Neka je vektor-funkcija F(x) neprekidna i diferencijabilna u oblasti koja
sadrzi x* 1 x*®) i posmatrajmo njen razvoj do linearnog ¢lana:

(2.3.8) F(x® + ™))~ F(x®) + VF(x*)*) = 0.
U poslednjoj jednakosti VF(X(k)) predstavlja Jacobievu matricu, koja se
obrazuje od parcijalnih izvoda funkcija Fi,... , Fiy u odnosu na promenljive
T1y--- yITN,

o, on

({91'1 o ({91']\]
(2.3.9) VF(x) = :)

OFN OFn

8.%'1 ({91']\]

188 Uslovna optimizacija

gde je N =n + ny. Skraceno koristimo oznaku
OF;
VF(x) = i,j=1,...,N.
= {5} wi=t....

Pod uslovom da je matrica VF(x) nesingularna, greska e(®) se moze odrediti
u obliku

e = _VFHx®F(x®).

Na taj nacin, dobijamo sledec¢u iterativnu formulu za nalazenje reSenja jedna-
¢ine (2.3.5):

(2.3.10) xk+D) — x(0) _ gp—H(x*F(x®).

Neka je rezultat funkcije flista oznacen listom novejednacine. Tada se
matrica VF(x), definisana u (2.3.9), moze formirati slede¢om funkcijom:

nablaFunction[novejednacine List]:=
Block[{i,j,nablaF={},nov=novejednacine},
Do [dqdx={};
Do [dqdx=Append [dqdx,D[nov [[i]],x[j]11],{j,n+n1}];
nablaF=Append [nablaF,dqdx],{i,nl+n}
13
Return[nablaF]]

Glavni nedostatak ovog metoda je izbor pocetne iteracije x(©). Vektor x(©)
se odabira na slucajan nacin ili na osnovu nekih apriornih podataka za oblast
u kome se nalazi reSenje. Drugi nedostatak ovog metoda je neophodnost da
se u svakoj iteraciji izraCunava inverzna matrica Jacobieve matrice. Ovaj
nedostatak se otklanja tako §to se VF~!(x) izracunava samo u pocetnoj
tacki, Sto dovodi do iterativnog procesa

(2.3.11) xFHD = xB) _ g1 (xO)F(x®).

Ponekad se koristi jo§ jedna modifikacija Newtonovog metoda u kojoj je
neophodno je da se u svakoj iteraciji prati opadanje (raséenje) funkcije cilja.
Dok se vrednosti vektor-funkcije F(x) poboljsavaju, koriste se iteracije ob-
lika (2.3.11). Kada vrednosti F(x*)) poénu da se pogorsavaju, potrebno je
da se ponovo izracuna inverzna Jacobieva matrica VF~!(x(*)), a zatim da
se ponovo nastavi sa postupkom (2.3.10). Ovakva ideja podseéa na mod-
ifikaciju osnovnog gradijentnog metoda koji se primenjuje u gradijentnoj
bezuslovnoj optimizaciji. U oblasti ekstremuma moze da se potpuno prede
na osnovni Newtonov metod (2.3.10). Sada ¢emo dati implementaciju os-
novnog Newtonovog metoda. Funkcijom sjV izracunava se vrednost liste
jednacine u datoj tacki z0.

Ogranicenja data jednakostima 189

sjV[jednacine List,x0 List,pr List,np_]:=
Block[{sve=jednacine,i},
Do[sve=sve/.x[i]1->x0[[i]],{i,Length[prl+np}];
N([svel]]

Osnovni Newtonov metod je implementiran u funkciji iteracija. Na os-
novu opisane prednosti (1C), unutrasnja forma uslovnog optimizacionog
problema sadrzana je u parametrima ¢_, prom_ i uslovi_, koji sadrze re-
dom analiti¢ki izraz ciljne funkcije, listu parametara te funkcije i listu sa
ogranicenjima tipa jednakosti. Formalni parametar x0 predstavlja vrednost
polazne aproksimacije x(©).

iteracijalq_,prom_,uslovi List,x0 List]:=
Block[{nabla,duz,n,nl,x1,ql,p,jednacine,f},
n=Length [prom] ;nl=Length[uslovi]; duz=Length[x0];
If [duz!=nl+n,Return["Nije dobra lista brojeva!"]];
jednacine=Prepend[uslovi,q];
prevod=prevedi[jednacine,prom,ni];
f=flista[prevod]; nabla=nablaFunction[f];
If [Det[nabla]l==0,Return["Singularna Matrica"]];
nablaInverzna=Inverse[nabla];
For[i=1;x1=x0,i<30,i++, xl=x1-
sjV[nablaInverzna,xl,prom,nl] .sjV[f,x1,prom,ni]

1;
ql=q; Dolql=ql/.prom[[i]]->x1[[i]],i,n]; q1=N[ql];
{x1,q1}]

Rezultati testiranja programa.
In[1]:= iteracija[x"2+y"2,{x,y},{x-y-3},{1,1,1.}]
prom = {x, y}
jednacine = {x +y,-3 +x-y}

2 2
prevod = {x[1]+ x[2] , (-3 + x[1] - x[2]) x[3]}
flista = {2 x[1] + x[3], 2 x[2] - x[3], -3 + x[1] - x[2]}
nabla = {{2, 0, 1}, {0, 2, -1}, {1, -1, 0}}
Out[l]= {{1.5,-1.5, -3.},4.5}

2.3.2. MINIMIZACIONI METODI

Sistem ogranicenja (2.3.5) moze da se resi bilo kojom metodom za na-
lazenje minimuma za funkcije vise promenljivih (Newtonov metod, DF P
metod, Cauchyev metod najstrmijeg pada, metodi za nalazenje globalnog
ekstremuma, itd.).

190 Uslovna optimizacija

Uoc¢imo najpre funkciju cilja u obliku

N
(2.3.12) U(zy,...,on) =Y [z, an)].
=1

Iz tog oblika moze se zakljuciti da se minimalna vrednost funkcije cilja (koja
je jednaka nuli) dostize kada je Fj(x) = 0, tj. ako su zadovoljene jednacine
(2.3.5).

Za ovaj problem bitno je da je minimum ciljne funkcije ¥(xq,... ,2N)
jednak nuli. Zbog toga se za kriterijum kraja optimizacije moze iskoristiti
uslov

gde je € mali pozitivan broj.

Da bi se sastavila funkcija cilja (2.3.12) jasno je da mora biti poznat
analiticki izraz funkcija u (2.3.5). To je moguée da se uradi ako ciljna funkcija
Q(x) i ogranicenja (2.1.1) imaju relativno jednostavne parcijalne izvode, te
se moze odrediti analit¢ki izraz funkcija u sistemu (2.3.5). Medutim, ako su
parcijalni izvodi funkcija u (2.3.5) komplikovani, mogu se koristiti numericki
parcijalni izvodi ciljne funkcije i funkcija ;,7 = 1,... ,n1. U tom slucaju,
u svakoj iteraciji, za nalazenje uslovnog ekstremuma x* formira se funkcija

2

N 9
:Z 63:,,+Z]&rz

(2.3.13) =1 =
+ Z [(@1, n) — 0,17
=1

Tada se u prvoj sumi u (2.3.13) komponente gradijenta izrac¢unavaju nu-
mericki. Kao S$to je napomenuto, numericko izrac¢unavanje gradijenta nije
predmet razmatranja.

3. OPSTI ZADATAK OPTIMIZACIJE

3.1. Uvod

Sada se resava optimizacioni zadatak za funkciju Q(x), ¢iji upravljacki
parametri ispunjavaju uslov x € I'y, kao i funkcionalna ogranicenja tipa

Opsti zadatak optimizacije 191

nejednakosti, koja mogu biti sledeéeg oblika:

Uy (21,...,2n) > Yor,
Uy (z1,... ,2p) < Wog,
(3‘1‘1) \I’{)g < @3(9517 cee axn) < Uy < \Ijlol?,a
\Ijmg(x:l?"' 7«73n) 2 \IIOmz-

Za reSavanje optimizacionih zadataka sa proizvoljnim ograni¢enjima raz-
raden je veéi broj metoda: graficko reSenje, za slucaj n = 2, skaniranje
u dozvoljenoj oblasti, slucajno pretrazivanje, metod “kaznenih” funkcija,
gradijentni metodi, kompleks metodi, itd. Zajednicko za sve ove metode
je da skoro svi slede ideju konstrukcije odgovarajuéeg metoda za nalazenje
ekstremuma bez ogranicenja, uz stalno proveravanje da li je reSenje generi-
sano bezuslovnom optimizacijom unutar dozvoljene oblasti. U sluc¢aju da su
uslovi narusSeni, potrebno je da se uc¢ine odgovarajuéi koraci za vrac¢anje u
dozvoljenu oblast.

Gradijentni metodi za bezuslovnu optimizaciju se mogu adaptirati za
reSavanje proizvoljnih ograni¢enja prema sledeé¢im principima:

1. Naginiti korak prema algoritmu osnovnog gradijentnog metoda.

2. U slucaju da se zadati uslovi optimizacije ne narusavaju, koristiti istu
tacku kao i za osnovni gradijentni metod, inace uciniti korak u pravcu

sumarnih antigradijentnih vektora narusSenih ogranic¢enja. Veliki problem
u ovakvom algoritmu je odredivanje kriterijuma za prekid metoda.

I drugi metodi bezuslovne optimizacije se mogu adaptirati tako da budu
primenljivi za resavanje optimizacionih zadataka sa proizvoljnim ogranice-
njima. Na primer, u metodima slucajnog pretrazivanja se u proceduru lemsit
ugraduju dodatne provere za proveru ogranicenja (3.1.1). U slucaju da je
bar jedan od uslova narusen, korak se smatra neuspeSnim.

3.2. Neki osnovni metodi

3.2.1. KOMPLEKS METOD ZA FUNKCIONALNA OGRANICENJA

Opisani kompleks metod za bezuslovnu optimizaciju moze da se prilagodi,
tako da bude primenljiv za optimizaciju programa sa funkcionalnim ogra-
nicenjima koja su zadata nejednakosti. Pod kompleksom se podrazumeva

192 Uslovna optimizacija

“oblak” slu¢ajnih tacaka, ravnomerno rasporedenih unutar dozvoljene ob-
lasti. Koristi¢i heuristicke principe, kompleks se na odgovarajuéi nacin krece
prema ekstremumu ciljne funkcije Q(x) [60]. Neka je zadata ciljna funkcija
Q(x), ¢iji se maksimum trazi prema ograni¢enjima

(3.2.1) Tmin; < T < Tmax,, =1,...,n,

(322) \I]rninj S ZT; S \I/j (X) S \I]rnax]'a j = 1, ey, Mo,

U slucaju da su neka ogranic¢enja zadata jednostrano, tj. u slucaju izostanka

nekih od veli¢ina Wi,y i Yyin,, one se mogu zadati kao fiktivni, veoma
J J
veliki, odnosno veoma mali realni brojevi.

Algoritam kompleks metoda sa funkcionalnim ograni¢enjima moze se iska-
zati sledeéim koracima:
Korak 1. Zadati realne konstante e, ili eg za proveru uslova za prekid
algoritma, saglasno kriterijumu (3.2.5), odnosno (3.2.6).
Korak 2. Definisati broj tacaka kompleksa
2" +4, n <3,
N = {
2n+4, n> 3.

Korak 3. Unutar dozvoljene oblast I'; ,, formirati pocetni kompleks koji
sadrzi Ny, tacaka x(9), j =1,... , N:

() (4)
X’i =Zmin; + ai Lmax; — Lmin;) »
(3.2.3) (s)
1=1,...,n; 7=1,...,Ng,
gde su ozgj) sluc¢ajni brojevi iz intervala [0, 1]. Generisana tacka se

ukljucuje u kompleks samo ako nisu narusena ogranicenja (3.2.1)
i (3.2.2). Ako broj neuspesno generisanih tacaka prevazide zadati
broj N,, algoritam se prekida. Broj N, se odreduje empirijski na
slededi nacin:

Nv = 100 ma.

Korak 4. U svakoj tacki x(9) kompleksa izracunava se vrednost ciljne fun-
kcije QW) =Q(x1)).

Korak 5. Odrediti tacku x(®) unutar kompleksa u kojoj ciljna funkcija ima
najbolju vrednost, kao i tacku x(*) u kojoj ciljna funkcija ima
najlosiju vrednost, tj.

QWY = Q(x(b)) = max QU),
J

(3:24) Q™) = Q(x™)) = min QY.
J

Korak 6.

Korak 7.

Korak 8.
Korak 9.

Korak 10.
Korak 11.

Korak 12.

Opsti zadatak optimizacije 193

Proveriti jedan od sledeca dva kriterijuma za prekid algoritma.
Prvi kriterijum je zadat uslovom

n

2
(3.2.5) > (o =) <,

i=1

gde je €, mali pozitivan broj koji, o¢igledno predstavlja rastojanje
izmedu najbolje i najlo§ije vrednosti ciljne funkcije.
Drugi kriterijum se zadaje uslovom

(3.2.6) QO — QW) | < cq.

Ako je jedan od uslova (3.2.5) ili (3.2.6) ispunjen, prekida se al-
goritam, i edituju se vrednosti Q® i x(), a inace se algoritam
nastavlja od sledeceg koraka.

Izracunavaju se koordinate nove tacke z(™) u pravcu najbolje
tacke x(:

(3.2.7) xEN) = le(b) - xgw) = xgb) - <x§w) - xgb)> ,

zati=1,...,n.

Proveriti ogranicenja (3.2.1), koriste¢i opisanu proceduru limit.
U tacki xV) se proveravaju ogranicenja (3.2.1). Ako je makar
jedno od njih naruseno, izra¢unavaju se koordinate nove tacke
%) koja se nalazi na sredini izmedu x) i x(®):

1

(3.2.8) V=2 (& +2™), i1

Sve dok tacka x(V) narusava uslove (3.2.2) primenjivati formulu

(3.2.8), pri ¢emu se koristi x(V) = (V).

Izracunati QWY) = Q(xM) ili Q) = Q(x(M)).

Ako je QW) > Q) tacka xNV) se uzima za novu tacku kom-

pleksa, na mesto tacke x(*), tj. staviti smene x(*) = x(V)

Q) = QW) Algoritam se nastavlja od Koraka 5.

Ako je QW) < Q) nova tacka x(N) se izostavlja i izra¢unavaju

se koordinate tacke x(™) | koja se nalazi na sredini izmedu x(*) i
() 3

x\ 0 t).

1
xM = <x§b> ng)), i=1,...,n.

194 Uslovna optimizacija

Korak 13. Ako su ograni¢enja (3.2.1) narusena, definie se nova tacka (M),
koja se nalazi na sredini izmedu x(™) i x(®) tj.

1
iz(M) _ 5 (xf;b) _|_x(M))7 1=1,...,n.

i

Sve dok su ogranicenja (3.2.2) narusena primenjivati transforma-
cije sli¢ne opisanim u Koraku 9.
Korak 14. Tzracunati QM) = Q (X(M)) ili QM) =Q (i(N)).

Korak 15. Nova tacka x(V) se uzima umesto x(*), tj. postavljaju se smene
x(@) = M) Q) = QM) - Algoritam se nastavlja od Koraka 5.

U cilju implementacije ovog metoda napisan je sledeé¢i program:

kompleks[q_,epsilon_,epsilong_,xmin List,xmax List,
ksiMin List,ksiMax List]:=
Block[{Q,i,ii,n,j,qlzracunato,Nk,Nv,b,x,ispitaj=1,
naruseno=True},
n=Length[Variables[ql];
If[n<4,Nk=2" n+4,Nk=2 n+4]; Nv=100 Nk;
x=Array[0,{n,Nk+1}]; Q=Array[0,Nk];
x=pocetnikompleks [xmin,xmax,ksiMin,ksiMax] ;
If [x=={{}},Return["Nema resenje"]];
For[i=1,i<=Nk,i++,
QL[i]]l=izracunajFunkcijulq,kolonal[x,i]]];
b=1;w=1;
While[True,
(*IZRACUNAVANJE MAX,MIN,B,Wx)
QL[b]]l=izracunajFunkcijulq,kolonal[x,b]];
Q[[w]l]=izracunajFunkcijulq,kolonalx,w]];
gMax=Max [Q] ; gMin=Min[Q];
For[i=1,i<=Nk,i++,If[gMax==Q[[i]],b=1,{}];
If [qMin==Q[[i]],w=1,{}];
1;
(*ISPITIVANJE USLOVA IZLAZA*)
For[i=1,i<n+1,i++,
If [Or[Sqrt[Sum[(x[[i,b]]-x[[i,w]]) "2]]<=epsilon,
Abs [gMax-gMin] <=epsilonq],
Return[{izracunajFunkcijulq,kolonal[x,b]l],kolonalx,b]l}1];
1;
Do[x[[ii,Nk+1]]=2 x[[ii,b]]-x[[ii,w]],{ii,n}];

Opsti zadatak optimizacije 195

Do[If[x[[ii,Nk+1]]1<xmin[[ii]],x[[ii,Nk+1]]=xmin[[ii]l],
If[x[[ii,Nk+1]]>xmax[[ii]],
x[[ii,Nk+1]]=xmax[[1i111],{ii,n}];
While [naruseno,
naruseno=l1imit1[kolonal[x,Nk+1] ,ksiMin,ksiMax];
If [naruseno,
For[i=1,i<=n,i++,x[[i,Nk+1]1]1=1/2(x[[i,b]]+x[[i,Nk+1]1]1)1]1;
1
glzracunato=izrbacunajFunkcijulq,kolona[x,Nk+1]];
If [gMin<qgIzracunato,
For[i=1,i<=n,i++,x[[i,w]]=x[[i,Nk+1]]];
gMin=qIzracunato,
For[i=1,i<=n,i++,
x[[1i,Nk+1]]1=1/2(x[[i,b]]+x[[1i,w]]1)]1];
naruseno=True;
While [naruseno,
naruseno=1limit1[kolona[x,Nk+1] ,ksiMin,ksiMax] ;
If [naruseno,
For[i=1,i<=n,i++,
x[[i,Nk+1]1]=1/2(x[[1,b]]+x[[1i,Nk+1]11)1];
1
glzracunato=izracunajFunkcijulq,kolonal[x,Nk+1]];
For[i=1,i<=n,i++,x[[i,w]]=x[[i,Nk+1]]1];
gMin=qglzracunato;
]
1

limitl[x List,ksiMin List,ksiMax List]:=
Block[{i,naruseno=False},
Do[If[And[ksiMin[[i]]<x[[i]]<ksiMax[[i]], 'naruseno],
naruseno=False,naruseno=True]
»1i,n}l;

Return[naruseno] J;

pocetnikompleks [xmin List,xmax List,ksiMin List,ksiMax List]:=
Block[{i,j,ispitaj=1,uspesno},
For[j=1, j<=Nk, j++,
For[i=1,i<n+1,i++,uspesno=True;
While [uspesno,

196 Uslovna optimizacija

alfa=Random[] ;
If [ispitaj>Nv,Return[{{}}1,{}1;
x[[1,j]]=xmin[[i]]+alfa(xmax[[i]]-xmin[[i]]);
If [ksiMin[[i]]<x[[1i,j]l]<ksiMax[[i]],
uspesno=False,uspesno=True;ispitaj++];
1]
1;
Return(x] 1;

kolona[mat_,kol_]:=
Block[{niz={},i},
For[i=1,i<=Dimensions([mat] [[1]],i++,
niz=Append[niz,mat[[i,kol1]]]];
Return([niz] J;

izracunajFunkcijulq-,x0_List]:=
Block[{j,ql,i},
ql=q;
Dolqil=q1/.y[[il1->x0[[i]],{i,n}];
Return[qil] J;

Rezultati testiranja programa.
In[1]:=kompleks[g"2,1,1,{1},{2},{1},{2}]
Out[1]:={g?,{1.96875}}
In[2]:=kompleks[g"2,1,1,{1},{2},{1},{2}]
Out[1]:={g?,{1.53272}}

3.2.2. DODAVANJE OGRANICENJA

Ovaj metod ima brzu konvergenciju i moze da se koristi za nalazenje
globalnog ekstremuma multimodalne ciljne funkcije, kako za ogranicenja tipa
x €'k, tako i za ogranicenja zadata funkcionalnim nejednakostima (x) > 0.

Neka je data ciljna funkcija Q(x) sa ogranic¢enjima
(3.2.10) xel,
i proizvoljnim ogranicenjima
(3.2.11) pi(x) >0, j=1,...,ma.

Ovaj metod, u slu¢aju maksimuma, koristi sledeéi algoritam:

Opsti zadatak optimizacije 197

Korak 1. Odrediti pocetnu tacku xy unutar dozvoljene oblasti.

Korak 2. Nekom od poznatih metoda izra¢unati lokalni maksimum Q* i
odgovarajucu tacku x* sa zadatom tacnos¢u eg, saglasno uslovu

(3.2.6).
Korak 3. Uslovima (3.2.10) i (3.2.11) dodaje se novo ogranicenje

(3.2.12) Qx) — (Q* +¢g) > 0.

Algoritam se nastavlja od Koraka 1.

Korak 4. Algoritam se prekida ako se za M,, pokuSaja ne nade nova tacka
X nakon poslednjeg dodavanja uslova.

U primeni ovog metoda najveéi problem je da se pronade pocetna tacka
Xg, kao i ispunjenje kriterijuma za prekid metoda. Ovaj problem moze se
resiti ako se uvede efektivna procedura za brzo resavanje sistema (3.2.10),
(3.2.11) i (3.2.12), ili ukoliko se pokaze da takvo resenje ne postoji. Poznati
metodi iz literature nisu dovoljno efikasni za slozene multimodalne funkcije.

3.3 Metodi kaznenih funkcija
Cilj ovih metoda je da se izra¢una minimum ciljne funkcije Q(x) na skupu
dopustivih resenja S, tj. da se resi problem
Minimizirati: Q(x), x € R"
P.O.:xes.

Ako se u razmatranje uvede funkcija P(x) pomocu

0, T €S,
P(x) =
+oo, =¢85,

i definise prosirena funkcija cilja pomocu
F(x) = Q(x) + P(x),

tada je jasno da je svaki bezuslovni minimum prosirene funkcije cilja is-
tovremeno uslovni minimum funkcije Q(x). Najveéi problem je u tome $to
je funkcija P(x) prekidna upravo na granici skupa S, gde se nalazi veéina
optimalnih resenja. Ovaj problem se moze ublaziti ako se P(x) aproksimira
nizom funkcija Py (x) od kojih svaka sadrzi neki “parametar kazne” p(¥) > 0.
Crubo govoredi, kada k — oo i p*) — 0, tada Pp(x) — P(x).

198 Uslovna optimizacija
Posmatrajmo sada opsti nelinearni problem matematickog programiranja:

Minimizirati: Q(x), x € R",
(3.3.1) P.O.: fi(x) <0, ieP={1,...,p},
hj(x)=0, jeQ={1,...,q},
ili samo
Minimizirati: Q(x), x € R",
(3.3.2) ()
P.O.: fi(x) <0, ieP={1,...,p}
Sustina metoda kaznenih funkcija jeste da se opsti zadatak uslovnog ne-

linearnog programiranja svede na bezuslovni problem ili na niz bezuslovnih
programa.

U ovom odeljku se izucava implementacija metoda kaznenih funkcija za
reSavanje nelinearnih uslovnih programa, koriste¢i moguénosti simbolickog
procesiranja u funkcionalnim programskim jezicima LISP i MATHEMATICA.
Osim ranije navedenih, moze se sugerisati slede¢a prednost koja proizilazi
iz simbolicke implementacije metoda uslovne optimizacije u funkcionalnim
programskim jezicima.

(5C) Moguénosti simbolickog procesiranja u transformaciji unutrasnje
forme uslovnog nelinearnog problema u unutrasnju formu odgovarajuéeg
problema bezuslovne optimizacije, saglasno principima koji proizilaze iz ne-
kih metoda uslovne optimizacije. Generisana unutrasnja forma, primenljiva
u bezuslovnoj optimizaciji, moze biti plasirana u listu formalnih parametara
izabrane procedure za bezuslovnu optimizaciju.

Izbor metoda bezuslovne optimizacije moze se ostvariti sledeCom funkci-
jom:
(* Izbor metoda bezuslovne optimizacije *)
unconstrained[f_,lprom_]:=
Block[{metod,rez,arg,xx,lha,hh,hhmin,xxmin,xxmax,eeps},
Print["Izaberi visedimenzionaln optimizaciju."];
Print ["<1> slucajni smerovi "];
Print["<2> slucajno trazenje sa obrnutim korakom "];
Print["<3> nametnuta slucajnost "];
Print ["<4> Powellov visedimenzionalni "J];
Print["<5> osnovni gradijentni "];
Print ["<6> modifikovani gradijentni "];
Print["<7> automatska korekcija koraka "];

Opsti zadatak optimizacije 199

Print["<8> steepest descent "];

Print["<9> Newtonov "];

Print["<10> modifikovani Newtonov "J];

Print["<11> Markuardov "]; Print["<12> DFP "];

Print["<13> Conjugate gradients "];

metod=Input[];

Which[(metod==1) || (metod==2) | | (metod==3),
xx=Input ["Pocetna iteracija? "];
hh=Input["Lista koraka? "];
lha=Input["Velicina smanjenja koraka? "J;
hhmin=Input["Lista minimalnih koraka? "];
xxmin=Input ["Minimalne vrednosti argumenata?"];
xxmax=Input ["Maksimalne vrednosti argumenata?"];
Which[metod==1,

rez=SluDir[f,lprom,xx,hh,hhmin,lha,xxmin,xxmax],

metod==2,
rez=S1luOb[f,lprom,xx,hh,hhmin,lha,xxmin,xxmax] ,
metod==3,

rez=SluCon[f,lprom,xx,hh,hhmin,lha,xxmin,xxmax]
1,
(metod==5) | | (metod==6) | | (metod==7),
xx=Input ["Pocetna iteracija? "];
hh=Input["Lista koraka? "];
xxmin=Input ["Minimalne vrednosti argumenata?"];
xxmax=Input ["Maksimalne vrednosti argumenata?"];
eeps=Input["tacnost? "];
Which[metod==5,

rez=0snGrad[f,lprom,xx,hh,xxmin,xxmax,eeps],

metod==6,
rez=ModGrad[f,lprom,xx,hh,xxmin,xxmax,eeps],
metod==7,

rez=AutGrad[f,lprom,xx,hh,xxmin,xxmax,eeps]

1,
(metod==8) | | (metod==9) | | (metod==10) | | (metod==11) | |
(metod==12) | | (metod==13),
xx=Input ["Pocetna iteracija? "];
eeps=Input["tacnost? "];
Which[metod==8, rez=Cauchyl[f,lprom,xx,eeps],

metod==9, rez=newton[f,lprom,xx,eeps],

200 Uslovna optimizacija

metod==10, rez=newtonm[f,lprom,xx,eeps],
metod==11, rez=mark[f,lprom,xx,eeps],
metod==12, rez=Dfp[f,lprom,xx,eeps],
metod==13, rez=Mkg[f,lprom,xx,eeps]
]
1;
Return[rez]

]

3.3.1. METODI SPOLJASNJIH KAZNENIH FUNKCIJA

Metodi spoljasnjih kaznenih funkcija se koriste za reSavanje problema tipa
(3.3.1). U ovim metodima optimalno resenje se dostize pomocu tacaka iz
spoljasnosti skupa dopustivih reSenja. Bazi¢na ideja sadrzana u ovim me-
todima jeste reSavanje niza metoda bezuslovne minimizacije, ¢ija reSenja u
grani¢nom procesu generiSu minimum nelinearnog uslovnog problema.

U jednom od metoda spoljasnjih kaznenih funkcija, nelinearni problem
(3.3.1) se prevodi u sledeéi niz bezuslovnih problema [73]:

m}in F(x)= m}in <Q(X) + ﬁP(x))
(3.3.3)

p

=min | QG0+ 4 LA GO+ Iy (P]

i=1

gde je [f;(x)]+ = max{0, f;(x)} i p(*) strogo opadajuéi niz pozitivnih bro-
jeva, dok su « i 8 dva cela broja koji ispunjavaju uslov «, 3 > 1.

Pri implementaciji ovog metoda prvo se specificira parametar kazne p =
p® (na primer, p(®) = 1), a zatim se re§ava problem

min F(x).

Tada se smanji vrednost parametra p (na primer, pomoéu p™") = 0.5p(? ili
o) = 0.1p(0)) i reSava se novi problem bezuslovne optimizacije.

Pretpostavimo da je uslovni optimizacioni problem (3.3.1) u paketu MAT-
HEMATICA zadat sledeéim elementima:

q-: ciljna funkcija;

prom._: lista promenljivih;

Opsti zadatak optimizacije 201

vf_: lista ograni¢enja zadatih relacijom <;
vh_: lista ograni¢enja zadatih relacijom =.

Sada je dat opis odgovarajuée funkcije.

Korak 1. Opadajudi niz pF = {ro[1],r0[2],...} generise se slede¢om rekur-
zivnom definicijom:
ro[1]=1; ro[n_]:=ro[n-1]/2

Takode, moze se koristiti i jedinstveni simbol 7o umesto niza. U slede¢em
izrazu niz p* je predstavljen lokalnom promenljivom ro, ¢ija je pocetna vred-
nost 1, a svaka naredna se dobija na osnovu prethodne prema ro = ro/2.
Tada funkcija fgoal u i-toj iteraciji moze da se formira na slede¢i naé¢in [52]:

fgoal=q+1/ro*(Sum[Max [0, vf[[i]] alpha, {i,Length[vf]}]
+Sum[(Abs[vh[[i]]) “beta, {i,Length[vh]}];

Ako se koristi niz {ro[l],ro0[2],...}, tada se funkcija fgoal definise na
sledec¢i nacin:
fgoal=q+1/ro[[i]]* (Sum[Max[0,vf[[i]] alpha,{i,Length[vf]}]
+Sum[(Abs[vh[[i]]) “beta,{i,Length[vh]}];

Korak 2. Unutrasnja forma @Q,, {x} indukovanog bezuslovnog problema
jeste uredeni par {fgoal,prom}.
Ovim je opisana sustina prednosti (5C) za slu¢aj metoda spoljasnjih kaz-
nenih funkcija.

Primer 3.3.1. Unutrasnja forma ciljne funkciji @,,, koja odgovara nelinear-
nom problemu iz Primera 1.2.1, jednaka je:

-x1-x2 + 1/ro (Abs[-1+x1"2-x2"2]) “beta .

U slede¢em programu niz p*) definisan je lokalnom promenljivom ro:

(*METOD SPOLJASNJIH KAZNENIH FUNKCIJAx)
metodaS[q_,prom List,vf List,vh List,alpha_,beta_,eps_]:=
Module[{f,fp,i,p,1,prva,druga,ro=1},
p=Length[vf]; 1l=Length[vh];
fp=Sum[Max [0,vf[[1]]] ~alpha,{i,p}]+
Sum[(Abs [vh[[i]1]) "beta,{i,1}];
f=q+1/ro*fp; prva=unconstrained[f,prom];
ro=ro/2; f=q+1/roxfp; druga=unconstrained[f,prom];
While[Abs[prval[[2]]-drugal[2]]]>eps,
prva=druga; ro=ro/2; f=q+1/roxfp;
druga=unconstrained[f,prom] ;

1;

202 Uslovna optimizacija

Return[drugal]
Sledi odgovarajuéi program u slu¢aju kada je niz p(¥) definisan funkcijom:

metodaS1[q._,prom List,vf_,vh_,alpha_,beta_,eps_,index_]:=
Block[{XO,hO,hmin,xmin,xmax,1h,x1,f,i,p,l,nnn,
prva,druga,ind=index,izbor},

ro[1]=1; ro[lnnn_] :=ro[nnn-1]1/2;

p=Length[vf]; 1l=Lengthl[vh];

f=q+1/ro[ind]* (Sum[Max [0,vf[[i]]] ~alpha,{i,p}]
+Sum[(Abs [vh[[i]]]) “beta,{i,1}1);

prva=unconstrained[f,prom]; ind=ind+1;

f=q+1/ro[ind]* (Sum[Max [0,vf[[i]]] ~alpha,{i,p}]
+Sum[(Abs [vh[[i]]]) “beta,{i,1}1);

prva=unconstrained[f,prom];

epsilon=Input ["Unesi tacnost:"];

While[Abs [prval[[2]]-drugal[2]]]>epsilon,
prva=druga; ind=ind+1;
f=q+1/ro[ind] * (Sum[Max [0,vf [[i]]] "alpha,{i,p}]

+Sum[(Abs [vh[[i]]]) “beta,{i,1}]1);
druga=unconstrained[f,prom] ;

1;

Return[drugal 1;

Test primeri.

In[1]:= metodaS[x"2/y"2-1,{x,y},{x-y-3},{x"2-y-2},1,1,0.1]
prva = {{2.02885, 2.10864}, -0.0666493}
2
X 2
Simbolicka funkcija: -1 + —+ (Abs[-2 + x - y] + Max[0, -3 + x - y])
2
y
Izaberi metod visedimenzionalne optimizacije.
71
Pocetna iteracija? {1,1}
Lista koraka? {0.1,0.2}
Velicina smanjenja koraka? 4
Lista minimalnih koraka? {0.01,0.02}
Minimalne vrednosti argumenata? {-10,-10}
Maksimalne vrednosti argumenata? {10,10}
1 za minimum, 2 za maksimum 1
{{1.06284, 1.10732}, 1.89897}
{{1.08822, 1.22161}, 1.83093}

{{2.03133, 2.10662}, -0.0504978}

Opsti zadatak optimizacije 203

{{2.02885, 2.10864}, -0.0666493}
prva = {{2.02885, 2.10864}, -0.0666493}
2
X 2
Simbolicka funkcija: -1 + —+ 2 (Abs[-2 + x - y] + Max[0, -3 + x - y])
2
y
Izaberi metod visedimenzionalne optimizacije.
71
Pocetna iteracija? {2.02885,2.10864}
Lista koraka? {0.1,0.2}
Velicina smanjenja koraka? 4
Lista minimalnih koraka? {0.01,0.02}
Minimalne vrednosti argumenata? {-10,-10}
Maksimalne vrednosti argumenata? {10,10}
1 za minimum, 2 za maksimum 1
{{2.06899, 2.26593}, -0.136669}
{{2.0922, 2.44009}, -0.139248}

{{2.18169, 2.74605}, -0.34134}

{{2.18119, 2.75072}, -0.357522}
prva[[2]]-druga[[2]]=0.290872

Izaberi metod visedimenzionalne optimizacije.
72

Pocetna iteracija? {2.18119,2.75072}

Lista koraka? {0.1,0.2}

Velicina smanjenja koraka? 4

Lista minimalnih koraka? {0.01,0.02}
Minimalne vrednosti argumenata? {-10,-10}
Maksimalne vrednosti argumenata? {10,10}
1 za minimum, 2 za maksimum 1
{{2.13631, 2.61431}, -0.130228}

{{2.17604, 2.73243}, -0.354883}

{{2.16808, 2.72679}, -0.262965}

{{2.17149, 2.72724}, -0.318579}
prva[[2]]-druga[[2]]=-0.0389423

Out[1]= {{2.17149, 2.72724}, -0.318579}

3.3.2. METODI UNUTRASNJIH KAZNENIH FUNKCIJA

Ovi metodi se koriste za resavanje problema tipa (3.3.2). U metodima
spoljasnjih kaznenih funkcija, optimalno resenje se dostize pomocu tacaka
iz unutrasnjosti skupa dopustivih resenja. Neki od najpopularnijih metoda
unutrasnjih kaznenih funkcija prevode nelinearni problem (3.3.1) u sledeéi

204 Uslovna optimizacija
problem bezuslovne optimizacije, koji idgovara k-toj iteraciji ([73]):

min F(x)= m}in (Q(X) —i—p(k)P(x))

X

(3.3.4) Wi
= min <Q<x>+ﬂ(“ 2 [fi(X)P) ’
min P) =min (Q(x)+p) P(x)
(3.3.5)

= min <Q(X)+p(k) Z m> ’

gde je p¥) strogo opadajuéi niz pozitivnih brojeva.

Ovde se razmatra implementacija metoda unutrasnjih kaznenih funkcija
koji je definisan pomocu (3.3.4).

Unutrasnja forma odgovarajuceg bezuslovnog minimizacionog problema,
u MATHEMATICA moZe da se generiSe na sledeéi nacin:

fgoal=q+ro*Sum([1/vf[[i]]"2, {i,Length[vf]}];

Unutrasnja forma generisanog bezuslovnog problema je odredena elemen-
tima fgoal i prom.

Ovim je opisana sustina prednosti (5C) za sluc¢aj metoda unutrasnjih
kaznenih funkcija.

Sada sledi implementacija metoda unutrasnjih kaznenih funkcija u MATH-
EMATICA, za niz p*) odreden lokalnom promenljivom.

(*METODA UNUTRASNJIH KAZNENIH FUNKCIJAx*)
metodalU[q-,prom List,vf _List,eps.]:=
Block[{f,fp,i,p,ro=1,prva,druga},
p=Length[vf]; fp=Sum[1/vf[[i]]"~2,{i,p}]; f=q+ro*fp;
prva=unconstrained[f,prom]; ro=ro/2; f=q+roxfp;
druga=unconstrained[f,prom] ;
While[Abs[prval[[2]]-drugal[2]]]>eps,
prva=druga; ro=ro/2; f=qt+roxfp;
druga=unconstrained[f,prom] ;
1;
Return[drugal]
Sliéna je funkcija u MATHEMATICA, i u slucaju kada je niz p*) definisan
funkcijom.

Opsti zadatak optimizacije

metodaUl[q_,prom List,vf List,eps_,index]:=
Block[{p,f,i,nnn,ind=index},
ro[1]:=1; ro[nnn] :=ro[nnn]/2; p=Lengthl[vf];
f=q+ro[ind]* Sum[1/vf[[i]]1~2,{i,p}];
prva=unconstrained[f,prom]; ind=ind+1;
f=q+ro[index] *Sum[1/£fi[[i]]1°2,{i,p}];
druga=unconstrained[f,prom];;
While[Abs[prval[[2]]-drugal[2]]]>eps,
prva=druga; ind=ind+1;
f=q+ro[index] Sum[1/£fil[[il1"2,{i,p}];
druga=unconstrained[f,prom] ;
1;
Return[drugal]

Test primeri.
In[1]:= metodaU[x"2/y"2-1,{x,y},{x-y-3},0.01]

2
-2 X
f=-1+(83+x-y) + -
2
Yy
Izaberi metod visedimenzionalne optimizacije.

72
Pocetna iteracija? {1.0,1.1}
Lista koraka? {0.1,0.1}
Velicina smanjenja koraka? 4
Lista minimalnih koraka? {0.01,0.02}
Minimalne vrednosti argumenata? {-10,-10}
Maksimalne vrednosti argumenata? {10,10}
1 za minimum, 2 za maksimum 1
{{0.937165, 1.04634}, -0.0943484}
{{0.962551, 1.10348}, -0.137758}
{{0.874865, 1.09285}, -0.262571}
{{0.791528, 1.07527}, -0.36539}
{{-0.0000418553, 0.87142}, -0.933281}
{{-0.00292587, 0.868865}, -0.933281}
bezuslovna optimizacija daje {{-0.00292587, 0.868865}, -0.933281}
prva = {{-0.00292587, 0.868865}, -0.933281}
2
1 X
f=1+— + —
2 2
2(83+x-y) vy
Izaberi metod visedimenzionalne optimizacije.

205

206 Uslovna optimizacija

75

Pocetna iteracija? {-0.00292587,0.868865}
Lista koraka? {0.1,0.1}

Minimalne vrednosti argumenata? {-10,-10}
Maksimalne vrednosti argumenata? {10,10}
tacnost? 0.01

Zelite li maximum(2) ili minimum(1)? 1
0.0196869{{-0.00387365, 0.870591}, -0.966672}
0.0185954{{-0.00457083, 0.872314}, -0.966706}
0.017977{{-0.00508559, 0.874037}, -0.966738}

0.0153065{{-0.00799299, 1.03144}, -0.969297}
0.015289{{-0.00800755, 1.03297}, -0.96932}
bezuslovna optimizacija daje

{{-0.00800755, 1.03297}, -0.96932}

druga = {{-0.00800755, 1.03297}, -0.96932}
prva[[2]]-druga[[2]]=0.0360395

Izaberi metod visedimenzionalne optimizacije.
79

Pocetna iteracija? {-0.00800755,1.03297}
tacnost? 0.001

Zelite li minimum(1) ili maksimum(2)? 1
0.0106969{{-0.00800755, 1.03297}, -0.98463}
0.0106969{{-0.0207617, 2.37327}, -0.991331}
0.00530005{{-0.0311644, 4.15191}, -0.995098}
0.00265171{{-0.0356698, 6.52139}, -0.997233}
0.00124858{{-0.034675, 9.68206}, -0.998441}
bezuslovna optimizacija daje {{-0.034675, 9.68206}, -0.998441}
Izaberi metod visedimenzionalne optimizacije.
79

Pocetna iteracija? {-0.034675,9.68206}
tacnost? 0.0001

Zelite li minimum(1) ili maksimum(2)? 1
0.000630583{{-0.034675, 9.68206}, -0.999214}
0.000630583{{-0.0300923, 13.8735}, -0.999558}
0.000266145{{-0.0243167, 19.47}, -0.999751}
0.000108606{{-0.018678, 26.9401}, -0.99986}
bezuslovna optimizacija daje {{-0.018678, 26.9401}, -0.99986}
Out[1]= {{-0.018678, 26.9401}, -0.99986}

3.3.3. GENERALISANI LAGRANGEOVI MNOZITELJI

Ovaj metod se koristi za resavanje opsteg problema tipa (3.3.1). Da bi se
primenila tehnika Lagrangeovih mnozitelja, ograni¢enja zadata nejednakos-
tima se moraju prevesti u jednakosti, uvodeéi pomoéne (slack) promenljive,
po jednu za svako ogranic¢enje zadato pomoéu nejednakosti. Na taj nacin,
opsti problem (3.3.1) se prevodi u sledeéi problem sa ograni¢enjima tipa

Opsti zadatak optimizacije 207

jednakosti:
Minimizirati: Q(x), x € R"
(3.3.6) PO.: fi(x)+27=0, ieP={1,...,p},
hj(x)=0, jeQ=A{1,...,q}

Ovakav optimizacioni problem se transformiSe u sledeéi niz bezuslovnih min-
imizacionih problema:

(3.3.7) P q
=min | Q(x) Y (i) + 2 + D> piapralhi(x)]]
’ i=1 j=1
gde su u;, i =1,...,p 4+ q+ 1, nenegativni tezinski faktori nezavisni od x,

poznati kao Lagrangeovi mnozitelji, dok vektor z sadrzi slack promenljive
Zi,izl,... , P-

Pomoéne promenljive z; i tezinski koeficijenti p; u paketu MATHEMATICA
mogu se implementirati nizovima z[i] i veem|i], gde je ¢ brojacka promenljiva
koja se koristi u ciklusu. Unutrasnja forma fgoal ciljne funkcije @, u MATH-
EMATICA se formira pomocu slede¢ih izraza:

fgoal=q[[1]1]+Sum[vecm[i] (vf[[i]]l+z[i]"2), {i,Lengthl[vf]}]

+Sum[vecm[i+Length[vf]] Abs([vh[[i]]], {i,Length[vh]}]

Ova dva ciklusa formiraju analiticki izraz ciljne funkcije odgovarajuceg
bezuslovnog problema. Ocigledno je da su u ovom analitickom izrazu sadr-
zane pomocne (slack) promenljive z[i] i vecm]i]. Time je potvrdena prednost
(4C).

Osim toga, ocigledna je efektivnost s kojom je izgraden bezuslovni opti-
mizacioni problem koji proizilazi iz zadatog uslovnog optimizacionog prob-
lema.

Takode, potrebno je da lista parametara bude proSirena pomoénim pro-
menljivama z[i] i vecmli].

Do [prom=Append [prom,z[i]],{i,Length[vf]}];

Do [prom=Append [prom,vecm[i]],{i,Length[vf]+Length[vh]}];

Ovim je verifikovana prednost (3C) simbolicke implementacije uslovnih
optimizacionih problema.

Unutrasnja forma generisanog bezuslovnog optimizacionog problema jeste
uredeni par fgoal, prom.

208

Uslovna optimizacija

Izbor metoda kojim se resava indukovani bezuslovni problem odreden je

slede¢om funkcijom:

unconstrainedl [f_,1prom_,px_]:=
Block[metod,rez,lha,hh,hhmin,xxmin,xxmax,eeps,
Print ["Izaberi visedimenzionalnu optimizaciju."];

Print["<1>
Print["<2>
Print ["<3>
Print["<4>
Print ["<5>
Print ["<6>
Print ["<7>
Print ["<8>
Print["<9>

slucajni smerovi "];

slucajno trazenje sa obrnutim korakom "] ;
nametnuta slucajnost "J;

Powellov visedimenzioni "J];

osnovni gradijentni "J;

modifikovani gradijentni "];

automatska korekcija koraka "];

steepest descent "];

Newtonov "];

Print["<10> modifikovani Newtonov "J];

Print ["<11> Markuardov "]; Print["<12> DFP "];

Print["<13> Conjugate gradients "];

metod=Input[];

Which[(metod==1) || (metod==2) | | (metod==3),
hh=Input["Lista koraka? "];
lha=Input["Velicina smanjenja koraka? "];
hhmin=Input["Lista minimalnih koraka? "];
xxmin=Input ["Minimalne vrednosti argumenata? "];
xxmax=Input ["Maksimalne vrednosti argumenata? "J;
Which[metod==1,

rez=SluDir[f,lprom,px,hh,hhmin,lha,xxmin,xxmax],

metod==2,
rez=S1luOb[f,lprom,px,hh,hhmin,lha,xxmin,xxmax] ,
metod==3,

rez=SluCon[f,lprom,px,hh,hhmin,lha,xxmin,xxmax]

1,

(metod==5) | | (metod==6) | | (metod==7),

hh=Input["Lista koraka? "];

xxmin=Input ["Minimalne vrednosti argumenata? "];

xxmax=Input ["Maksimalne vrednosti argumenata? "];

eeps=Input["tacnost? "];

Which[metod==5,

rez=0snGrad[f,lprom,px,hh,xxmin,xxmax,eeps],

metod==6,

Opsti zadatak optimizacije 209

rez=ModGrad [f,lprom,px,hh,xxmin,xxmax,eeps],
metod==7,
rez=AutGrad[f,lprom,px,hh,xxmin,xxmax, eeps]

1,

(metod==8) | | (metod==9) | | (metod==10) | | (metod==11) | |

(metod==12) | | (metod==13),

eeps=Input["tacnost? "];

Which[metod==8, rez=Cauchy[f,lprom,px,eeps],
metod==9, rez=newton[f,lprom,px,eeps],
metod==10, rez=newtonm[f,lprom,px,eeps],
metod==11, rez=mark[f,lprom,px,eeps],
metod==12, rez=Dfp[f,lprom,px,eeps],
metod==13, rez=Mkg[f,lprom,px,eeps]

]

1
Return[rez]]
Sledi sada implementacija metoda generalisanih Lagrangeovih mnozitelja:

(*vecm:Lagrangeovi koeficijentix*)
metodaL[q-,proml List,vf List,vh List]:=
Block[{max,prom=prom1,f,i,p,l,lg,xx,hh,hhmin,
eelha,xxmin,xxmax,izbor},
p=Length[vf]; 1l=Lengthl[vh];
Do [prom=Append [prom,z[i]],{i,p}];
Do [prom=Append [prom,vecm[i]],{i,p+1}]1;
f=q+(Sum[vecm[i]*(vf [[i]]+z[1]"2),{i,p}]+
Sum[vecm[i+p] *Abs[vh[[i]]],{i,1}1);
Print["Odgovarajuci bezuslovni problem ",f,prom];
xx=Print ["Pocetna iteracija duzine ",p];
xx=Input[]; 1lg=True; i=1;
While[i<=p && 1lg,
lg=vrednost [vf[[i]],proml,xx]<=0; i++
1;
If [1g==False,
Print["Pocetna iteracija van dozvoljene oblasti"];
Return[{}]
1;
(* Izracunati vrednosti zi koeficijenata *)
Do [xx=Append [xx,Sqrt [-vrednost [vf[[i]],proml,xx]]1],

{i,p}1;

210 Uslovna optimizacija

Print["Vrednosti mi koeficijenata duzine ",p+l];
vecm=Input[];

Do [xx=Append [xx,vecm[i]],{i,p+1}]; Print[xx];
Return[unconstrainedl [f,prom,xx]]]

vrednost [jednacina_,proml List,x List]:=

Block[{jed=jednacina,i,prom=proml1,x0=x},
Do[jed=jed/.prom[[i]]1->x0[[i]],{i,Length[prom] }];
Return[jed]]

Numericki rezultati.

In[1]:= metodaL[x"2/y"2-1,{x,y},{x-y-3},{x"2-y-2}]
prom={x, y, z[1], vecm$6[1], vecm$6[2]}
Odgovarajuci bezuslovni problem

2
X 2 2
> -1 4 — 4 Abs[-2 + x - y] vecm$6[2] + vecm$6[1] (-3 + x -y + z[1])
2
y

> {x, y, z[1], vecm$6[1], vecm$6[2]}

Pocetna iteracija duzine 2

? {0.2,0.2}

2 vrednosti mi koeficijenata

72

71

prom = {x, y, z[1], vecm$6[1], vecm$6[2]

xx = {0.2, 0.2, 1.73205, 2, 1}

Izaberi metod visedimenzionalne optimizacije.

<1> slucajni smerovi

<2> slucajno trazenje sa obrnutim korakom

<3> nametnuta slucajnost

<4> Powellov visedimenzioni

<5> osnovni gradijentni

<6> modifikovani gradijentni

<T7> automatska korekcija koraka

<8> steepest descent

<9> Newtonov

<10> modifikovani Newtonov

<11> Markuardov

<12> DFP

<13> Conjugate gradients

71

Lista koraka? {0.1,0.1,0.1,0.1,0.1}

Velicina smanjenja koraka? 4

Lista minimalnih koraka? {0.01,0.02,0.02,0.05,0.01}
Minimalne vrednosti argumenata? {-10,-10,-10,-10,-10}
Maksimalne vrednosti argumenata? {10,10,10,10,10}

Opsti zadatak optimizacije

1 za minimum, 2 za maksimum 1
{{0.220916, 0.236886, 1.7881, 2.00856, 1.0152}, 2.45528}
{{0.202197, 0.200778, 1.74538, 2.00761, 1.01514}, 2.30265}
{{0.202263, 0.201818, 1.73245, 2.00281, 1.00184}, 2.17292}
{{0.200956, 0.202132, 1.73534, 2.00281, 1.00237}, 2.17577}
{{0.203041, 0.201623, 1.73521, 2.00288, 1.00161}, 2.20274}
{{0.201277, 0.203514, 1.73417, 2.00286, 1.0011}, 2.15373}

{{0.209407, 0.222008, 1.74161, 2.01654, 1.01133}, 2.13407}
{{0.208804, 0.223555, 1.7417, 2.01621, 1.01077}, 2.11368}
{{0.20785, 0.222327, 1.74283, 2.01872, 1.00826}, 2.11753}
{{0.207972, 0.223361, 1.74274, 2.018, 1.01014}, 2.11308}
{{0.207953, 0.22238, 1.74178, 2.01876, 1.01004}, 2.11456}
{{0.209892, 0.221603, 1.74199, 2.01833, 1.01051}, 2.14362}
{{0.207949, 0.220876, 1.74401, 2.0163, 1.0113}, 2.14637}
{{0.207376, 0.223731, 1.74386, 2.01741, 1.00949}, 2.11041}
Out[1]= {{0.207376, 0.223731, 1.74386, 2.01741, 1.00949}, 2.11041}

Primer 3.3.2. Dat je nelinearni optimizacioni problem:

Minimizirati:

— T — T2

P.O.: fi(zy,22) =27 + 235 — 1 <0,

folzy,) = —x1 + 22 < 0.

211

Koristedi metod unutrasnjih kaznenih funkcija, za slucaj p*) = 1/2F i
koriste¢i DFP metod sa tacnoséu 10~7 u generisanim bezuslovnim opti-
mizacionim parametriam, dobijaju se sledeéi rezultati:

AR =) Qx™)

0 0.5 0.5 —1.

1] 0.63085851 | 0.09223888 2.56860712
2| 0.70733854 | 0.67997758 | —1.35642624
3| 0.70670616 | 0.70666650 [—1.41252669
41 0.70709348 | 0.70709348 | —1.41416037
5| 0.70710636 | 0.70710636 | —1.41421188
6| 0.70710676 | 0.70710676 | —1.41421350
71 0.70710677 | 0.70710677 | —1.41421352

Tabela 3.3.1

S druge strane, pomocu poznate tradicionalne implementacije, metod un-
utrasnjih kaznenih funkcija produkuje rezultate prezentovane u Tabeli 3.3.2

212 Uslovna optimizacija

([73]). Evidentno je da funkcionalna implementacija daje bolje rezultate.
Na primer, tac¢nost 10~% u Tabeli 3.3.3 je dostignuta u petoj iteraciji, a u
Tabeli 3.3.4 tek u 53. iteraciji.

R zy) Q™M)

2 | 0.6884721 | 0.3952927 | —1.0837648
3| 0.7106337 | 0.3713147 | —1.0819484
4 1 0.7349830 | 0.4535905 | —1.1785735
5 | 0.7276601 | 0.5228195| —1.2504796
6 | 0.7251426 | 0.5758051 | —1.3009477
7 | 0.7203736 | 0.6143570 | —1.3358093
8 | 0.7151591 | 0.6446030 | —1.3597621
9 | 0.7105652 | 0.6567412 | —1.3763306
10| 0.7072276 | 0.6803946 | —1.3876222
53| 0.7071067 | 0.7071067 | —1.4142134

Tabela 3.3.2

Moze se pokazati da je simbolickom implementacijom poboljSan veliki deo
kriterijuma koji su preporucljivi za ocenu nekog nelinearnog optimizacionog
algoritma [13]:

1. Veli¢ina (dimenzionalnost, broj ogranicenja tipa jednakosti i/ili ne-
jednakosti) zadatog problema. Ograni¢enja tipa jednakosti i nejednakosti
smeStena su u listi, tako da njihov broj nije unapred limitiran. S druge
strane, u jezicima FORTRAN i C, ako je skup ograni¢enja smesSten u niz
X(1),...,X(50), tada je dozvoljena maksimalna dimenzija problema 50.

2. Jednostavnost koriséenja (vreme potrebno za unosenje podataka i funk-
cije u kompjuterski program). Ciljna funkcija je zadata proizvoljnim MATH-
EMATICA, odnosno SCHEME aritmetickim izrazima, koji su inkorporirani u
unutra$nju formu problema.

3. Jednostavnost napisanog programa kojim se implementira algoritam.
Koriste¢i funkcionalne programske jezike obezbedeno je sledede:

— Mogucénost da se koriste ciljna funkcija i ogranic¢enja, bez leksicke ili
sintaksne analize.

— Jednostavna implementacija parcijalnih izvoda ciljne funkcije.

Posebni slu¢ajevi uslovne optimizacije 213

— Elegantan metod transformacije date unutrasnje forme koja predstavlja
uslovni optimizacioni problem u unutrasnju formu odgovarajuceg bezuslov-
nog optimizacionog problema.

3.3.4. JOS JEDAN METOD KAZNENIH FUNKCIJA

Optimizacioni zadatak sa ograni¢enjima tipa nejednakosti moze da se resi
istim metodom koji je koriS¢en za optimizaciju sa funkcionalnim ogranice-
njima tipa jednakosti. Nova uopstena funkcija se formira pomocu

R(x) = Q(x) + foH (x),
gde je H(x) “kaznena” funkcija, definisana sa

ma2

H(x) =) [1+sign(¥;(x))] ¥;(x),
j=1
gde je
_ +1, ako je ogranicenje ¥;(x) naruseno ,
sign(V;(x)) = L 3 ;
—1, ako ogranicenje W,;(x) nije naruseno.
Koeficijent Gy je pozitivan broj, koji se bira prema kriterijumu

OH (x) 0Q(x)
Bmi > ‘ 8.%'1

(3.3.10) Bo

, t=1,... ,n.

4. POSEBNI SLUCAJEVI USLOVNE OPTIMIZACIJE

4.1. Konveksno programiranje

Konveksno programiranje je najbolje obradeno podruéje nelinearnog pro-
gramiranja. Problem u kome treba da se izra¢una minimum neke funkcije
Q(x) u nekom zadatom skupu F naziva se matematicki program. U konvek-
snom programu skup F' je posredno zadat:

F = {:UG]R": fix) <0, ..., fp(x) go},
gde su f1,..., f, proizvoljne konveksne funkcije. U tom slucaju se konveksni
program moze pretsaviti u obliku
Minimizirati: Q(x), x € R"
P.O.: fi(x) <0, ieP={1,...,p}

gde su fo, f1,...,fp neke konveksne funkcije.

(4.1.1)

Za resavanje problema (4.1.1) postoji vise metoda.

214 Uslovna optimizacija

4.1.1. GRADIJENTNI METOD

Metod je osmisljen je kao modifikacija Cauchyevog metoda najstrmijeg
pada za matematicke programe sa ogranic¢enjima. Polazi se iz startne tacke,
zadate unutar konveksne oblasti odredene ogranicenjima. Zatim se sledi
pravac najbrzeg opadanja funkcije, uz postovanje ogranic¢enja. Zbog jed-
nostavnosti, posmatraémo konveksni program sa linearnim ograni¢enjima,
tj.

Minimizirati: Q(x), x € R"

4.1.2
() P.O.: Ax <D, z;>0,i=1,... ,n.

Oznacimo sa F' skup dopustivih resenja

F={x: Ax <b, z; > 0}.
Metod je iterativan, $to zna¢i da je optimalno resenje programa (4.1.2)
grani¢na tacka niza njegovih aproksimacija x¥, k = 0,1,... Svaka aproksi-
macija x* se dobija nakon redavanja linearnog programa i jednodimenzion-
alnog pretrazivanja. Algoritam se moze iskazati u obliku:

Korak 1. Izabrati pocetnu dopustivu aproksimaciju x° € F. Izracunati
VQ(x°%) i specificirati pravilo zaustavljanja, tj. dovoljno mali
broj € > 0, takav da se algoritam prekida kada je

[x*FD — xB)|| < e
Korak 2. Resiti linearni program
(41.3) Minimizirati: VQ(x™) - x,
o P.O.: Ax <b, z; >0,i=1,... ,n.
Neka je Xgﬂk) njegovo optimalno resenje.

Korak 3. Resiti jednodimenzionalni program

Minimizirati: Q(x*) +)\(xik) —x®y),

PO.: 0<X<1.

U ovom slucaju funkcija) se minimizira na linijskom segmentu
koji spaja x(*) sa Xgﬁk). Neka je \; njegovo optimalno resenje.

Korak 4. Izra¢unati novu aproksimaciju
x(FtD) — (k))\k(xik) _ x(k)).

Korak 5. Ako je pravilo zaustavljanja ispunjeno, proces se zaustavlja; x
je prihvatljiva aproksimacija optimuma. Inace, vratiti se na Ko-
rak 2.

k+1

Posebni slu¢ajevi uslovne optimizacije 215

4.1.2. METOD DOPUSTIVIH SMEROVA

Postoji vise metoda dopustivih smerova, a razlikuju se po uvedenim po-
boljSanjima kod nalaZenja skupa aktivnih ogranicenja, kao i nac¢ina izracu-
navanja dopustivih smerova [73]. Za funkciju u kojoj je implementiran ovaj
metod bitna su dva uslova: ciljna funkcija, koja moze da bude proizvoljna
konveksna funkcija i skup ogranic¢enja koji je zadat proizvoljnim konveksnim
diferencijabilnim funkcijama. Posmatrajmo problem

Minimizirati Q(x), x € R"
(4.1.4) ,
P.O.: fi(x) <0, 1e€P=H0,...,p},
gde su Qi f;,© € P konveksne diferencijabilne funkcije. Neka skup dopus-
tivih reSenja bude oznacen sa F, tj.

F={x:fi(x)<0, i€eP}

Za proizvoljno fiksno dopustivo resenje x, oznacimo sa P(x) skup aktivnih
ogranicenja, tj.

Px)={ieP : fi(x)=0}.

Kazemo da je vektor d ima dopustivi smer iz tacke x € F ako d vodi iz
tacke x u skup dopustivih reSenja, tj. ako postoji pozitivan broj a > 0 takav
da je

x+ad € F za svako 0<a <a.
Dakle, dopustivi smerovi su svi oni smerovi koji iz tacke na granici skupa

dopustivih reSenja vode u skup dopustivih resenja. U slucaju izbora tacke
iz unutrasnjosti skupa dopustivih reSenja, svi smerovi su dopustivi.

Metodi dopustivih smerova su iterativni. Tipican metod dopustivih sme-
rova koristi sledeée iteracije, koje su definisane za k = 0,1,... U tacki x(*)
prvo se odredi neki dopustiv smer d®). Zatim se funkcija cilja pretrazuje u
smeru d®) iz tacke x®). Pri tome je vazno da se pretrazivanje vrsi samo u
skupu dopustivih reSenja F. Na taj nac¢in dolazimo do tacke

xFHD) = x®) 4 5, d®),
gde je o reSenje jednodimenzionalnog programa

Minimizirati Q(x* + od®)))
P.O.: x* 4+0d® cF, o>0.

216 Uslovna optimizacija

Optimalno resenje o zove se optimalna duzina koraka k-te iteracije. Metodi
dopustivih smerova medusobno se razlikuju prema tome kako se odreduju
dopustivi smerovi i kako se odreduje optimalna duzina oy koraka o.

Algoritam jednog od metoda dopustivih smerova je ukratko izlozen:
Korak 1. Odrediti pocetno dopustivo resenje x(?) € F i specificirati pravilo
zaustavljanja (na primer, dovoljno mali broj e > 0 takav da se
algoritam prekida kada je u nekoj normi ||x**+1) —x®)|| < ¢).
Korak 2. Odrediti aktivna ogranicenja P(x(®)) i resiti linearni program
Maximizirati a
P.0.: VQ(x*)d +a <0,
VHxMYd +a<0, iePx®),

d; <1, i=1, ..., n,
—digl, z':l,...,n,
gde je vektor d zadat koordinatama di, ... ,d,. Oznacimo sa d(*)

i ar njegovo optimalno resenje. Ako je ar = 0, proces se prekida;
z*) je optimalno resenje programa. Ako je a; > 0, vektor d(¥)
koristi se kao dopustivi smer; dakle, nastavlja se sa algoritmom.

Korak 3. Resiti jednodimenzionalni problem u odnosu na promenljivu o:

Minimizirati Q(x*) + od®)
PO.: fi(x® +od®) <0, ieP, o0>0.

Oznac¢imo optimalno resenje (duzinu koraka) sa oy.

Korak 4. Izracunajti novu aproksimaciju z*+t1 = z(®) 4 od®). Ako je
pravilo zaustavljanja zadovoljeno, proces se prekida; z*+1 je
prihvatljivo optimalno reSenje. Inace, vratiti se na Korak 2 i
ponoviti iteraciju sa indeksom k + 1.

Program u LISPu kojim je realizovana opisana varijanta metoda dopustivih
smerova koristi ideje ve¢ navedene kod realizacije gradijentnog metoda, ali
je isuvise glomazan da bi bio bar u detaljima ovde dat. Moze se naéi u [41].

IV GLAVA

Optimizacija i linearni sistemi

1. UVOD

Gradijentni metodi optimizacije drugog reda, kao i metodi viSekriteri-
jumske optimizacije, mogu biti primenjeni na izracunavanje generalisanih
inverza i reSavanje linearnih sistema. Ovakvom primenom dobijeno je neko-
liko metoda za izracunavanje najmanje-kvadratnog resenja (LSS reSenja) i
nagmangje kvadratnog resenja minimalne norme (N LSS resenja) zadatog sis-
tema linearnih jednacine Ax = b, kao i odgovarajucéih generalisanih inverza.
Prvo je razvijen iterativni metod za izracunavanje LSS reSenja datog line-
arnog sistema Ax = b, koji je baziran na primeni modifikacije Newtonovog
optimizacionog metoda u minimizaciji funkcije | Az —b||?>. Ovaj metod moze
da se transformise u analogni metod za generisanje {1,3} generalisanih in-
verza matrice A. Koristeéi Newtonov metod, kao i modifikovani Newtonov
metod, u minimizaciji funkcije ||Az — b||? + af|z||?, @ — 0+, uvedeno je
nekoliko iterativnih metoda za izracunavanje N LSS resenja i odgovarajucih
iterativnih procesa za generisanje Moore-Penroseovog inverza.

Takodje, razmatran je dvoetapni minimizacioni problem za izra¢unavanje
NLSS resenja, koji je postavljen u [4] i [5], kao visekriterijumski optimiza-
cioni metod sa ciljnim funkcijama |[Az — b]|> i |z||*>. Koristeéi metod
kaznenih funkcija u resavanju dobijenog visekriterijumskog optimizacionog
problema, razvijeno je viSe metoda za generisanje N LSS reSenja datog lin-
earnog sistema.

Opisani metodi su implementirani u paketu MATHEMATICA.

1.1. Norme vektora i matrica

U literaturi su ceste definicije vektorske norme pomocu skalarnog proiz-
voda, kao i uopstenje vektorske norme pomocéu pozitivno definitnih matrica.

218 Optimizacija i linearni sistemi

Definicija 1.1.1. Ako z* oznacava vektor dobijen primenom konjugacije i
transponovanja na vektoru x € C", tada se uobicajeni skalarni proizvod (-, -)
definiSe sa

(Vz,y e C") (z,y) =27y

Euklidova norma vektora x € C™ definisana je jednakoséu ||z|| = (z, x)
vektori z i y su ortogonalni po Euklidovoj normi ako je (x,y) = 0.

12 4

Pored Euklidove, koriste se i sledeée vektorske norme [73]:

(i) p-norme ili Holderove norme, definisane sa
lellp = (o [P Jaa)7 p 2
(i) [#lloc = max|w;|.
Od matri¢nih normi najcesce se koriste sledec¢e norme (videti [73]):

HA”l - 1r<nkaé< Z ’alk‘ HA”Q = Omax;

lsism i=1k=1

[Alloo = max Z |@irl; [Allr =22 > laa]® = \/Zlm(A);

HAHM = maX(m,n) m%x|aik|§ HAHG =vmn H}%XMML

gde omax 0znacava maksimalnu singularnu vrednost za A.

1.2. Moore-Penroseov inverz

Poznat je veéi broj ekvivalentnih definicija Moore-Penroseovog inverza.
R. Penrose je 1955. godine dokazao sledeéu teoremu (videti [32]):

Teorema 1.2.1 (Penrose). Za datu matricu A € C™"™ postoji jedinstvena
matrica X € C™™ koja ispunjava jednacine
(1) AXA=A (2) XAX =X

Penrose je matricu X oznacio sa Af i nazvao je generalisani inverz matrice
A. Za matricu AT koristi se naziv Moore-Penroseov inverz matrice A.

Teorema 1.2.2 (Moore). Za datu matricu A € C™™ postoji jedinstvena
matrica X € C™™ tako da za pogodno izabrane matrice Y i Z vazi:

AXA = A, X =YA = A"Z
Osim toga je
XAX = X | (AX)" = AX, (XA)" = XA.

Uvod 219

Definicija 1.2.1 (Funkcionalna definicija generalisanog inverza). Za da-
tu matricu A € C™*" definisimo linearnu transformaciju A" : C™ — C»

- _ _ “1
relacijom ATz = 0 ako € R(A)*+ i Afx = <A‘R(A*)> x ako z € R(A).

Matrica linearne transformacije A" oznacava se sa AT i naziva se generalisani
inverz za A.

Definicija 1.2.2. (Mooreova definicija) Generalisani inverz za A € C™*"
je jedinstvena matrica A takva da je

(i) AA" = Pgay, (i) ATA = Pgar).

Definicija 1.2.3 (Penroseova definicija [32]). Za A € C™*™ generalisani
inverz je jedinstvena matrica AT € C"*™ koja zadovoljava jednacine (1),

(2), (3) 1 (4).
Teorema 1.2.3. Funkcionalna, Mooreova i Penroseova definicija generali-
sanog inverza su ekvivalentne.

Teorema 1.2.4 [4]. Neka je A = PQ potpuna rang faktorizacija matrice A,
tj. P € Cm*" i Q € Cr*". Tada je At = QTPT = Q*(QQ*)~'(P*P)~'P~.

1.3. Aproksimativna svojstva generalisanih inverza

U ovom odeljku se posmatra problem reSavanja linearnog sistema Az = b,
pri éemu su A € C™*™ i b € C™ zadati. Ovaj problem ima reSenje ako i
samo ako je b € R(A); resenje je jedinstveno ako i samo ako je N(A) = {0}.
Osim toga, posmatra se slede¢i problem: ako b ¢ R(A), tada odrediti z, tako
da Az bude “najblize” vektoru b.

Definicija 1.3.1 ([4], [42]). Dat je sistem jedna¢ina Az = b, A € C™*".
Pseudoinverz X je minimalne norme ako je za svako b € R(A), v+ = Xb
reSenje jednacine Ax = b i ako je

min (] = | Xb].

Teorema 1.3.1 ([4], [42]). X je g-inverz matrice A takav da je Xb resenje
sistema Ax = b minimalne norme ako i samo ako X ispunjava uslove

AXA=A (XA)* = XA.

Teorema 1.3.2 ([4]). Neka je A € C™*", b e C™. Ako je sistem Az =b
saglasan, vektor v = ALYy, ALY € A{1,4} je jedinstveno resenje za koje
je norma ||z|| nagmanja. Vazi i obrnuto, tj. ako je matrica X € C*™
takva da u sludcju saglasnog sistema Ax =y, v = Xb predstavlja reSenje sa
najmanjom normom, tada X € A{1,4}.

220 Optimizacija i linearni sistemi

Definicija 1.3.2 ([42]). Neka je dat nesaglasni sistem jednacina Ax = b.
Vektor zg je najmanje kvadratno resenje ako je
|Azog — b|| < ||[Ax —b|| (x € C™).

Teorema 1.3.4 ([42]). X je g-inverz od A, takav da je Xb najmanje sred-
nje-kvadratno resenje jednacine Ax = b, za svako b € C™, ako i samo ako
X ispunjava uslove

AXA=A4, (AX)* = AX.

Teorema 1.3.5 ([4]). Za A € C™*™ ib e C™, ||Az — b|| je najmanje za
z = AL3p. Obrnuto, ako je X € C™™™ takva matrica da je za svaki vektor
b norma ||Az — b|| nagjmanga, tada X € A{1,3}.

Veza izmedju Moore-Penroseovog inverza i najmanje-kvadratnog resenja
minimalne norme, koju je prvi dokazao R. Penrose [33] data je slede¢om
teoremom.

Teorema 1.3.6. Neka A € C™*" ;b € C™. Tada, izmedju svih najma-
nje-kvadratnih reienja jednacine Ax = b, minimalne norme je x = A'b.
Obrnuto, ako je X € C™*™ takva matrica da je za svaki vektor b norma Xb
najmangje-kvadratno resenje minimalne norme, tada je X = Af.

Aproksimativna svojstva generalisanih inverza mogu se detaljnije naci u
[1], [4], [42]. Aproksimativna svojstva generalisanih inverza omogucavaju
da se oni mogu izra¢unati minimizacijom dve norme, odnosno funkcije. Ova
njihova korisna osobina omogucéava da se izraCunavanje generalisanih inverza
kaoi LSS, NLSS resenja dovede u vezu sa razli¢itim metodima optimizacije.

Implementacija razli¢itih metoda za izra¢unavanje LSS i NLSS, koji nisu
bazirani na optimizaciji, moze se naéi u [25-28], [46], [57-58].

2. PRIMENA OPTIMIZACIONIH METODA

2.1. Primena gradijentnih metoda drugog reda

U literaturi je poznata veza linearne optimizacije i Moore-Penroseovog
inverza ([7], [38-40]). Takodje, za izracunavanje Moore-Penroseovog inverza
kori¢ena je i Cauchyeva tehnika najstrmijeg pada ([11], [67]), kao i metod
konjugovanih gradijenata ([62]). Osnovna namera u ovom poglavlju je da se
primene gradijentni metodi optimizacije drugog reda na izraCunavanje gen-
eralisanih inverza i odgovarajuéih resenja datog linearnog sistema jednacina.

Na pocetku opisujemo minimizaciju ciljne funkcije Q(x) = || Az — b||.
Imajuéi u vidu konstantnu vrednost V2Q(z) = A*A Hesseove matrice za

Primena optimizacionih metoda 221

@), Newtonov optimizacioni metod ne moze biti primenjen u minimizaciji
funkcije Q(x). Medjutim, ovde se moze koristiti modifikovani Newtonov
metod.

Teorema 2.1.1. Neka su Hy @ Hy konacnodimenzionalni kompleksni Hilber-
tovi prostori, n = dimH,, m = dimH, i neka je A : Hy — Hs linearni
operator. Posmatrajmo sledece iterativne procese, u odnosu na operatorsku
jednacinu Az = b

(2.1.1) Tpp1=axp — (NI 4+ A*A) VA" (Azy, —b), k=0,1,...
(2.1.2) Xpp1=Xp — QeI+ A*A) T A*(AX, 1), k=0,1,...

u kojoj je A\ > 0 opadajuci niz koji ispunjava uslov \p, — 0 i x¢g € Hi,
X € B(H17H2).

(i) Ako je xo zadato sa xo = Tb, pri éemu operator T ispunjava uslove
T € B(Hy,Hy), rang(T) < rang(A), tada niz xy konvergira prema LSS
reSenju sistema Ax=>o.

(ii) Ako je zq izabrano prema kriterijumu xo = Tb, za T € B(Hz, Hy),
rang(7") > rang(A), tada xy konvergira prema NLSS reSenju sistema Az = b.

(iii) U slucaju kada je Xo € B(Hs, Hy) ograniceni operator koji ispu-
njava uslov rang(Xo) < rang(A), iterativni proces (2.1.2) konvergira ka
Xk —>X€A{1,3}

(iv) Xp — AT pod pretpostavkom da je Xo € B(Ho, Hy) izabrano prema
uslovu rang(Xp) > rang(A).

Dokaz. Kako je operator A* A pozitivno definitan i o > 0, tada je i ope-
rator aiI + A* A pozitivno definitan, §to obezbeduje egzistenciju iterativnih
procesa (2.1.1) i (2.1.2).

(i) Ovaj deo dokaza sledi iz sustine modifikovanog Newtonovog metoda,

koji je primenjen na funkciju Q(x) = %HAQ: — b||%. Zaista, u tom slucaju je

VQ(xx) = A*(Azy, —b), V2Q(xx) = A*A.

(iii) Koriste¢i poznati rezultat da je LSS resenje dato sa A(3)b, za-
kljuéujemo da niz xg, k = 0,1, ..., definisan u (2.1.1) ispunjava z; = Xyb,
gde je X, aproksimacija za A(M3). Tada se niz x, k = 0,1,..., dobija
pomocu zamene b =T u (2.1.2) i on konvergira ka A(1:3).

Tvrdenja (ii) i (iv) sleduju iz rang(X}y) = rang(Xy41), kao i iz poznatog

rezultata: Proizvoljan {1}-inverz X za A ispunjava uslov X € A{1,2} ako i
samo ako je rang(X) = rang(A) (videti [4], [42]). O

222 Optimizacija i linearnih sistemi

Primedba 2.1.1. (i) Formula (2.1.1) je slicna sa sledeé¢im poznatim rezul-
tatom [3]:
Al = lirrb(al + A*A)~tA*.
a—

Medjutim, u (2.1.2) konvergencija je obezbedjena za svaku fiksiranu vrednost
realnih brojeva \,. Za veée vrednosti parametra Ay iteracije (2.1.1) i (2.1.2)
ponasaju se slicno steepest descent metodu. U slu¢aju Ay = 0 ovi iterativni
procesi konvergiraju saglasno Newtonovom metodu.

(ii) Uslov || Xk4+1 — Xkl < €, gde je € mali pozitivan broj, moze da se
koristi u ulozi kriterijuma zavrSavanja iterativnog procesa (2.1.2). Zaista,
koriste¢i A*AAT = A* [4], zakljuéujemo A*(AX; —I) — 0, Sto implicira
konvergenciju: || Xy4+1 — Xg|| — 0.

(iii) S obzirom na globalnu konvergenciju steepest descent metoda, kao i na
brzu konvergenciju Newtonovog metoda, preporucuje se da metodi (2.1.1)
i (2.1.2) startuju sa velikim pocetnim vrednostima za A, kao i da se te
vrednosti smanjuju posle uspesnih iteracija, a povecavaju posle neuspesnih.

Posledica 2.1.1. Uocimo sledece iterativne procese, vezane za operatorsku
jednacinu Az = b:

(2.1.3) Tpp1 =) — AL+ A*A) " A*(Az, — b), A>0, zocH,

(21.4) Xpp1=Xp — M+A*A) " A" (AX,—T1), V>0, XoeB(H, H,).

(i) Ako je xg dato sa zg = T'b, gde operator T' € B(Hs, Hy) ispunjava
uslov rang(T') < rang(A), tada niz (2.1.3) konvergira prema LSS resenju
sistema Az = b.

(ii) U slucaju g = Th, gde T € B(Hs, Hy) zadovoljava rang(T) >
rang(A), niz (2.1.3) konvergira prema NLSS resenju sistema Az = b.

(iii) U slucaju rang(Xyp) < rang(A) dobijamo X, — X € A{1,3}.

(iv) X3 — AT pod pretpostavkom da je matrica X izabrana prema uslovu
rang(Xo) > rang(A).

Dokaz. Iterativni procesi (2.1.1) i (2.1.2) konvergiraju za sve vrednosti Ay
parametra A\. Prema tome, dokaz sleduje iz Teoreme 2.1.1, za svaku fiksiranu
vrednost A = A\, (k=0,1,...). O

Sada izu¢avamo minimizacijau ciljne funkcije Q(z) = || Az — b||? + a|z||?,
gde je a proizvoljni realni broj.

Primena optimizacionih metoda 223

Teorema 2.1.2. (i) NLSS resenje jednacine Az = b dato je sledeéim iter-
ativnim procesima:

(2.1.5) Tp1 = 2 — (ol + A*A) T [A*(Azy — b) + agay)] s
(2.1.6) Tpa1 = ok — (M) I+ A*A) 71 A" (Azp — b) + ap]

(2.1.7) Tpp1 = 2k — (AFap)L + A*A) 7T [A*(Azy, — b) + apy]

za proizvoljne xg, g, Ao, A € Hy, pri cemu su ay i A, (K = 1,...) strogo
opadajuci nizovi koji ispunjavaju uslove a, — 0 i A, — 0.

(ii) Moore-Penroseov inverz AT moze biti generisan sledeéim iterativnim
procesima:

(2.1.8) Xpp1 = Xp — (T + A A) 7 A (AX) — 1) + o X3]
(21.9) Xpe1 = Xp — (Op+ap)I+ A*A) A (AX, — 1) + ap Xy,

(21.10) Xpy1 = X — (A+ap)I 4+ A*A) A (AX, — 1) + ap Xy,

gde je Xog € B(Hy, Hs) proizvoljan ogranicen operator, ag, \g su proizvoljni
realni brojevi, a oy, A\ (k=1,...) su strogo opadajuéi nizovi koji ispunja-
vaju uslove a — 0 @ A\ — 0.

Dokaz. Egzistencija izraza (2.1.5)—(2.1.10) se lako proverava.

(i) Reprezentacije (2.1.5)—(2.1.7) proizilaze iz klasi¢ne regularizacione
tehnike [64]: Ako je xo minimum funkcionala

1 1
Q@) = Fulw) = 5|14z — bl]* + ajal/*,

tada lin%) o = A'b.

Lako se proveravaju i sledeca tvrdjenja:

VQ(xy) = A*(Azy, — b) + arg, V2Q(xp) = A*A+ ol.

224 Optimizacija i linearnih sistemi

Primenom Newtonovog metoda u toku minimizacije funkcionala F, (x), do-
bijmo slede¢u aproksimaciju za x,:

(2.1.11) whoy = xh — (ol + A*A) N [A*(Az) — b) + axy] .

Sliéno, prema modifikovanom Newtonovom metodu sa opadaju¢im nizom
Ar — 0, dobijamo iterativni metod

(2.1.12) 2y =) — (Me+a)l + A*A) "1 [A*(Az), — b) + ax)] .

koji ispunjava uslov klim Th = Tq.

— 00
Primenom modifikovanog Newtonovog metoda, sa fiksiranim vrednostima
A=A (k=0,1,...) u svim iteracijama, dobijaju se sledece aproksimacije
Za T

(2.1.13) Thoy =7 — (M)l + A*A) 7' [A*(Az), — b) + axl] .

Koristeéi strogo opadajuéi niz aj — 0 u iterativnim procesima (2.1.11)—
(2.1.13), dobijajamo iterativne procese (2.1.5)—(2.1.7).
(ii) Koristeéi b = I, saglasno sa (i), dobijamo X} — ATl = AT. O
Parametar o u Teoremi 2.1.1 moze se automatski smanjivati na nacin
opisan u sledecoj teoremi:

Teorema 2.1.3. Neka su ispunjeni uslovi Teoreme 2.1.1. Posmatrajmo
A 1 b
progirene matrice Ay = | * |, Iy = | | ¢ proSireni vektor by = | : |,
A 1 b
N > 1. Ako se iteracije (2.1.1), (2.1.2), (2.1.5) i (2.1.8) primene na Ay, by
and Iy, dobija se

1
(2.1.1) Tt = T — (%I + A*A) A*(Azy, — b),
—1
(2.1.2)) Xpo1 = Xp — (%I + A*A) A*(AX;, — 1),
1
(2.1.5) Trpl = Th — <%I n A*A) [A*(Axk b+ O‘—A’;mk ,

Primena optimizacionih metoda

(2.1.8) Xpp1 = Xp — <%I + A*A>_1 [A*(AXk i %Xk] .

Dokaz. Primena (2.1.1) na matricu Ay i vektor by daje
Tpa1 = g — (ol + ANAN) P AN (Ayzs, — by).
Koristeéi AyAy = NA*A i A by = NA*b, dobijamo
Tps1 = 2 — (gl + NA*A) "' NA*(Azy, — b)

-1

Tvrdjenje (2.1.2') sleduje iz

Xir1 =Xk — (OékI + A}kVAN)_l A*N(ANXk — IN), k=0,1,...

kao i A% Ay = NA*A, Ay Iy = NA*T = NA*.

2.2. Implementacija

Metod uveden u Teoremi 2.1.1 implementiran je slede¢om funkcijom:

NewIter[a_., start_, alfaO_, brit_]:=
Block[{t=a,tO=start,a0=alfal,iter=brit,m,n,tz,it=0,
pl,p2,im,in},
{m,n}=Dimensions[t];
im=IdentityMatrix[m]; in=IdentityMatrix[n];
tz=Conjugate [Transpose[t]];
While[it<=iter,
pl=Inverse[a0 in +tz.t]; p2=t.t0-im;
t1=t0-pl.tz.p2; t0=t1l; it+=1; a0 =a0/2;
1;
t1
]

Metod iz Posledice 2.1.1 je implementiran kako sledi:

NewIter2[a_, start_, alfaO_, brit_]:=
Block[{t=a,tO=start,a0=alfal,iter=brit,m,n,tz,it=0,
pl,p2,im,in},
{m,n}=Dimensions[t];
im=IdentityMatrix[m]; in=IdentityMatrix[n];

225

226 Optimizacija i linearnih sistemi

tz=Conjugate [Transpose[t]];

While[it<=iter, (promeni uslov)
pl=Inverse[a0 in +tz.t]; p2=t.t0-im;
t1=t0-pl.tz.p2; t0=t1; it+=1;

1;

t1

]

Sledi implementacija metoda koji je uveden u Teoremi 2.1.2.

NewIterl[a_, start_, alfaO_, brit_]:=
Block[{t=a,tO=start,a0=alfal,iter=brit,m,n,tz,it=0,
pl,p2,im,in},
{m,n}=Dimensions[t];
im=IdentityMatrix[m]; in=IdentityMatrix[n];
tz=Conjugate [Transpose[t]];
While[it<=iter,
pl=Inverse[a0 in +tz.t]; p2=t.t0-im;
t1=t0-pl. (tz.p2 + a0 t0); tO=tl; it+=1; a0=a0/2
1;
t1
]

Rezultat Teoreme 2.1.3 moze se implementirati slede¢im programom:

NewIterN[a_, start_, alfaO_, brit_]:=
Block[{t=a,tO=start,a0=alfal,iter=brit,m,n,tz,it=0,
pl,p2,im,in},
{m,n}=Dimensions[t];
im=IdentityMatrix[m]; in=IdentityMatrix[n];
While[it<=iter,
tz=Conjugate [Transpose[t]];

pl=Inverse[a0 in +tz.t]; p2=t.t0-im;
t1=t0-pl.tz.p2; t0=t1; it+=1;
im=Join[im,im]; t=Join[t,t];

1;

t1

Literatura

[11]

[12]
[13]

V. Aleksi¢, V. Rakocevi¢, Approximate properties of the Moore-Pen-
rose inverse, VIII Conference on Applied Mathematics, Tivat (1993),
1-14.

M. Bazaapa, K. lllertu, Hesuneitnoe nporpammuposanue, Teo-
pus u anropurmol, Mup, Mocksa, 1982.

A. Ben-Israel, On matrices of index zero or one, STAM J. Appl. Math.
17 (1969), 1118-1121.

A. Ben-Israel and T.N.E. Grevile, Generalized Inverses: Theory and
Applications, Wiley-Interscience, New York, 1974.

A. Ben-Israel, A volume associated with mxn matrices, Linear Algebra
Appl. 167 (1992), 87-111.

C.H. Bischof, A. Bouaricha, P.M. Khademi, J.J. Moré, Computing
Gradients in Large-scale Optimization Using Automatic Differentia-
tion, Technical Report, 1995.

S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transfor-
mations, Pitman, New York, 1979.

D. Cvetkovi¢, M. Cangalovi¢, Dj. Dugosija, V. Vujcié-Kovacevié, S.
Simié, J. Vuleta, Kombinatorna optimizacija, Drustvo operacionih is-
trazivaca Jugoslavije — DOPIS, Beograd, 1996.

J.E. Dennis, J.J. Moré, Quasi-Newton methods, motivation and theory,
SIAM Rev. 19 (1977), 46-89.

G.C. Godwin, P.V. Kabaila, T.S. Ng, On the Optimization of Vector-
Valued Performance Criteria, IEEE Trans. Automatic Control 20
(1975).

C.W. Groetch, Generalized Inverses of Linear Operators, Marcel De-
kker, Inc. New York and Basel, 1977.

L.W. Henessey, Common LISP, McGraw-Hill Book Company, 1989.

D.M. Himmellblau, Applied Nonlinear Programming, McGraw-Hill Bo-
ok Company, 1972.

228

Literatura

E. Hyvonen, J. Seppanen, Mup Jlucna, Mir, Mocksa, 1990.

S.L.S. Jacoby, J.S. Kowalik, J.T. Pizzo, Iterative Methods for Nonlin-
ear Optimization Problems, Prentice-Hall, Inc, Englewood, New Jer-
sey, 1977.

R. Kalaba, A. Tishler, A computer program to minimize a function
with many variables using computer evaluated exact higher-order de-
rivates, Appl. Math. Comput. 13 (1983), 143-172.

W.J. Kammerer, M.Z. Nashed, On the convergence of the conjugate
gradient method for singular linear operator equations, STAM Rev. 9
(1972), 165-181.

W.J. Kammerer, M.Z. Nashed, Steepest descent for singular linear
operators with nonclosed range, Applicable Analysis 1 (1971), 143-
159.

E.H. Kaufman, D.J. Leeming, CONMAX, Version 1.7, Technical Re-
port, 1996.

V.V. Kovacevi¢-Vujci¢, A wview of interior point methods for linear
programming, YUJOR 5 (1995), 173-193.

N. Kreji¢, Dj. Herceg, Matematika i MATHEMATICA, Racunari u uni-
verzitetskoj praksi, Novi Sad, 1993.

S. Kréevinac, M. Cupic’7 J. Petri¢, 1. Nikoli¢, Algoritmi i programi iz
operacionih istrazivanja, Naucna knjiga, Beograd, 1983.

FO.H. Ky3suenos, V.I. Kuzubov, A.B. Bonomenko, Marematuuec-
KO€e mporpaMmmupoBanue, Bricmas mkomaa, Moskva, 1968.

C. Lawrence, J.L. Zhou, A.L. Tits, User’s Guide for CESQP Version
2.5: A C Code for Solving Constrained Nonlinear Optimization Prob-
lems, Generating Iterates Satisfying All Inequality Constrains, Tech-
nical Report, 1997.

G.V. Milovanovi¢, Numericka analiza I, Naucéna knjiga, Beograd, 1991.

G.V. Milovanovié¢, Numericka analiza II, Naucéna knjiga, Beograd,
1991.

G.V. Milovanovi¢, D.S. Mitrinovi¢, Th.M. Rassias, Topics in Polyno-
mials: Extremal Problems, Inequalities, Zeros, World Scientific, Sin-
gapore - New Jersey - London - Hong Kong, 1994.

[37]

[38]

[39]

[40]

Literatura 229

G.V. Milovanovié¢, S. Wrigge, Least square approzimation with con-
straints, Math. Comp. 46 (1986), 551-565.

S.K. Mitra, R.C. Rao, Extensions of a duality theorem concerning g-
inverses of matrices, The Indian Journal of Statistics 37 (1975), 439
445.

S. Opricovié¢, Optimizacija sistema, Nauka, Beograd, 1992.

T.S. Parker, L.O. Chua, INSITE — a software toolkit for the analysis
of monlinear dynamic systems, Proceedings of the IEEE 75 (1987),
1081-1089.

R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil.
Soc. 51 (1955), 406-413.

R. Penrose, On best approzimate solution of linear matrix equations,
Proc. Camb.Phil. Soc. 52 (1956), 17-19.

J. Petri¢, Operaciona istrazivanja, Nauéna knjiga, Beograd, 1989.

M.J.D. Powel, A survey of numerical methods for unconstrained opti-
mization, STAM Rev. 12 (1970), 79-97.

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numer-
ical Recipes in C, Cambridge University Press, New York-Melbourne-
Sydney, 1990.

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numeri-
cal Recipes, Cambridge University Press, New York, Melbourne, Syd-
ney, 1986.

L.D. Pyle, The weighted generalized inverse in nonlinear programming-
active set selection using a variable-metric generalization of the sim-
plex algorithm, International symposium on extremal methods and sys-
tems analysis, Lecture Notes in Economics and Mathematical Systems
174 (1977), 197-231.

L.D. Pyle and R.E. Cline, The generalized inverse linear programming-
interior gradient projection methods, STAM J. Appl. Math. 24 (1973),
511-534.

L.D. Pyle, The generalized inverse linear programming. Basic struc-
ture, STAM J. Appl. Math. 22 No 3 (1972), 335-355.

230

[41]

Literatura

S. Ranci¢, Implementacija nekih metoda matematickog programiranja
u LISPu, Magistarska teza, Univerzitet u Nisu, Filozofski fakultet,
1997.

C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and its Appli-
cations, John Wiley & Sons, Inc, New York, London, Sydney, Toronto,
1971.

J.K. Reid, The use of conjugate gradients for system of linear equations
possesing “property A7, SIAM Rev. 9 (1972), 325-332.

W.S. Richard, LISP, Lore and Logic, Springer-Verlag, 1990.
S. Robert, Algorithms in C, Addison-Wesley, New York, 1990.

J.B. Rosen, Minimum and basic solutions to singular linear systems,
SIAM 12 (1964), 156-162.

J.D. Smith, An Introduction to Scheme, Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

P.S. Stanimirovi¢, S. Ranci¢, Unidimensional search optimization in
LISP, Proceedings of the II Mathematical Conference, 1996, Pristina,
253-262.

P.S. Stanimirovi¢, S. Rancié¢, Unconstrained optimization in LISP,
Proceedings of the XI Conference on Applied Mathematics, 1996,
Budva, 355-362.

P.S. Stanimirovié¢, S. Ranci¢, First-order gradient optimization meth-
ods in LISP, Korean J. Comput. Appl. Math. 5 (1998), 611-626.

P.S. Stanimirovié, S. Ranci¢, Second order optimization methods in
LISP, YUJOR 9 (1999), 113-127.

P.S. Stanimirovi¢, S. Rancié¢, Implementation of penalty function meth-
ods in LISP, Acta Math. Inform. Univ. Ostraviensis 7 (1999), 119
141.

P.S. Stanimirovié¢, S. Rancié¢, Symbolic implementation of lexicographic
multicriteria program, FILOMAT 12 (1998), 1-8.

P.S. Stanimirovi¢, I.B. Stankovi¢, Symbolic implementation of simplex
method, XIIT Conference on Applied Mathematics, Budva (1998).

P.S. Stanimirovi¢, M.B. Tasi¢, M. Risti¢, Symbolic implementation of
the Hooke-Jeeves method, YUJOR 9 (1999), 285-301.

Literatura 231

P.S. Stanimirovi¢, S. Ranci¢, M. Tasi¢, Repetitive applications of func-
tions as arguments in programming languages, Proceedings of VIII
Conference on Logic and Computer Science, LIRA 97, 1997 Novi Sad,
231-238.

P.S. Stanimirovi¢, Computing minimum and basic solutions of linear
systems using the Hyper-power method, Studia Sci. Math. Hungar. 35
(1999), 175-184.

N. Stojkovié¢, P.S. Stanimirovié¢, Two direct methods in linear program-
ming, European J. Operational Research 131 (2001), 417-439.

N. Stojkovi¢ and P.S. Stanimirovié¢, Initial point in primal-dual interior
point method, Facta Univ. Ser. Mech. Rob. 3 (2001), 219-222.

C. Crosauos , Meronut u Anropurmu 3a OnruMmusanus, p:xaBHO
n3naresictso, Texuwuka, Codus, 1990.

G.J. Sussman, Structure and Interpretation of Computer Programs,
MIT Press, Cambridge, Massachusetts, 1985.

K. Tanabe, Conjugate-gradient method for computing the Moore-Pen-
rose inverse and rank of a matriz, J. Optim. Theory Appl. 22 (1977),
1-23.

M.B. Tasié, Implementacija nekih metoda za izracunavanje ekstremnih
vrednosti i generalisanih inverza, Magistarska teza, Univerzitet u Nisu,
Nis, 2000.

O. Todorovi¢, Operaciona istrazivanja, Prosveta, Nis, 1992.

M.R. Trummer, A method for solving ill-possed linear operator equa-
tion, SIAM J. Numer. Anal. 21 (1984), 729-737.

S. Vukadinovié¢, S. Cveji¢, Matematicko programiranje, Univerzitet u
Pristini, 1996.

T.M. Whitney, R.K. Meany, Two algorithms related to the method of
steepest descent, STAM Rev. 4 (1967), 109-118.

R. Wilensky, Common LISPcraft, Norton, New York, 1986.

S. Wolfram, Mathematica: a System for Doing Mathematics by Com-
puter, Addison-Wesley Publishing Co, Redwood City, California, 1991.

S. Wolfram, Mathematica Book, Version 3.0, Wolfram Media and
Cambridge University Press, 1996.

232

[71]

Literatura

J.L. Zhou, A.L. Tits, C.T. Lawrence, User’s Guide for CFSQP Ver-
sion 8.7: A FORTRAN Code for Solving Constrained Nonlinear Op-
timization Problems, Generating Iterates Satisfying All Inequality and
Linear Constrains, Technical Report, 1997.

J.L. Zhou, A.L. Tits, C.T. Lawrence, User’s Guide for CFSQP Version
3.7: A C Code for Solving Constrained Nonlinear Optimization Prob-
lems, Generating Iterates Satisfying All Inequality and Linear Con-
strains, Technical Report, 1997.

G. Zielke, Some remarks on matriz norms, condition numbers, and
error estimates for linear equations, Linear Algebra Appl. 110 (1988),
29-41.

S. Zlobec, Nelinearno programiranje, Nauéna knjiga, Beograd, 1989.

Indeks 233

Indeks

A

analiticki metodi, 15

analiticko reSenje, 15

aproksimacija po koordinatama, 68
apply, 26

Aproksimativna svojstva generalisanih
inverza, 219

Arhimedova spirala, 72

automatsko diferenciranje, 112

B

baza, 9

bazi¢na tacka, 10, 77
bazi¢no dopustivo resenje, 10
bezuslovna optimizacija, 30

C

C, 22

Cauchyev metod najstrmijeg pada, 131
celobrojno programiranje, 13
ConstrainedMin, 24

ContourPlot, 84, 179
ConstrainedMax, 24, 179

D

diferenciranje,

— numericko, 112

— simbolicko, 112

— automatsko, 112
dimenzija zadatka, 4
dodavanje ogranicenja, 196

dopustivi,

— plan, 2

— smer, 103
dopustivo resenje, 183
DSC-Powellov metod, 62

E

eksperimentalni metodi, 15
ekstremum,

— bezuslovni, 29

— globalni, 162

— lokalni, 183

— uslovni, 183
evaluacija, 32

F

FindMinimum, 23
Formiranje gradijenta, 113
faza,
— minimizacije, 176
— tunelna, 176
FORTRAN, 10
for-each, 26
funkcija,
— ciljna, 1
— konkavna, 18
— konveksna, 18
— Lagrangeova, 184
— linearna, 5
— multimodalna, 5
— separabilna, 12
— unimodalna, 5
funkcional, 26

234
funkcionalno programiranje, 2

G

Gauss-Seidelov metod, 74
generalisani inverz, 218
— desni, 218
— {1, 2, 3}-inverz, 218
— levi, 118
— {1, 2,4}-inverz, 218
— Moore-Penroseov, 218
— {1, 2}-inverz, 218
— {1, 3}, 220
— {1,4}, 219
Generalisani Lagrangeovi
mnozitelji, 206
Globalna optimizacija, 162
gradijent, 17
gradijentni metodi, 106
Gradijentni metodi drugog reda, 141
Gradijentni metodi sa automatskom
korekcijom koraka, 126
graficki metodi, 15

H

heuristicki metodi, 164
Hesseova matrica, 20
Hessian, 110
Hooke-Jeevesov metod, 76

I

interpolacioni metodi, 34
inverzija Hesseove matrice, 142
izlazni kriterijum, 16

J

jednodimenzionalna negradijentna op-

timizacija, 33

jednodimenzionalni Powellov
metod, 59

jednodimenzionalni simpleks

Indeks

metod, 40

K

kompleks metod, 99
kompleks metod za funkcionalna
ogranicenja, 191
konveksni konus, 20
konveksni poliedar, 20
konac¢ne razlike, 114
konjugovani vektori, 103
konkavna funkcija, 13
konkavni skup, 13
Konveksno programiranje, 213
— gradijentni metod, 213
— metod dopustivih smerova, 214
korak optimizacije,
— uspesan, 79
— neuspesan, 79
kriterijum optimalnosti, 4
kvadratno programiranje, 13
kvadratno zavrsavanje, 103
kvazi-Newtonov metod, 145

L

lambda-izraz, 103
lagrangian, 184
Lagrangeova funkcija, 184
Lagrangeovi mnozitelji, 184
lambda-izraz, 96

linearno programiranje, 6
linearna mnogostrukost, 21
LISP, 24

ListPlot, 84

logaritamska spirala, 72
lokalni minimum, 33

M

map, 26

mapping funkcija, 26
MapThread, 28
MATHEMATICA, 10

Indeks 235

matematicki model, 1
MATLAB, 32
metod optimizacije, 4
metod Davidon-Fletcher-Powell
(DFP), 154
metod Davies-Swann-Campey
(DSC), 54
metod dihotomije, 46
metod konjugovanih gradijenata, 157
metod Markuarda, 149
metod nametnute slucajnosti, 96
metod parabole, 66
metod relaksacije, 139
metod slu¢ajnih smerova, 90
metod “teskog topa”, 174
metod tunela, 176
metodi aproksimacije polinomom, 36
metod zlatnog preseka, 49
metodi eliminacije promenljivih, 184
metodi kaznenih funkcija, 197
— spoljasnjih, 200
— unutrasnjih, 203
metodi lagrangeovih mnozitelja, 184
metodi promenljive metrike, 148
minimizacioni metodi, 189
modifikacija osnovnog gradijentnog
metoda, 123
modifikacija Newtonovog metoda, 145
Moore-penroseov inverz, 218
multimodalan, 162

N

najbolje aproksimativno resenje, 217

— sa minimalnom normom, 217
nelinearno programiranje, 10
negradijentni metodi, 30
normalizovani gradijent, 111
norme vektora i matrica, 217

— matri¢na, 217

— Euklidova, 217

— vektorska, 217

— spektralna, 217

Newtonov metod, 141
Newtonov metod uslovne
optimizacije, 187

(0)

objekat optimizacije, 4
oblast,

— maksimuma, 90

— neuspesna, 90

— neutralna, 90

— uspesna, 90

— ogranicena, 2

— neogranicena, 2
operator, 221
opcioni argumenti, 96
optimizacija,

— bezuslovna, 14

— dinamicka, 14

— linearna, 14

— nelinearna, 14

— po liniji, 134, 146, 158

— staticka, 14

— uslovna, 14, 179
opsti zadatak optimizacije, 190
opsti oblik linearnog programa, 7
osnovni gradijentni metod, 120

P

Penroseove jednacine, 218

posebni slucajevi uslovne
optimizacije, 213

potpuna rang faktorizacija, 219

Powelov visedimenzionalni metod, 103

Priceov metod, 170

pseudo-invertibilan element, 217

R

rang matrice, 221
resenje,
— analiticko, 4
— numericko, 4

236 Indeks

reSenje linearnog sistema
— minimalne norme, 217
— najbolje-aproksimativno, 217
— najmanje srednje-kvadratno, 217

S

SCHEME, 25
simbolicka optimizacija, 22
simetri¢ni oblik linearnog programa, 7
simpleks metod, 10
sistem,
— linearnih jednacina, 6
— linearnih nejednacina, 6
skeniranje po spirali, 72
skeniranje sa konstantnim korakom, 35
skeniranje sa konstantnim i
promenljivim korakom, 70
skeniranje sa promenljivim
korakom, 38
slu¢ajni vektor, 91
slucajno pretrazivanje, 86
slucajno pretrazivanje sa
skeniranim pocetnim tackama, 163
slucajno pretrazivanje iz skupa
slu¢ajnih pocetnih tacaka, 168

slu¢ajno trazenje sa veéom
gustinom, 88
slucajno trazenje sa obrnutim
korakom, 95
standardni oblik linearnog programa, 7
stohasticki metodi, 164

T
teziste kompleksa, 191
Thread, 28

U

unimodalan, 34, 162
unutrasnja forma, 32
uslovna optimizacija, 179
upravljacki,

— parametri, 3

— zadatak, 3
upravljivost, 4

A%

viSedimenziona negradijentna
optimizacija, 68
viSekriterijumska optimizacija, 217

