
Citation: Stanimirović, P.S.; Ćirić, M.;

Mourtas, S.D.; Milovanović, G.V.;

Petrović, M.J. Simultaneous Method

for Solving Certain Systems of Matrix

Equations with Two Unknowns.

Axioms 2024, 13, 838. https://

doi.org/10.3390/axioms13120838

Academic Editor: Simeon Reich

Received: 14 October 2024

Revised: 13 November 2024

Accepted: 25 November 2024

Published: 28 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Simultaneous Method for Solving Certain Systems of Matrix
Equations with Two Unknowns
Predrag S. Stanimirović 1,2 , Miroslav Ćirić 1 , Spyridon D. Mourtas 2,3 , Gradimir V. Milovanović 1,4

and Milena J. Petrović 5,*

1 Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18108 Niš, Serbia;
pecko@pmf.ni.ac.rs (P.S.S.); miroslav.ciric@pmf.edu.rs (M.Ć.); gvm@mi.sanu.ac.rs (G.V.M.)

2 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian Federal
University, Prosp. Svobodny 79, Krasnoyarsk 660041, Russia

3 Department of Economics, Division of Mathematics-Informatics and Statistics-Econometrics, National and
Kapodistrian University of Athens, Sofokleous 1 Street, 10559 Athens, Greece; spirmour@econ.uoa.gr

4 Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
5 Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, Lole Ribara 29,

38220 Kosovska Mitrovica, Serbia
* Correspondence: milena.petrovic@pr.ac.rs

Abstract: Quantitative bisimulations between weighted finite automata are defined as solutions of
certain systems of matrix-vector inequalities and equations. In the context of fuzzy automata and
max-plus automata, testing the existence of bisimulations and their computing are performed through
a sequence of matrices that is built member by member, whereby the next member of the sequence is
obtained by solving a particular system of linear matrix-vector inequalities and equations in which
the previously computed member appears. By modifying the systems that define bisimulations,
systems of matrix-vector inequalities and equations with k unknowns are obtained. Solutions of such
systems, in the case of existence, witness to the existence of a certain type of partial equivalence,
where it is not required that the word functions computed by two WFAs match on all input words,
but only on all input words whose lengths do not exceed k. Solutions of these new systems represent
finite sequences of matrices which, in the context of fuzzy automata and max-plus automata, are
also computed sequentially, member by member. Here we deal with those systems in the context
of WFAs over the field of real numbers and propose a different approach, where all members of
the sequence are computed simultaneously. More precisely, we apply a simultaneous approach in
solving the corresponding systems of matrix-vector equations with two unknowns. Zeroing neural
network (ZNN) neuro-dynamical systems for approximating solutions of heterotypic bisimulations
are proposed. Numerical simulations are performed for various random initial states and comparison
with the Matlab, linear programming solver linprog, and the pseudoinverse solution generated by
the standard function pinv is given.

Keywords: weighted finite automata; zhang neural network; bisimulation; pseudoinverse

MSC: 15A24; 65F20; 68T05

1. Introduction, Motivation and Methodology

One of the main issues in the theory of weighted automata is the equivalence prob-
lem, which determines whether two weighted automata are equivalent, that is, whether
they compute the same word function. In the case of the most general class of weighted
automata over a semiring, as well as in the case of most of its subclasses, that problem
is undecidable or computationally hard (cf. [1,2]). Only in rare cases it is solvable in
polynomial time. This fact has created the need to find methods of determining equiv-
alence that may not work in all cases, but in cases where they are applicable, they can

Axioms 2024, 13, 838. https://doi.org/10.3390/axioms13120838 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13120838
https://doi.org/10.3390/axioms13120838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0001-8625-4682
https://orcid.org/0000-0002-8299-9916
https://orcid.org/0000-0002-3255-8127
https://orcid.org/0000-0002-5073-143X
https://doi.org/10.3390/axioms13120838
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13120838?type=check_update&version=1

Axioms 2024, 13, 838 2 of 19

be efficiently realized. The most powerful tools used for these purposes are bisimulations.
This notion was introduced by Milner [3] and Park [4], in the context of classical non-
deterministic automata, as binary relations that can recognize and relate the states of two
automata with similar roles, and thus testify the equivalence between them. Around the
same time, bisimulations also appeared in mathematics, in modal logic and set theory
(cf. [5–11]). It is worth noting that propositional modal logic is the fragment of first-order
logic invariant under bisimulation (cf. [5,7]). Bisimulations are employed today in many
areas of computer science, such as functional or object-oriented languages, types, data
types, domains, databases, compilers optimizations, program analysis, and verification
tools. For more information about bisimulations and their applications we refer to [7–16].

With the transition from traditional Boolean-valued systems to quantitative ones,
which are more suitable for modeling numerous properties of real-world systems, there
was a need for bisimulations to be quantitative as well. Quantitative bisimulations would
be modeled by matrices whose entries would measure the similarity of the roles played
by the states of considered systems. Such bisimulations were first introduced and studied
in [17,18], in the framework of fuzzy finite automata. The approach to bisimulations
initiated in this research consists in defining bisimulations as solutions of certain systems
of mixed matrix-vector inequalities and equations. That way, the proposed approach
reduces the issues of the existence of bisimulations and their computing to the problems
of solving the aforementioned matrix-vector inequalities and equations. Subsequently,
fundamentally equal approach was used in the contexts of weighted finite automata
(WFAs) over additively idempotent semirings [19], max-plus automata [20], and WFAs
over the field of real numbers R [21], as well as in the most general context of WFAs over a
semiring [22]. A similar approach to bisimulations was used in [23–27] (see also [28,29]),
while various extensions of quantitative bisimulations were introduced in [30–35].

Procedures for testing existence and computing bisimulations developed for fuzzy
finite automata in [18], max-plus automata in [20], and WFAs over additively idempotent
semirings in [19], consist of building non-increasing sequences of matrices whose infima, if
they satisfy certain conditions, represent the greatest bisimulations. The sequences are built
member by member, where each member is derived from the previous one, as a solution
of a certain system of matrix inequalities in which the previously computed member
also appears. On the other hand, the methodology used in computing bisimulations for
WFAs over R is different from the methodology used in computing bisimulations for fuzzy
automata, max-plus automata or WFAs over an additively idempotent semiring.

In practical applications of WFAs, it is often not important whether the word functions
of two automata have the same values on all input words, but it is enough to test equality
on all input words whose length does not exceed a given natural number k. Such kind
of partial equivalence, known as k-equivalence, is often more expedient than the classical
equivalence. As shown in [20] (see also [35]), systems of matrix-vector inequalities and
equations defining bisimulations can be transformed into simpler systems of matrix-vector
inequalities and equations with k unknown matrices whose solutions witness to the exis-
tence of k-equivalence between two WFAs. In the mentioned papers, an approach similar
to the one used in the calculation of bisimulations was used, where a finite sequence of
matrices which represents a solution of a new system with k unknowns, is derived by
constructing the next member in the sequence from the previous one. However, such
a sequential approach has certain drawbacks. Namely, the next member of a sequence
depends on the previous one, which does not have to be unique. Inappropriate choices
among candidates for previous members can lead to unwanted situation in which the
sequence cannot be continued, while for a different choice the sequence can be continued.
This means that although our system has a solution, it may happen that this approach fails
to give a solution. For this reason, we propose a different, simultaneous approach, where
all members of the sequence of the solution are built simultaneously. Particularly, further
on in this paper we deal with solving systems with two unknowns, while systems with
more unknowns will be the subject of study in our further research.

Axioms 2024, 13, 838 3 of 19

Systems of matrix-vector equations required in heterotypic bisimulations in this paper
are considered over R, and their solutions are obtained as numerical approximations of
solutions to systems of linear matrix-vector equations. A special difficulty is the fact that
the required matrix-vector equations are not consistent in the general case. In this way,
solving those systems is considered as numerical linear algebra problem.

The proposed algorithm for solving the problem is based on the zeroing neural net-
work (ZNN) dynamic models. It should be noted that ZNN dynamic models were originally
created for tracking the time-varying matrix inverse [36]. Later iterations of these mod-
els were dynamic models for figuring out the time-varying Moore–Penrose [37]. These
days, they are also used to solve generalized inversion problems, such as time-varying
outer inverse [38], time-varying Drazin inverse [39], and time-varying ML-weighted pseu-
doinverse [40]. Additionally, real-world ZNN dynamic model applications include image
restoration [41], mobile manipulator control [42,43], chaotic systems synchronization [44],
and solving time-variant quadratic programming [45]. A comprehensive survey regarding
the application of the ZNN model is available at [46].

Designing a ZNN model is the algorithm consisting of two generic stages. In the initial
step, it is necessary to declare a proper matrix or vector ZEF, denoted by E(t). The ZEF E(t)
is properly defined if its zero point E(t) = 0 coincides with the theoretical solution (TSOL)
of the problem. Zhang and Guo in the monograph [47] presented an extensive overview of
diverse Zhang functions on different domains. Secondly, the dynamic system based on the
time-derivative of E(t)

Ė(t) = −λE(t) (1)

needs to be applied. The convergence speed of the dynamics (1) is controlled by the quantity
λ ∈ R+. It is known that (1) converges faster proportionally with increasing values of
λ [47]. The principal outcome of the continuous learning principle in (1) is to force the
convergence E(t)→ 0 as t→ ∞ at an exponential rate λ [47,48]. A feasible ZEF is therefore
considered as a tracking indicator during the development of ZNN learning in (1). The
essence in defining the ZNN dynamical evolution is an efficient control over the underlying
system through appropriate ZEF E(t) and the error dynamics (1).

The models developed in [21] for bisimulations between WFAs over R are established
using a ZNN dynamics in resolving systems of vector-matrix inequalities. Our goal in
current research is to solve the system consisting of two vector equations and a variable
number of linear matrix equations required in heterotypic bisimulations between WFAs. A
mixed system of vector-matrix equations is obtained as a particular k-equivalence problem
between two WFAs, resulting in a system with two unknown matrices U1 and U2. Such
system is inconsistent in the vast majority of cases. Starting from the useful property of the
ZNN model in generating approximate solutions to matrix-vector inequalities, confirmed
in [21], it was a logical decision to define and implement ZNN neuro-dynamical systems
for approximating matrix-vector systems arising from the 2-equivalence between WFAs.
Since the considered linear matrix-vector system is not inconsistent in general, the ZNN
dynamical system is defined utilizing the induced normal system and its best approximate
solution generated in terms of the Moore–Penrose inverse. Numerical simulations are
performed to verify effectiveness of the proposed ZNN models and comparison with the
Matlab linear programming solver linprog and the pseudoinverse solution generated by
the standard function pinv.

In this work, given that underlying linear vector-matrix systems are not solvable in
the general case, our proposed action is to use the normal system that generates the best
approximate solution, based on the utilization of the Moore–Penrose inverse. Finally, ZNN
dynamics is applied as the tool for finding the best approximate solution.

Main results derived in this paper are emphasized as follows.

- A specific approach, based on the k-equivalence of two WFAs and simultaneous
approach with two unknown matrices, is applied for solving matrix-vector equations
required in heterotypic bisimulations between WFAs.

Axioms 2024, 13, 838 4 of 19

- ZNN neuro-dynamical systems for approximating the k-equivalence problem based
on heterotypic bisimulations are proposed.

- Numerical simulation is presented for various random initial states and comparison
with the Matlab linear programming solver linprog and the pseudoinverse solution
generated by the standard function pinv is given.

Overall structure of our presentation is as follows. After the introduction section,
the problem statement, motivation as well as justification of proposed methodology are
presented in Section 2. ZNN design for solving matrix-vector systems corresponding
to heterotypic bisimulations based on the k-equivalence of two WFAs and simultaneous
approach with two unknown matrices is presented in Section 3. Numerical experiments on
the k-equivalence problem arising from heterotypic bisimulations with two unknowns are
presented in Section 4. The closing section extracts some terminate comments and describes
possibilities for further research on this topic.

2. Preliminaries and Problem Formulation

In the sequel, N will denote the set of natural numbers (without zero), and N0 =
N∪ {0}. For any pair i, j ∈ N0 satisfying i < j, it will be denoted [i..j] = {t ∈ N0 | i 6 t 6 j}.
Moreover, X will be a non-empty and finite set with r ∈ N elements, known as alphabet,
while X+ = {x1 · · · xt | t ∈ N, x1, . . . , xt ∈ X} will denote all finite sequences of entries
from X, which are termed as words over X, and X∗ = X+ ∪ {ε}, such that ε /∈ X+ is a
symbol standing for the empty word.

A weighted finite automaton (WFA) over R and an input alphabet X is defined as a tuple
A = (m, σA, {MA

x }x∈X, τA), in which

– m is a natural number, called the dimension of A ,
– σA ∈ R1×m is the initial weights vector,
– {MA

x }x∈X ⊂ Rm×m is the family of transition matrices, each of which corresponds to
one input letter x ∈ X, and

– τA ∈ Rm×1 is the terminal weights vector.

The numbers from the set {1, . . . , m} can be interpreted as states of the automaton A ,
and for any state i, the i-th entries of the vectors σA and τA can be understood as measures
of certainty that the automaton will start working from that state or finish working in that
state, respectively, while for the states i and j, the (i, j)-th entry of the matrix MA

x can be
understood as a measure of certainty that the automaton will move from the state i to state
j under the influence of the input signal represented by the letter x. Inputs of the vector σA

are called initial weights, the entries of τA are called terminal weights, while the entries of the
matrix MA

x are called transition weights.
The behavior of the WFA A is defined as the word function JAK : X∗ → R which to any

word u = x1 . . . xs ∈ X+, x1, . . . , xs ∈ X assigns the weight JAK(u) which is computed as

JAK(u) = σA MA
x1
· · ·MA

xs τA = σA MA
u τA, (2)

where MA
u = MA

x1
· · ·MA

xs , and
JAK(ε) = σAτA. (3)

It is said that the automaton A computes the function JAK.

Consider two WFAs A = (m, σA, {MA
x }x∈X, τA) and B = (n, σB, {MB

x }x∈X, τB) over
R and an alphabet X = {x1, . . . , xr}. Here, we are interested in systems of matrix and
vector equations that define the so-called heterotypic bisimulations between A and B , as
proposed in [22]. These are the following two systems:

(hfbb-1) σA = σB UT

(hfbb-2) UT MA
x = MB

x UT (x ∈ X = {x1, . . . , xr})
(hfbb-3) UTτA = τB

(4)

Axioms 2024, 13, 838 5 of 19

and

(hbfb-1) τA = U τB

(hbfb-2) MA
x U = U MB

x (x ∈ X = {x1, . . . , xr})
(hbfb-3) σA U = σB

(5)

where U is an unknown matrix of dimension m× n. Matrices which are solutions of (4)
are called forward-backward heterotypic bisimulations (fbb for short) between A and B , and
those which are solutions of (5) are backward-forward heterotypic bisimulations (bfb for short)
between A and B [22].

Recall that the automata A and B are equivalent if JAK(u) = JBK(u), for every
word u ∈ X∗. However, in real-word applications it is not always necessary that this
equality holds for all words u ∈ X∗; it is often enough that it holds for all words of length
|u| 6 k, for a given natural number k. If this relaxed condition holds, then we say that the
automata A and B are k-equivalent, and the equivalence problem can be transformed into the
k-equivalence problem, which decides whether the automata A and B are k-equivalent.

The problem of k-equivalence will be the subject of a separate study, and here we
will only present without proofs the way in which the existence of k-equivalence be-
tween automata can be witnessed, similar to the way bisimulations testify to the existence
of equivalence.

Consider WFAs A = (m, σA, {MA
x }x∈X, τA) and B = (n, σB, {MB

x }x∈X, τB) and a
sequence of matrices {Ui}i∈[0..k] ⊂ Rm×n that satisfies the following conditions obtained
from the system (4):

(fbb-1k) σA = σBUT
0 ,

(fbb-2k) UT
i−1MA

x = MB
x UT

i , for all x ∈ X and i ∈ [1 . . . k], (6)

(fbb-3k) UT
i τA = τB, for each i ∈ [0 . . . k].

If such a sequence exists, then the automata A and B are k-equivalent. Therefore, our
task is to determine existence of matrices U0, U1, . . . , Uk satisfying (6). Note that (6) can be
understood as a system of equations with k + 1 unknown matrices U0, U1, . . . , Uk, so our
task is to find a solution to that system.

Sequences of matrices (possibly infinite), defined in a similar way as in (6), were stud-
ied in [35], in the circumstances of fuzzy finite automata, and in [20], in the circumstances
of max-plus automata. Sequences defined in [35] were called depth-bounded bisimulations.
The sequential approach used in [20], applied to solving the system (6), consists of building a
sequence U0, U1, . . . , Uk member by member, starting from the zero member U0, which is
computed by solving the equation (fbb-1k), while the i-th member is computed after the
(i− 1)st member, by solving the system of equations UT

i−1MA
x = MB

x UT
i and UT

i τA = τB,
with one unknown Ui.

Since Ui−1 is not unique in the general case, the disadvantage of the sequential ap-
proach is that finding a solution for the unknown Ui depends on the choice of the particular
solution for the unknown Ui−1. Therefore, it may happen that for some choice of a solution
for Ui−1 there is no solution for the unknown Ui, in which case formation of the sequence
interrupts and we cannot find solutions for all the unknowns, although such solutions
may exist.

Consequently, the question arises whether it is possible to apply the simultaneous
approach, where solutions for all unknowns are sought at the same time. Here, we will
consider the application of the simultaneous approach for the instance of the system (6)
with two unknowns. For the sake of simplicity, we will denote those unknowns by U1
and U2, instead of U0 and U1, as was done in (6). In other words, we will deal with the
following system of matrix-vector equations:

Axioms 2024, 13, 838 6 of 19


σB UT

1 = σA,

UT
2 τA = τB,

UT
1 MA

xi
= MB

xi
UT

2 , for each i ∈ [1 . . . r],

(7)

where U1 and U2 are unknown matrices of dimension m× n. In the dual case, we deal with
the following system of matrix-vector equations based on (5):

σA U2 = σB,

U1 τB = τA,

U1 MB
xi
= MA

xi
U2, for each i ∈ [1 . . . r],

(8)

where U1 and U2 stand for m× n unknown matrices.
The ZNN evolution is a validated matrix equations solver, confirmed in survey pa-

pers [48–50] and in a number of research papers [51–54]. Based on the initial step in the
construction of ZNN dynamics, it is necessary to define a proper error function for each
matrix and vector equation that is included in the system which is being resolved. The
development strategy of ZNN dynamics arising from multiple Zhang error functions (ZEFs)
has been utilized in several research articles, of which the most important are [38,55,56].
The ZNN models studied so far with common error functions enabled the convergence of
each error function to approximation of its zero. The main idea is to generate an appropriate
composite error block matrix which involves individual error functions.

The problem considered in current research is more complex, since systems of matrix
and vector equations required in (7) and (8) are not solvable in the general case. The ZNN
design is known as a confirmed tool for forcing the underlying error function to zero with
global exponential convergence. So, it is expectable that the error functions corresponding
to (7) and (8) can be forced to zero, which will lead to approximate solutions of these
matrix-vector system.

Global convergence of ZNN design for arbitrary initial state can be used as a confir-
mation of its efficiency in solving (7) and (8). Details are described in subsequent section.

3. ZNN for Solving the Proposed Systems

This section develops, investigates, and tests two novel ZNN models aimed to
solving the matrix-vector systems (4) and (5). Let A =

(
m, σA, {MA

xi
}xi∈X, τA

)
and

B =
(

n, σB, {MB
xi
}xi∈X, τB

)
be WFAs over R and the alphabet X = {x1, . . . , xr}, defined by

MA
xi
∈ Rm×m, σA ∈ R1×m, τA ∈ Rm×1 and MB

xi
∈ Rn×n, σB ∈ R1×n, τB ∈ Rn×1, i ∈ [1..r].

The p × 1 vectors with all inputs equal 1 (resp. 0) will be termed as 1p (resp. 0p),
whereas the p× r matrix with all entries equal to 1 (resp. 0) will be termed as 1p,r and
0p,r. Following the conventional notation, the q× q identity matrix will be marked by Iq,
whereas vec(),⊗, ()† and ‖‖F will mean the vectorization, the Kronecker product product,
pseudoinversion, and the Frobenius norm, in that order.

3.1. The ZNNL-hfbb Model

Following the priority (hfbb-3) and (hfbb-1) and then (hfbb-2), let us consider the
system (7) as a model for solving (4). In line with the adopted order in solving (4), the next
equations must be satisfied: 

σBUT
1 (t)− σA = 0T

m,

UT
2 (t)τ

A − τB = 0n,

UT
1 (t)MA

xi
−MB

xi
UT

2 (t) = 0n,m,

(9)

Axioms 2024, 13, 838 7 of 19

where U1(t), U2(t) ∈ Rm×n denote unknown matrices. Exploiting vectorization and the
Kronecker product, (9) is reformulated in the equivalent form

(Im ⊗ σB)vec(UT
1 (t))− (σA)T = 0m,

((τA)T ⊗ In)vec(UT
2 (t))− τB = 0n,

((MA
xi
)T ⊗ In)vec(UT

1 (t))− (Im ⊗MB
xi
)vec(UT

2 (t)) = 0mn.

(10)

To calculate solutions U1(t), U2(t) in a more efficient manner, (10) must be made
simpler. Lemma 1 is restated from [57].

Lemma 1. For W ∈ Rm×n, let vec(W) ∈ Rmn denote the matrix W vectorization. What is stated
below is true:

vec(WT) = P vec(W), (11)

where P ∈ Rmn×mn is an appropriate permutation matrix depended from the number of columns n
and rows m of matrix W.

The procedure for generating the permutation matrix P used in (11) is demonstrated
in Algorithm 1 from [21]. Using P in generating vec(UT(t)), (10) can be rewritten as

(Im ⊗ σB)P vec(U1(t))− (σA)T = 0m,

((τA)T ⊗ In)P vec(U2(t))− τB = 0n,
((MA

xi
)T ⊗ In)P vec(U1(t))− (Im ⊗MB

xi
)P vec(U2(t)) = 0mn,

(12)

while its corresponding matrix form is

L f bb

[
vec(U1(t))
vec(U2(t))

]
−

(σA)T

τB

0rmn

 = 0z, (13)

in which z = rmn + m + n and

L f bb =

(Im ⊗ σB)P 0m,mn
0n,mn ((τA)T ⊗ In)P
W1 W2

 ∈ Rz×2mn,

W1 =


((MA

x1
)T ⊗ In)P

((MA
x2
)T ⊗ In)P

...
((MA

xr)
T ⊗ In)P

 ∈ Rrmn×mn, W2 =


(−Im ⊗MB

x1
)P

(−Im ⊗MB
x2
)P

...
(−Im ⊗MB

xr)P

 ∈ Rrmn×mn.

(14)

Based on considered transformations, the ZNN learning exploits the following ZEF,
which is based on (13), for satisfying simultaneously all the equations in (9):

E f bb(t) = L f bb

[
vec(U1(t))
vec(U2(t))

]
−

(σA)T

τB

0rmn

, (15)

where U1(t) and U2(t) are unknown matrices. The time-derivative of (15) is the following:

Ė f bb(t) = L f bb

[
vec(U̇1(t))
vec(U̇2(t))

]
. (16)

Axioms 2024, 13, 838 8 of 19

Then, combining Equations (15) and (16) with the ZNN design (1), the following can
be obtained:

L f bb

[
vec(U̇1(t))
vec(U̇2(t))

]
= −λE f bb(t). (17)

As a result, setting

x(t)=
[

vec(U1(t))
vec(U2(t))

]
∈R2mn, ẋ(t)=

[
vec(U̇1(t))
vec(U̇2(t))

]
∈R2mn, (18)

the following dynamics are developed

L f bb ẋ = −λE f bb(t). (19)

The normal equation corresponding to (19) is given in the form(
L f bb

)T
L f bb ẋ = −λ

(
L f bb

)T
E f bb(t),

which leads to the Moore–Penrose best approximate solution

ẋ = L†
f bb

(
−λE f bb(t)

)
. (20)

Appropriately defined Matlab’s ode solver is utilized to solve the ZNN design based
on (20), and marked as ZNNL-hfbb. The ZNNL-hfbb’s convergence and stability is consid-
ered in Theorem 1.

Theorem 1. Let A =
(

m, σA, {MA
xi
}xi∈X, τA

)
and B =

(
n, σB, {MB

xi
}xi∈X, τB

)
be WFAs over

R, such that MA
xi
∈ Rm×m, σA ∈ R1×m, τA ∈ Rm×1 and MB

xi
∈ Rn×n, σB ∈ R1×n, τB ∈ Rn×1,

i ∈ [1..r]. The dynamical system (17) inline with the ZNN (1) generate the TSOL

xS (t) =
[
vec(U1,S (t))T vec(U2,S (t))T]T,

which is stable in view of the theory of Lyapunov.

Proof. Let 
σBUT

1,S (t)− σA = 0T
m,

UT
2,S (t)τ

A − τB = 0n,
UT

1,S (t)MA
xi
−MB

xi
UT

2,S (t) = 0n,m.

(21)

Using vectorization, the Kronecker product, and the permutation matrix P for gen-
erating vec(UT

1,S (t)(t)) and vec(UT
2,S (t)(t)), the aforementioned system is reformulated

as follows: 
(Im ⊗ σB)P vec(U1,S (t))− (σA)T = 0m,

((τA)T ⊗ In)P vec(U2,S (t))− τB = 0n,
((MA

xi
)T ⊗ In)P vec(U1,S (t))− (Im ⊗MB

xi
)Pvec(U2,S (t)) = 0mn,

(22)

or in equivalent form

L f bb

[
vec(U1,S (t))
vec(U2,S (t))

]
−

(σA)T

τB

0rmn

 = 0z (23)

where L f bb is declared in (14).

Axioms 2024, 13, 838 9 of 19

Further, the substitution

xO(t) := −x(t) + xS (t) =
[
−vec(U1(t)) + vec(U1,S (t))
−vec(U2(t)) + vec(U2,S (t))

]
gives

x(t) = xS (t)− xO(t) =
[

vec(U1,S (t))− vec(U1,O(t))
vec(U2,S (t))− vec(U2,O(t))

]
,

which leads to the first derivative of x(t)

ẋ(t) = ẋS (t)− ẋO(t) =
[

vec(U̇1,S (t))− vec(U̇1,O(t))
vec(U̇2,S (t))− vec(U̇2,O(t))

]
.

As a consequence, the substitution x(t) = xS (t)− xO(t) in (13) for leads to

ES (t)=L f bb

[
vec(U1,S (t))−vec(U1,O(t))
vec(U2,S (t))−vec(U2,O(t))

]
−

(σA)T

τB

0rmn

, (24)

or equivalently

ES (t)=L f bb(xS (t)−xO(t))−

(σA)T

τB

0rmn

. (25)

The subsequent dynamics arise from (1):

ĖS (t)=L f bb

[
vec(U̇1,S (t))−vec(U̇1,O(t))
vec(U̇2,S (t))−vec(U̇2,O(t))

]
=−λES (t), (26)

with equivalent form

ĖS (t)=L f bb(ẋS (t)−ẋO(t))=−λES (t). (27)

The Lyapunov function chosen to confirm the convergence is defined by

Z(t) = 1
2
‖ES (t)‖2

F =
1
2

tr
(

ES (t)(ES (t))
T
)

. (28)

The following could be concluded in this case:

Ż(t)=
2tr
(
(ES (t))

TĖS (t)
)

2
=tr

(
(ES (t))

TĖS (t)
)
=−λtr

(
(ES (t))

TES (t)
)

. (29)

Axioms 2024, 13, 838 10 of 19

Based on (29), it can be concluded

Ż(t)
{
<0, ES (t) 6=0,

=0, ES (t)=0,

⇔Ż(t)
{
<0, L f bb(xS (t)−xO(t))−b f bb 6=0,

=0, L f bb(xS (t)−xO(t))−b f bb=0,

⇔Ż(t)



<0, L f bb

[
vec(U1,S (t))−vec(U1,O(t))
vec(U2,S (t))−vec(U2,O(t))

]
−

(σA)T

τB

0rmn

 6=0,

=0, L f bb

[
vec(U1,S (t))−vec(U1,O(t))
vec(U2,S (t))−vec(U2,O(t))

]
−

(σA)T

τB

0rmn

=0,

⇔Ż(t)


<0,

[
vec(U1,O(t))
vec(U2,O(t))

]
6=0,

=0,

[
vec(U1,O(t))
vec(U2,O(t))

]
=0.

⇔Ż(t)
{
<0, xO(t) 6=0,

=0, xO(t)=0.

(30)

Furthermore, because ES (0) = 0 and xO(t) are the equilibrium points of (27), the
following holds:

∀ xO(t) 6= 0, Ż(t) ≤ 0. (31)

It becomes visible that the equilibrium state

xO(t) = −x(t) + xS (t) =
[
−vec(U1(t)) + vec(U1,S (t))
−vec(U2(t)) + vec(U2,S (t))

]
= 0

is stable in the sense of Lyapunov. After all is considered, as t→ ∞, the following holds

x(t) =
[

vec(U1(t))
vec(U2(t))

]
→ xS (t) =

[
vec(U1,S (t))
vec(U2,S (t))

]
,

which was our original intention.

Theorem 2. Let A =
(

m, σA, {MA
xi
}xi∈X, τA

)
and B =

(
n, σB, {MB

xi
}xi∈X, τB

)
be WFAs

defined by MA
xi
∈ Rm×m, σA ∈ R1×m, τA ∈ Rm×1 and MB

xi
∈ Rn×n, σB ∈ R1×n, τB ∈ Rn×1,

i ∈ [1..r]. Starting from an arbitrary initialization x(0), the ZNNL-hfbb design (20) converges
exponentially to x∗(t), which coincides with the TSOL of (4).

Proof. The system (9) defines the solution x(t) = [vec(U1(t))T, vec(U2(t))T]T, which affili-
ates to the backward–forward bisimulation between A and B . Next, the system (9) is rewrit-
ten into (10) and then into (13) for generating vec(UT

1,S (t)(t)) and vec(UT
2,S (t)(t)). Thirdly,

the ZEF (15) is established to solve the system (13) and the ZNN evolution is exploited to
generate the solution x(t) of (4). Later, (17) is generated by the ZNN design (1) aimed to
zeroing (15). In accordance with Theorem 1, the E f bb(t) → 0 as t → ∞. In consequence,
the solution of the dynamical system (20) tends to x∗(t) = [vec(U∗1 (t))

T, vec(U∗2 (t))
T]T as

t→ ∞. Moreover, it is evident that (20) is another form of (17).

Axioms 2024, 13, 838 11 of 19

3.2. The ZNNL-hbfb Model

According to the system (8) arising from (5), the subsequent matrix-vector equations
must be fulfilled: 

τA −U1(t)τB = 0m,

σAU2(t)− σB = 0T
n ,

MA
xi

U2(t)−U1(t)MB
xi
= 0m,n,

(32)

where U1(t), U2(t) ∈ Rm×n imply unknown matrices. Applying vectorization and the
Kronecker product, the system (32) is rewritten into

−((τB)T ⊗ Im)vec(U1(t)) + τA = 0m,

(In ⊗ σA)vec(U2(t))− (σB)T = 0n,
(In ⊗MA

xi
)vec(U2(t))− ((MB

xi
)T ⊗ Im)vec(U1(t)) = 0mn.

(33)

Then, the corresponding matrix form of (33) is the following:

Lb f b

[
vec(U1(t))
vec(U2(t))

]
−

 −τA

(σB)T

0rmn

 = 0z, (34)

where

Lb f b=

−(τB)T⊗ Im 0m,mn
0n,mn In⊗σA

W1 W2

∈Rz×2mn,

W1=


−(MB

x1
)T⊗ Im

−(MB
x2
)T⊗ Im
...

−(MB
xr)

T⊗ Im

∈Rrmn×mn, W2=


In⊗MA

x1
In⊗MA

x2
...

In⊗MA
xr

∈Rrmn×mn.

(35)

Following that, the ZNN develops on the following ZEF based on (34), for simultane-
ous solving of the equations in (32):

Eb f b(t) = Lb f b

[
vec(U1(t))
vec(U2(t))

]
−

 −τA

(σB)T

02mn

, (36)

in which U1(t) and U2(t) are unknowns. The derivative of (36) is equal to

Ėb f b(t) = Lb f b

[
vec(U̇1(t))
vec(U̇2(t))

]
. (37)

Combining (36) and (37) with the ZNN (1), the following can be obtained:

Lb f b

[
vec(U̇1(t))
vec(U̇2(t))

]
= −λEb f b(t). (38)

As a result, setting

ẋ(t)=
[

vec(U̇1(t))
vec(U̇2(t))

]
∈R2mn, x(t)=

[
vec(U1(t))
vec(U2(t))

]
∈R2mn, (39)

the next model is obtained
Lb f bẋ = −λEb f b(t), (40)

Axioms 2024, 13, 838 12 of 19

whose best approximate solution is

ẋ = L†
b f b

(
−λEb f b(t)

)
. (41)

A suitable Matlab’s ode solver can be used in the implementation of the ZNN design
(41), termed as the ZNNL-hbfb. The ZNNL-hbfb convergence and stability are investigated
in the Theorem 3.

Theorem 3. Let A =
(

m, σA, {MA
xi
}xi∈X, τA

)
and B =

(
n, σB, {MB

xi
}xi∈X, τB

)
be WFAs over

R, determined by MA
xi
∈ Rm×m, σA ∈ R1×m, τA ∈ Rm×1 and MB

xi
∈ Rn×n, σB ∈ R1×n,

τB ∈ Rn×1, i ∈ [1..r]. The dynamical system (38) inline with the ZNN (1) generates the TSOL
xS (t), which is stable in the Lyapunov sense.

Proof. The verification is analogous to the proof of Theorem 1.

Theorem 4. Let A =
(

m, σA, {MA
xi
}xi∈X, τA

)
and B =

(
n, σB, {MB

xi
}xi∈X, τB

)
be WFA over

R defined upon MA
xi
∈ Rm×m, σA ∈ R1×m, τA ∈ Rm×1 and MB

xi
∈ Rn×n, σB ∈ R1×n,

τB ∈ Rn×1, i ∈ [1..r]. Starting from an arbitrary initialization x(0), the ZNNL-hbfb design (41)
converges exponentially to x∗(t), which coincides with the TSOL of (5).

Proof. The verification is analogous to the proof of Theorem 2.

4. Numerical Experiments on the Proposed Models

The behavior of the ZNNL-hfbb (20) and the ZNNL-hbfb (41) are examined in each
of the four numerical examinations. During the computation, the Matlab ode45 solver
was selected inside the time span [0, 10] under both relative and absolute tolerances equal
to 10−15. In addition, the output produced by the ZNN is compared against the results
of the Matlab functions linsolve and pinv (with the default settings) in solving (13) in
Examples 1 and 2, and solving (34) in Examples 3 and 4. All numerical experiments are
performed using the Matlab R2022a environment.

Example 1. Let m = 4, n = 2, r = 2, X = {x1, x2}, and consider WFAs

A =
(

4, σA, {MA
xi
}xi∈X, τA

)
and B =

(
2, σB, {MB

xi
}xi∈X, τB

)
.

Accordingly, MA
xi
∈ R4×4, σA ∈ R1×4, τA ∈ R4×1 and MB

xi
∈ R2×2, σB ∈ R1×2,

τB ∈ R2×1. Consider

σA =
[
−918/29 −228/29 −228/29 222/29

]
, τA =

[
−1 −1 1 1

]T,

MA
x1

=


3 6 9 12
3 3 3 3
3 3 3 3
−12 −9 −6 −3

, MA
x2

=


−2 −4 −6 −8
−2 −2 −2 −2
−2 −2 −2 −2
8 6 4 2


and

σB =
[
−2 −4

]
, τB =

[
8 8

]T, MB
x1

=

[
3 3
3 3

]
, MB

x2
=

[
−2 −2
−2 −2

]
.

The gain parameter has been chosen as λ = 10 and the initialization conditions (ICs) are
equal to: IC1 : x(0) = 116, IC2 : x(0) = −116. It is important to mention that the initialization
condition refers to the value of x(t) at t = 0.

The results generated by the ZNNL-hfbb are arranged in Figure 1.

Axioms 2024, 13, 838 13 of 19

Example 2. Let m = 4, n = 2, r = 3, X = {x1, x2, x3}, and examine WFAs over R defined
by A =

(
4, σA, {MA

xi
}xi∈X, τA

)
and B =

(
2, σB, {MB

xi
}xi∈X, τB

)
satisfying MA

xi
∈ R4×4,

σA ∈ R1×4, τA ∈ R4×1 and MB
xi
∈ R2×2, σB ∈ R1×2, τB ∈ R2×1. Let us choose

σA =
[
0 57/2 57/2 12

]
, τA =

[
2 2 2 2

]T, MA
x1

=


3 9 6 12
3 3 3 3
3 3 3 3
−12 −9 −6 −3

,

MA
x2

=


−2 −6 −4 −8
−2 −2 −2 −2
−2 −2 −2 −2
8 6 4 2

, MA
x3

=


−5 −15 −10 −20
−5 −5 −5 −5
−5 −5 −5 −5
20 15 10 5


and

σB =
[
1 2

]
, τB =

[
32 40

]T, MB
x1

=

[
3 3
3 3

]
, MB

x2
=

[
−2 −2
−2 −2

]
, MB

x3
=

[
−5 −5
−5 −5

]
.

The ZNN gain parameters are chosen as λ = 10 and λ = 100, while the IC has been chosen as
x(0) = 116. The outputs of ZNNL-hfbb are shown in Figure 1.

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

10
5

(a) (b) (c)

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

10
5

(d)

0 2 4 6 8 10

0

5

10

15

20

0 0.1 0.2

0

5

10

(e)

0 2 4 6 8 10

-5

0

5

10

15

20

0 0.2

2

4

6

(f)

Figure 1. Errors and trajectories generated by ZNNL-hfbb in Examples 1 and 2. (a) Example 1: ZEF
errors. (b) Example 1: Trajectories of U1(t). (c) Example 1: Trajectories of U2(t). (d) Example 2: ZEF
errors. (e) Example 2: Trajectories of U1(t). (f) Example 2: Trajectories of U2(t).

Example 3. Let m = 3, n = 2, r = 2, X = {x1, x2}, and consider WFAs

A =
(

3, σA, {MA
xi
}xi∈X, τA

)
and B =

(
2, σB, {MB

xi
}xi∈X, τB

)

Axioms 2024, 13, 838 14 of 19

satisfying MA
xi
∈ R3×3, σA ∈ R1×3, τA ∈ R3×1 and MB

xi
∈ R2×n, σB ∈ R1×2, τB ∈ R2×1. Let

us choose
σA =

[
2 2 2

]
, τA =

[
−1/2 −1/2 −1/2

]T,

MA
x1

=

−3 −1 1
−1 −1 1
−1 −1 1

, MA
x2

=

−3/2 −1/2 1/2
−1/2 −1/2 1/2
−1/2 −1/2 1/2


and

σB =
[
2 8

]
, τB =

[
−1/2 −2

]T, MB
x1

=

[
−1 −3
−1 −2

]
, MB

x2
=

[
−1/2 −3/2
−1/2 −1

]
.

The design parameter has been selected as λ = 10 and two ICs have been used: IC1 :
x(0) = 112, IC2 : x(0) = −112.

The outputs of the ZNNL-hbfb are arranged in Figure 2.

Example 4. Let m = 3, n = 2, r = 3 and X = {x1, x2, x3}, and consider WFAs A =(
3, σA, {MA

xi
}xi∈X, τA

)
and B =

(
2, σB, {MB

xi
}xi∈X, τB

)
. Clearly MA

xi
∈ R3×3, σA ∈ R1×3,

τA ∈ R3×1 and MB
xi
∈ R2×2, σB ∈ R1×2, τB ∈ R2×1. Consider

σA =
[
2 2 2

]
, τA =

[
−1/2 −1/2 −1/2

]T,

MA
x1

=

−3 −1 1
−1 −1 1
−2 −1 1

, MA
x2

=

−3/2 −1/2 1/2
−1/2 −1/2 1/2
−1 −1/2 1/2

, MA
x3

=

−3/4 −1/4 1/4
−1/4 −1/4 1/4
−1/2 −1/4 1/4


as well as

σB =
[
2 4

]
, τB =

[
−1/2 −1

]T,

MB
x1

=

[
−1 −3
−1 −2

]
, MB

x2
=

[
−1/2 −3/2
−1/2 −1

]
, MB

x3
=

[
−1/4 −3/4
−1/4 −1/2

]
.

Gain parameters of ZNN are λ = 10 and λ = 100, while the IC is x(0) = 112.
The outcomes generated by ZNNL-hbfb are arranged in Figure 2.

Results Analysis

This part presents the results from the four numerical examples that examine the
performance of the ZNN models, which are shown in Figures 1 and 2. Particularly,
Figures 1a,d and 2a,d show the ZEF errors in Examples 1–4, respectively, while
Figures 1b,e and 2b,e show the trajectories of U1(t), and Figures 1c,f and 2c,f show the
trajectories of U2(t).

According to results generated in Example 1, the next outcomes are observable for
the ZNNL-hfbb initiated by IC1 and IC2 and forced by λ = 10. Figure 1a shows the
ZNNL-hfbb model’s ZEF norms. Both ZNNs are initiated by a large error cost at t = 0 and
both ZEFs converge in the time span [10−15, 10−13], with an insignificant error at t = 3.5. In
this way, the ZNNL-hfbb behavior confirms Theorem 2 by the convergence to a result near
to zero for two random ICs. Figure 1b,c displays the trajectories generated by U1(t) and
U2(t), respectively. Included graphs indicate that U1(t) and U2(t) do not generate close
trajectories initiated by IC1 and IC2 , but the convergence speed is similar in both cases.
Therefore, the ZNNL-hfbb appears to give dissimilar solutions for a series of ICs, but the
convergence behavior of its solutions is proven to match the convergence behavior of the
linked ZEFs.

Axioms 2024, 13, 838 15 of 19

0 2 4 6 8 10

10
-10

10
0

(a)

0 2 4 6 8 10

-1

-0.5

0

0.5

1

1.5

(b) (c)

0 2 4 6 8 10

10
-10

10
0

(d)

0 2 4 6 8 10

-0.5

0

0.5

1

0 0.1 0.2

0.5

1

(e)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2

0.5

1

(f)

Figure 2. Errors and trajectories generated by ZNNL-hbfb in Examples 3 and 4. (a) Example 3: ZEF
errors. (b) Example 3: Trajectories of U1(t). (c) Example 3: Trajectories of U2(t). (d) Example 4: ZEF
errors. (e) Example 4: Trajectories of U1(t). (f) Example 4: Trajectories of U2(t).

In Example 2, under λ = 10 and λ = 100, the next observations for the ZNN-hfbb are
concluded. Figure 1d shows the norm of ZNN-hfbb’s ZEFs. Both evaluations in this figure
start with a large error cost at t = 0 and converge in [10−15, 10−13] at t = 0.3 for λ = 100,
and at t = 3.5 for λ = 10, with a negligible error. Accordingly, the ZNN’s convergence
features are confirmed by the norm of the ZNN-hfbb’s ZEF, which depends on λ. So, the
results generated in ZNN-hfbb confirms Theorem 2 by the convergence to a quantity near
to zero. Figure 1e and 1f, respectively, show the trajectories of the model’s solutions U1(t)
and U2(t). Obtained results point out that the trajectories of U1(t) and U2(t) converge
much faster in the environment λ = 100 than in λ = 10. Besides that, U1(t) compared
to U2(t) generates close trajectories in environments λ = 10 and λ = 100, individually.
So, the ZNN-hfbb produces the same U1(t) and U2(t) solutions for different λ, and their
convergence behavior coincides with the convergence of the related ZEFs.

In Example 3, the next conclusions for ZNNL-hbfb, beginning with IC1 and IC2 for
λ = 10, are observable. Figure 2a shows the ZNNL-hbfb’s ZEFs. Both evolutions are started
from a large error at t = 0 and both ZEFs converge inside the time span [10−16, 10−13] with
an insignificant error at t = 3.5. Accordingly, the ZNNL-hbfb model confirms Theorem 4 by
the convergence to a value near to zero for two distinctive ICs. Figure 2b and 2c, respectively,
present the trajectories of U1(t) and U2(t). Generated results point out that the trajectories
of U1(t) and U2(t) are not close in both instances IC1 and IC2 , but their convergence
behavior is similar. Consequently, the ZNNL-hbfb generates diverse solutions related to
different ICs, and its convergence behavior matches with the convergence behavior of the
associated ZEFs.

Example 4 initiates the subsequent conclusions regarding ZNN-hbfb under the accel-
erations λ = 10 and λ = 100. Figure 2d exhibits the ZNN-hbfb’s ZEFs. Both instances of
the ZNN-hbfb evaluation in this figure start with a large error cost at t = 0 and converge in
[10−16, 10−13] at t = 0.3 for λ = 100, and at t = 3.5 for λ = 10, with a negligible error. In
other words, the ZNN’s convergence is certified by the ZNN-hbfb’s ZEF, which depends

Axioms 2024, 13, 838 16 of 19

on λ, and the ZNN-hbfb certifies Theorem 4 with its own convergence to a quantity near to
zero. Figure 2e and 2f display the trajectories of U1(t) and U2(t), respectively. Involved
graphs indicate that the trajectories of U1(t) and U2(t) converge faster via λ = 100 com-
pared to λ = 10. Also, U1(t) and U2(t) generated close trajectories via λ = 10 and λ = 100
individually. So, the ZNN-hbfb generates the same U1(t) and U2(t) for different λ, and its
convergence coincides with the convergence pattern of the associated ZEFs.

The following outcomes are obtained when the ZNN-hfbb and ZNN-hbfb models are
compared to the Matlab’s functions linsolve and pinv. Particularly, Figures 1a,d and 2a,d
demonstrate that for the ZNN-hfbb and ZNN-hbfb models, the linsolve and the pinv
yield similar low error prices in all examples when compared. Additionally, Figure 1b,c
demonstrates that the trajectories generated by U1(t) and U2(t) are different between
the ZNN, the linsolve, and pinv. Figure 1e,f shows that the ZNN and the linsolve
create distinct trajectories for U1(t) and U2(t), while the ZNN and the pinv create identical
trajectories. Figure 2b,c demonstrates that the trajectories generated by U1(t) and U2(t) are
different between the ZNN, compared to linsolve and pinv. Figure 2e,f shows that the
ZNN, the linsolve, and pinv all create distinct trajectories for U1(t) and U2(t). Therefore,
in all examples, the ZNN-hfbb and ZNN-hbfb models perform similarly with linsolve
and pinv.

The following conclusions can be drawn from the previously indicated analysis of the
numerical examples:

- The ZNNL-hfbb and ZNNL-hbfb models can efficiently solve the systems (4)
and (5), respectively.

- All models’ behaviors are conditioned by values λ and their solutions are conditioned
by ICs.

- Comparing considered ZNNs against the linsolve and pinv, it is discovered that
both the ZNN-hfbb and ZNN-hbfb models exhibit comparable performance to the
linsolve and pinv.

- The approximation of the TSOL x∗(t) in the ZNNL-hfbb and ZNNL-hbfb models is
achieved faster via λ = 100 than via λ = 10.

When everything is considered, the ZNNL-hfbb and ZNNL-hbfb models perform in
an appropriate and efficient manner in finding the solution of (4) and (5), respectively.

In conclusion, as the ZNN design parameter λ increases, the TSOL x∗(t) is approx-
imated more quickly. Therefore, it is suggested to set the parameter λ as high as the
hardware will allow.

5. Concluding Remarks

Current investigation is aimed at investigating and solving the equivalence and partial
k-equivalence problem between WFAs, i.e., determining whether two WFAs generate the
same word function or word functions that coincide on all input words whose lengths do
not exceed positive integer value k. Our approach is based on the unification of two princi-
pal scientific areas, namely the ZNN dynamical systems and the existence of (approximate)
heterotypic bisimulations between WFAs over R. Two types of quantitative heterotypic
bisimulations are proposed as solutions to particular systems of matrix-vector equations
over R. As a result, presented research is aimed to the development and analysis of two
original ZNN models, called as ZNNL-hbfb and ZNNL-hfbb, for finding approximate
solutions of matrix-vector equations involved in considered heterotypic bisimulations. A
convergence analysis is given. Simulation examples are executed under various initial-
ization states. Comparison with the Matlab linear programming solver linprog and the
pseudoinverse solution generated by the standard function pinv is shown and superior
achievements of the ZNN dynamics are recorded. The simulation examples also revealed
another significant finding for the suggested ZNN models: the TSOL is approximated faster
as the ZNN design parameter λ increases. The models solved in actual research utilize
the ZNN dynamics established upon a larger number of equations and initiated ZEFs and
continue research from [38,55,56].

Axioms 2024, 13, 838 17 of 19

Further research can be developed in the direction of solving minimization problems
aimed to finding a WFA with the minimal number of states equivalent to the given WFA.
Another optimization problem could be based on finding solutions of the corresponding
systems of matrix-vector inequalities and equations of minimal matrix rank. Further
research could be aimed at the topic of solving the k-equivalence problems with more
than two unknown matrices. Additionally, since all kinds of noise significantly affect
the accuracy of the suggested ZNN techniques, it is important to note that the suggested
ZNN models have the drawback of being noise intolerant. Future work might therefore
concentrate on modifying these models for ZNN dynamical systems that handle noise and
improve integration. Finally, the ZNN models developed in this paper give a universal
principle for solving arbitrary systems of matrix-vector equations and for solving arbitrary
problems arising from such systems.

Author Contributions: Conceptualization, M.Ć., P.S.S. and S.D.M.; methodology, P.S.S. and S.D.M.;
software, S.D.M.; validation, M.Ć., P.S.S. and S.D.M.; formal analysis, P.S.S., M.Ć., S.D.M. and G.V.M.;
investigation, P.S.S., S.D.M. and G.V.M.; resources, S.D.M.; data curation, S.D.M. and M.J.P.; writing—
original draft preparation, M.Ć. and P.S.S.; writing—review and editing, P.S.S., S.D.M., M.Ć. and
G.V.M.; visualization, S.D.M.; supervision, M.Ć., P.S.S. and G.V.M.; project administration, M.J.P.,
P.S.S. and G.V.M. funding acquisition, M.J.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (Grant No. 075-15-2022-1121).

Data Availability Statement: The data supporting this study will be available on request to the authors.

Acknowledgments: Predrag Stanimirović and Miroslav Ćirić acknowledge the support by the Science
Fund of the Republic of Serbia, Grant No. 7750185, Quantitative Automata Models: Fundamental
Problems and Applications – QUAM. Predrag Stanimirović and Miroslav Ćirić are also supported by
the Ministry of Science, Technological Development and Innovation, Republic of Serbia, Contract
No. 451-03-65/2024-03/200124. Research of G.V.M. was partly supported by the Serbian Academy
of Sciences and Arts (Project Φ-96). The author Milena J. Petrović gratefully acknowledges support
from the Project supported by Ministry of Education, Science and Technological Development of the
Republic of Serbia project no. 451-03-65/2024-03/200123.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Daviaud, L. Containment and Equivalence of Weighted Automata: Probabilistic and Max-Plus Cases. In Language and Automata

Theory and Applications. LATA 2020; Lect. Notes Comput. Sci; Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C., Eds.;
Springer: Cham, Switzerland, 2020; Volume 12038, pp. 17–32.

2. Almagor, S.; Boker, U.; Kupferman, O. What’s decidable about weighted automata? Inf. Comput. 2022, 282, 104651. [CrossRef]
3. Milner, R. A Calculus of Communicating Systems; Lect. Notes Comput. Sci; Springer: Berlin/Heidelberg, Germany, 1980; Volume 92.
4. Park, D. Concurrency and automata on infinite sequences. In Theoretical Computer Science; Deussen, P., Ed.; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 1981; Volume 104, pp. 167–183.
5. van Benthem, J. Modal Correspondence Theory. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherland, 1976.
6. van Benthem, J. Correspondence Theory. In Handbook of Philosophical Logic; Gabbay, D., Guenthner, F., Eds.; Springer:

Berlin/Heidelberg, Germany, 200; Volume 3, pp. 325–408.
7. Blackburn, P.; de Rijke, M.; Venema, Y. Modal Logic; Cambridge University Press: Cambridge, UK, 2001.
8. Sangiorgi, D. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst. 2009, 31, 111–151. [CrossRef]
9. Sangiorgi, D. Origins of bisimulation and coinduction. In Advanced Topics in Bisimulation and Coinduction; Sangiorgi, D., Rutten, J.,

Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–37.
10. Sangiorgi, D.; Rutten, J., Eds. Advanced Topics in Bisimulation and Coinduction; Cambridge University Press: Cambridge, UK, 2012.
11. Pous, D.; Sangiorgi, D. Bisimulation and coinduction enhancements: A historical perspective. Form. Asp. Comput. 2019, 31,

733–749. [CrossRef]
12. Milner, R. Communication and Concurrency; Prentice-Hall: Upper Saddle River, NJ, USA, 1989.
13. Milner, R. Communicating and Mobile Systems: The p-Calculus; Cambridge University Press: Cambridge, UK, 1999.
14. Roggenbach, M.; Majster-Cederbaum, M. Towards a unified view of bisimulation: A comparative study. Theor. Comput. Sci. 2000,

238, 81–130. [CrossRef]

http://doi.org/10.1016/j.ic.2020.104651
http://dx.doi.org/10.1145/1516507.1516510
http://dx.doi.org/10.1007/s00165-019-00497-w
http://dx.doi.org/10.1016/S0304-3975(99)00303-5

Axioms 2024, 13, 838 18 of 19

15. Aceto, L.; Ingolfsdottir, A.; Larsen, K.G.; Srba, J. Reactive Systems: Modelling, Specification and Verification; Cambridge University
Press: Cambridge, UK, 2007.

16. Cassandras, C.G.; Lafortune, S. Introduction to Discrete Event Systems; Springer: New York, NY, USA, 2008.
17. Ćirić, M.; Ignjatović, J.; Damljanović, N.; Bašić, M. Bisimulations for fuzzy automata. Fuzzy Sets Syst. 2012, 186, 100–139.

[CrossRef]
18. Ćirić, M.; Ignjatović, J.; Jančić, I.; Damljanović, N. Computation of the greatest simulations and bisimulations between fuzzy

automata. Fuzzy Sets Syst. 2012, 208, 22–42. [CrossRef]
19. Damljanović, N.; Ćirić, M.; Ignjatović, J. Bisimulations for weighted automata over an additively idempotent semiring. Theor. Com-

put. Sci. 2014, 534, 86–100. [CrossRef]
20. Ćirić, M.; Micić, I.; Matejić, J.; Stamenković, A. Simulations and bisimulations for max-plus automata. Discret. Event Dyn. Syst.

2024, 34, 269–295. [CrossRef]
21. Stanimirović, P.S.; Ćiri,́ M.; Mourtas, S.D.; Brzaković, P.; Karabašević, D. Simulations and bisimulations between weighted finite

automata based on time-varying models over real numbers. Mathematics 2024, 12, 2110. [CrossRef]
22. Ćirić, M.; Ignjatović, J.; Stanimirović, P.S. Bisimulations for weighted finite automata over semirings. Res. Sq. 2022, submitted to

Soft Computing. [CrossRef]
23. Ésik, Z.; Kuich, W. A generalization of Kozen’s axiomatization of the equational theory of the regular sets. In Words, Semigroups,

and Transductions; Ito, M., Paun, G., Yu, S., Eds.; World Scientific: River Edge, NJ, USA, 2001; pp. 99–114.
24. Beal, M.P.; Lombardy, S.; Sakarovitch, J. On the equivalence of Z-automata, In Automata, Languages and Programming, 32nd

International Colloquium, ICALP 2005; Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3580, pp. 397–409.

25. Beal, M.P.; Lombardy, S.; Sakarovitch, J. Conjugacy and equivalence of weighted automata and functional transducers. In
Computer Science—Theory and Applications, First International Symposium on Computer Science in Russia, CSR 2006; Grigoriev, D.,
Harrison, J., Hirsch, E.A., Eds.; Lect. Notes Comput. Sci; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3967, pp. 58–69.

26. Buchholz, P. Bisimulation relations for weighted automata. Theor. Comput. Sci. 2008, 393, 109–123. [CrossRef]
27. Ésik, Z.; Maletti, A. Simulation vs. equivalence. arXiv 2010, arXiv:1004.2426. [CrossRef]
28. Sakarovitch, J. Elements of Automata Theory; Cambridge University Press: Cambridge, UK, 2009.
29. Sakarovitch, J. Automata and rational expressions. In Handbook of Automata Theory; Pin, J.É., Ed.; European Mathematical Society

Publishing House: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 39–78.
30. Jančić, I., Weak bisimulations for fuzzy automata. Fuzzy Sets Syst. 2014, 249, 49–72. [CrossRef]
31. Stanimirović, S.; Micić, I. On the solvability of weakly linear systems of fuzzy relation equations. Inf. Sci. 2022, 607, 670–687.

[CrossRef]
32. Micić, I.; Nguyen, L.A.; Stanimirović, S. Characterization and computation of approximate bisimulations for fuzzy automata.

Fuzzy Sets Syst. 2022, 442, 331–350. [CrossRef]
33. Nguyen, L.A. Fuzzy simulations and bisimulations between fuzzy automata. Int. J. Approx. Reason. 2023, 155, 113–131. [CrossRef]
34. Nguyen, L.A.; Micić, I.; Stanimirović, S. Fuzzy minimax nets. IEEE Trans. Fuzzy Syst. 2023, 31, 2799–2808. [CrossRef]
35. Nguyen, L.A.; Micić, I.; Stanimirović, S. Depth-bounded fuzzy simulations and bisimulations between fuzzy automata. Fuzzy

Sets Syst. 2023, 473, 108729. [CrossRef]
36. Zhang, Y.; Ge, S.S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE

Trans. Neural Netw. 2005, 16, 1477–1490. [CrossRef]
37. Chai, Y.; Li, H.; Qiao, D.; Qin, S.; Feng, J. A neural network for Moore-Penrose inverse of time-varying complex-valued matrices.

Int. J. Comput. Intell. Syst. 2020, 13, 663–671. [CrossRef]
38. Stanimirović, P.S.; Mourtas, S.D.; Mosić, D.; Katsikis, V.N.; Cao, X.; Li, S. Zeroing Neural Network approaches for computing

time-varying minimal rank outer inverse. Appl. Math. Comput. 2024, 465, 128412. [CrossRef]
39. Qiao, S.; Wang, X.Z.; Wei, Y. Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin

inverse. Linear Algebra Appl. 2018, 542, 101–117. [CrossRef]
40. Qiao, S.; Wei, Y.; Zhang, X. Computing time-varying ML-weighted pseudoinverse by the Zhang neural networks. Numer. Funct.

Anal. Optim. 2020, 41, 1672–1693. [CrossRef]
41. Kovalnogov, V.N.; Fedorov, R.V.; Demidov, D.A.; Malyoshina, M.A.; Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Sahas, R.D. Zeroing

neural networks for computing quaternion linear matrix equation with application to color restoration of images. AIMS Math.
2023, 8, 14321–14339. [CrossRef]

42. Abbassi, R.; Jerbi, H.; Kchaou, M.; Simos, T.E.; Mourtas, S.D.; Katsikis, V.N. Towards higher-order zeroing neural networks for
calculating quaternion matrix inverse with application to robotic motion tracking. Mathematics 2023, 11, 2756. [CrossRef]

43. Cao, M.; Xiao, L.; Zuo, Q.; Tan, P.; He, Y.; Gao, X. A fixed-time robust ZNN model with adaptive parameters for redundancy
resolution of manipulators. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 3886–3898. [CrossRef]

44. Xiao, L.; Cao, P.; Song, W.; Luo, L.; Tang, W. A fixed-time noise-tolerance ZNN model for time-variant inequality-constrained
quaternion matrix least-squares problem. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 10503–10512. [CrossRef]

45. Jin, L.; Zhang, Y.; Li, S.; Zhang, Y. Modified ZNN for time-varying quadratic programming with inherent tolerance to noises
and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 2016, 63, 6978–6988.
[CrossRef]

http://dx.doi.org/10.1016/j.fss.2011.07.003
http://dx.doi.org/10.1016/j.fss.2012.05.006
http://dx.doi.org/10.1016/j.tcs.2014.02.032
http://dx.doi.org/10.1007/s10626-024-00395-1
http://dx.doi.org/10.3390/math12132110
http://dx.doi.org/10.21203/rs.3.rs-2386298/v1
http://dx.doi.org/10.1016/j.tcs.2007.11.018
http://dx.doi.org/10.48550/arXiv.1004.2426
http://dx.doi.org/10.1016/j.fss.2013.10.006
http://dx.doi.org/10.1016/j.ins.2022.05.111
http://dx.doi.org/10.1016/j.fss.2022.05.003
http://dx.doi.org/10.1016/j.ijar.2023.02.002
http://dx.doi.org/10.1109/TFUZZ.2023.3237936
http://dx.doi.org/10.1016/j.fss.2023.108729
http://dx.doi.org/10.1109/TNN.2005.857946
http://dx.doi.org/10.2991/ijcis.d.200527.001
http://dx.doi.org/10.1016/j.amc.2023.128412
http://dx.doi.org/10.1016/j.laa.2017.03.014
http://dx.doi.org/10.1080/01630563.2020.1740887
http://dx.doi.org/10.3934/math.2023733
http://dx.doi.org/10.3390/math11122756
http://dx.doi.org/10.1109/TETCI.2024.3377672
http://dx.doi.org/10.1109/TNNLS.2023.3242313
http://dx.doi.org/10.1109/TIE.2016.2590379

Axioms 2024, 13, 838 19 of 19

46. Wang, T.; Zhang, Z.; Huang, Y.; Liao, B.; Li, S. Applications of Zeroing Neural Networks: A Survey. IEEE Access 2024, 12,
51346–51363. [CrossRef]

47. Zhang, Y.; Guo, D. Zhang Functions and Various Models; Springer: Berlin/Heidelberg, Germany, 2015.
48. Li, L.; Xiao, L.; Wang, Z.; Zuo, Q. A survey on zeroing neural dynamics: Models, theories, and applications. Int. J. Syst. Sci. 2024,

1–34. [CrossRef]
49. Jin, L.; Li, S.; Liao, B.; Zhang, Z. Zeroing neural networks: A survey. Neurocomputing 2017, 267, 597–604. [CrossRef]
50. Hua, C.; Cao, X.; Xu, Q.; Liao, B.; Li, S. Dynamic Neural Network Models for Time-Varying Problem Solving: A Survey on Model

Structures. IEEE Access 2023, 11, 65991–66008. [CrossRef]
51. Guo, D.; Yi, C.; Zhang, Y. Zhang neural network versus gradient-based neural network for time-varying linear matrix equation

solving. Neurocomputing 2011, 74, 3708–3712. [CrossRef]
52. Li, Z.; Zhang, Y. Improved Zhang neural network model and its solution of time-varying generalized linear matrix equations.

Expert Syst. Appl. 2010, 37, 7213–7218. [CrossRef]
53. Zhang, Y.; Chen, K. Comparison on Zhang neural network and gradient neural network for time-varying linear matrix equation

AXB = C solving. In Proceedings of the 2008 IEEE International Conference on Industrial Technology—ICIT, Chengdu, China,
21–24 April 2008; pp. 1–6. [CrossRef]

54. Xiao, L.; Liao, B.; Li, S.; Chen, K. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear
matrix equations. Neural Netw. 2018, 98, 102–113. [CrossRef]

55. Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S.; Zhang, Y. Solving complex-valued time-varying linear matrix equations via QR
decomposition with applications to robotic motion tracking and on angle-of-arrival localization. IEEE Trans. Neural Netw. Learn.
Syst. 2021, 33, 3415–3424. [CrossRef]

56. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S. Unique non-negative definite solution of the time-varying algebraic
Riccati equations with applications to stabilization of LTV system. Math. Comput. Simul. 2022, 202, 164–180. [CrossRef]

57. Graham, A. Kronecker Products and Matrix Calculus with Applications; Courier Dover Publications: Mineola, NY, USA, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2024.3382189
http://dx.doi.org/10.1080/00207721.2024.2425952
http://dx.doi.org/10.1016/j.neucom.2017.06.030
http://dx.doi.org/10.1109/ACCESS.2023.3290046
http://dx.doi.org/10.1016/j.neucom.2011.05.021
http://dx.doi.org/10.1016/j.eswa.2010.04.007
http://dx.doi.org/10.1109/ICIT.2008.4608579
http://dx.doi.org/10.1016/j.neunet.2017.11.011
http://dx.doi.org/10.1109/TNNLS.2021.3052896
http://dx.doi.org/10.1016/j.matcom.2022.05.033

	Introduction, Motivation and Methodology
	Preliminaries and Problem Formulation
	ZNN for Solving the Proposed Systems
	The ZNNL-hfbb Model
	The ZNNL-hbfb Model

	Numerical Experiments on the Proposed Models
	Concluding Remarks
	References

