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Weighted Interpolation of Functions with
Isolated Singularities

G. MASTROIANNI AND G. V. MILOVANOVI( *

We consider the weighted interpolation of functions with isolated singu-
larities on bounded and unbounded intervals. The cases in the weighted
LP-norm (1 < p < +o00) and also in the uniform weighted norm are
considered. Numerical examples are included.

1. Introduction

The weighted polynomial approximation of continuous functions or of smooth
functions with singular derivatives at some isolated points is of a theoretical in-
terest and often it proves to be useful in many applications. For example, such
functions occur as solutions of integral equations with discontinuous right hand
side. While there exists a wide literature about the polynomial approximation
of functions with singularities in the endpoints, the case of singular functions
with singularities at isolated points inside the interval have been studied only
recently ([1], [7], [8]).

The inner singularities add new difficulties and require a more careful ex-
amination of the behaviour of the approximating polynomial around these sin-
gularities.

In this paper we propose some interpolation processes for approximating
such functions in [—1, 1]. Some kind of necessary and sufficient conditions are
given for the convergence of such processes and the corresponding errors are
estimated in the uniform norm.

Also, we consider the case of functions which are defined almost everywhere
on the real semiaxis, are not bounded at 0 and +o0o, and are not continuous
at some inner points. In this context we show that it sufficies to interpolate a
“finite section” of these functions, making economies on the computation and
obtaining the optimal error estimates.

A lot of numerical examples show the theoretical results with particular
attention to the behaviour of the error and of the weighted Lebesgue function.

*Supported by the GNIM-INDAM, progetto speciale (Mastroianni) and by the Serbian
Ministry of Science, Technology and Development (Milovanovié)



2 Weighted Interpolation

The paper is organized as follows. The basic facts on weighted approxima-
tion of functions with isolated singularities are studied in Section 2. Interpola-
tion processes on bounded and unbounded intervals are considered in Section 3
and the main results are stated there. Numerical examples are treated in Sec-
tion 4, and the proofs of the theorems from Section 3 are given in Section 5.

2. Basic Facts

Let u(z) = v7°(z)|x — to|? be a generalized Jacobi weight with 6,~,8 > 0,
[to] < 1, and A := (—1,t9) U (to, 1). We denote by C°(A) the set of continuous
functions in A and introduce the space

L = {f € C°(A): lim (uf)(x) =0},

Tz—tg

equipped with the norm

[ufllree = luflloo = sup |(uf)(z)].
<1

||

The functions in L2 are in general unbounded in a neighborhood of +1 and/or
to. They can be smooth with singular derivatives at the aforementioned points.
For the sake of simplicity we have introduced only one interior point ¢y, but
a finite number of points of the same kind can be considered, whereas in this
case obvious modifications in the notations are needed.

For smoother functions in A we define the following Sobolev-type space

W ={f e L2:|f O ul < +oo}, T21, le) = VI-at

In order to characterize the functions in L{° it is useful to introduce the
following modulus of continuity. Setting

ey = Ill5, B C A,

we define

Q;(fa t)u = Ssup HUAthf“Iha

0<h<t
where
r r
Anpfl@) =" ( . ) (—1)kf [w + (5 - k) h/1— xﬂ

k=0

and

I, = (=14 4r°h% tg — 4rh) U (to + 4rh, 1 — 4r°h?).
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Then, for any f € Lg® the modulus of continuity wg, is defined as

2

Wp(Fi = (f)ut D inf_ fJulf = a0, 2.1)

k=0
where
Io=[-1, -1+ 4%, L =[to—4rt,to+4rt], I =[1—4r’t* 1],

and t is “small” (say t < tg).
By wi,(f,t)u we can characterize the functions in L° in the following sense

ferLy = tlgr(l)wg,(f,t)u = 0.

Moreover, setting E,,(f), = inﬂg lu(f —p)|, it can be shown that (see [8])
pe Pn

En(f)u < Cwip(f,1/n)u (2.2)

for any f € Lg° and for some positive constant C independent of n and f
(shortly C # C(n, f)).

For smoother functions in A = (—1,%9) U (o, 1), En(f). can be estimated
as follows. Namely, setting

g(t) = sup B[ f"ullg, (2.3)
0<h<t
and
e(t) = degiqngfr—1 I1(f —q)|to — - |9||[t0*47“t,t0+47“t]’ (2.4)
we have

1/n 2/n e
E"(f)ugcl/o @dw/o %dt]. (2.5)

Notice that if g(t) + e(t) ~ t*, 0 < A < r, then also Wi, (fy )u ~ A (see [1]).

In this paper we consider also functions defined in RT = (0,00) and sin-
gular in some interior point (say to). We take the Laguerre weight wa (z) =
27 exp(—x), and set

u(@) = \Jwsy (@) lo —tol’, 0,7 > 0.

Let C? be a collection of all continuous functions in A:= R*\{to}. Then, as
in the case of finite interval, we define the space

v ={rei iy @@ =o},
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equipped with the norm
[fullee = [[fulloo = sup [(wf)(z)].
>0
For smoother functions we introduce the Sobolev-type space

W ={f e L | f ¢ ul < 400}, 720, p(z) =V

In order to introduce an appropriate modulus of continuity, at first we
introduce the main part

Iy

Q;(fa t)u = Ssup HUAthf
0<h<t

where Ay, was defined before with p(z) = \/z, and
I = [4r*R,C/h*] \(to — 4rh, to + 4rh)

for some fixed C > 0.
The modulus of continuity of f € LS° is defined as

L0 = QB+ it [l = @)lpare
0 uf = @)l (2.6)

ol 7 = e oy

As was shown in ([2])

Besides, setting E,(f), = injf) lu(f — p)||, we have
pE Pn

En(f)u < Cw;(f, 1/n)y (2.7)
for any f € L and C # C(n, f).
As in the case of a finite interval, we can define

g*(t) = sup h"||fTul|1:
0<h<t

and

e*(t) = deiglzfg lv(f = O llito—art,to+4art)»

in order to obtain the following estimate

En(f)v<C VOWE 90 gy 4 /OWE ¢ t) dt] : (2.8)

t t
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The quantity w(,(f,?), can be replaced by the right-hand side of (2.8), when

the last one is of the order t*, 0 < A < r (see [2]).
In the sequel, it shall need the following lemma from [1]:

Lemma 2.1. Suppose that f is a function such that f"=Y is absolutely
continuous in [to — a,to + a]\{to} and ||ofT||(1—a.to+a] < +00 for a small a
(say a < a) and o(z) = |z —to|?, v > 0. Let |t| < a. If vy >r then

oAl < CE (105D Neg—atora) + 19 ito—atosan] -

However, if v < r (v € Z) and fO~0=V(ty) exists, there are polynomials
p € Pp_jy)—1 such that

llo(f *p>||[—t,t] <cCt {”O—f(r)”[to—a,to-i-a] + ||O—f||[to—a,to+a]:| )

with C # C(f, ).

3. Interpolation Processes on Bounded and Unbounded
Intervals

Let f € L and u(z) = v7°(2)|z — tol® (7,6,0 > 0, [to] < 1). If we want
to approximate the function f by a Lagrange interpolating polynomial, the
point ty cannot be an interpolation knot, and therefore we use the following
procedure.

Let w(z) = v*#(x)|z — to|” be another generalized Jacobi weight and let
{pn(w)} be the corresponding sequence of orthonormal polynomials with pos-
itive leading coefficients. Let us denote by x7 < z2 < --- < z, the zeros of
pn(w). Let x. be the closest zero to t, i.e., |z, — to| = H}Cin |z — tol, and let

gs € Ps be such that

6 : (4
l(f —qs)| - —tol ”[to—%,to+%] < 2delgr1;f§s”(f7%)| - —tol |‘[t0—%7t0+%]5

with a fixed a > 0. Let ¢ € C*°(R) be a nondecreasing function such that
0, <0
P(z) =

1, =>1.

)

Using ¢ we define the functions

@ =v (22, ) = () @)

LTe—1 — Te—-2 Tet2 — Tetl

and

F=F,=0~v1)f + (1 —=v2)Y19s +af.
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It follows from the definition that

f in [_15 xc—Q] U [-Tc+25 1];

F— qs in [1'5717 :Cchl]; (32)
(1 - 7/11)f =+ (1 - 1/12)7/)1% in [1'5727561271]7
(1 - 1/12)(18 + wa in [:Cc—i-la $c+2]-

Next we interpqlate the function F' at the zeros 1 < x3 < -+ < @, of p,(w)
and we denote by L, (w, F') the corresponding Lagrange polynomial. Recalling
(3.2) we have

in(waFaz) = Zlk(z)F(zk)
k=1
n c+1
= > W@fl@)+ > br)gs(w), (3.3)
k#c, cEt1 k=c—1
where (0.2)
Pn\W, T
le(z) = .
M) w0
Denoting by || - ||, the usual LP norm (1 < p < o0), we can state the following

result for L, (w).

Theorem 3.1. Let f € L, u(x) = v"°(z)|z — to|? (1,6 > 0,0 <0 <
1, [to] < 1), and 1 < p < +o0. Then

luLu(w, F)l, < ClluF|lse, € #C(m,F), (3.4)

if and only if
%90 eL? and —'Z(p eL', o(x)=+v1-22 (3.5)

Moreover,

[uln(w, F)||o < ClluF|oclogn, C#C(n,F), (3.6)
if and only if

_a 5
Ty
U er® and | Yt o 52840 (3.7)
NG u 21
7
o="11
7+
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Corollary 3.1. Suppose that f and u satisfy the conditions in Theorem 3.1
and let

An(f) = En—l(f)u + deg}};s Hu(f - q)”[tof%,tUJr%]‘

Then for 1 < p < 400 we have .
[ulf = La(w, F)]ll, <CAu(f), C#C(n,F), (3.8)
if and only if (3.5) holds. Moreover,
[ulf = Ln(w, F)][le < ClognAn(f), C#C(n,F), (3.9)
if and only if (3.7) holds.

Theorem 3.1 and Corollary 3.1 will be proved in Section 5. Now, we give
some remarks.

For 6 = 0, Theorem 3.1 follows directly from [11, Theorem 1], but for § > 0
some nontrivial difficulties appear in the proof.

We deduce from the definition of w, that

An(f) < Cwy (f,1/n), .

If the function f is smooth “around” the singularity, by using (2.5), 4, (f) can
be estimated as follows

An(f)gcl/o%@dwr/j/n@dt].

For example, if f(z) = sgn (z), then g(t) =0,

e(t)=_inf u(sgn — q)llgg—areorarg < ClIt— - 1°llo—artto+ary ~ 1%,
degg<r—1

and A, (f) <cn™?.

In particular, if f"=1(ty) exists and || f("W ¢ ul| < +oo, with 7 > 1, then
using Lemma 2.1, we can obtain an estimate for A, (f) of the following form

C
An(£) < = (I ull + ufll)

Moreover, if the above assumptions on f are satisfied, then we can set in (3.3)
¢s(zx) = f(xr). The conditions (3.5) and (3.7) can be expressed as follows

a 1 1 < <a+5
2 4 p S S 9Ty
B 1 1 B 5
————— § < 42 3.10
2 1 p S0 <3t (3.10)
n 1 n
12 <9 <141
2 p 2+
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and
a 1 < <oz+5
2 1 =7 =327
g1 B 5
——- < §f < =—4+- 3.11
2 4 ~ _2+4’ ( )
Ui i
- <0 < -+1
2 - _2+’
respectively.

It is not difficult to see that the (strong) assumption 0 < 6 < 1 is not
required from the conditions (3.5) and (3.7), but from the presence of the weight
u in the norm of the function (see the proof of Theorem 3.1). However, if 6 > 1
in the weight u, a slight modification can be made in the previous Lagrange
polynomial L,, (w, F). In fact, it is sufficient to interpolate the function F' = Fy,
at the zeros of p,y1(w,z)/(x — x.), where . = Tp41,c, defining the following
interpolation process

Ll (w, Fx) = Z lg(x) o F(xy)
k=1, k#c ¢
- T T G T T
_ k— dc kK — dc
= > lk(m)ﬂxk)?,zc + > Ie(@)gs(an) pra—
k#c, ct1 k=c—1, k#c

where [, is defined like in (3.3) with n+1 instead of n. For this last polynomial
the following theorem, complementary in some sense to Theorem 3.1, holds.

Theorem 3.2. Let f and u be as in Theorem 3.1 and 1 < p < +o00. Then
there exists a positive constant C # C(n, F') such that

[ul(w, F)lp < ClluF|lo (3.12)
if and only if

- —to| /TP
U e g LERVTE (3.13)
|- —toly/we u

Moreover, for some positive constant C # C(n, f) we have
[uLy(w, fllloo < Clluflloologn (3.14)

if and only if

_e b
. TT9 T,
#ELC’O and MELl or (5:é—|—§ (3.15)
| - —tol W u 2 4
n
0=—+1
2+
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We will omit the proof of this theorem since it is very similar to that of
Theorem 3.1. Of course, (3.8) and (3.9) of Corollary 3.1 hold again, setting
L* (w) instead of L, (w), and if (3.13) replaces (3.5), and (3.15) replaces (3.7).

From (3.15) it follows

n n
1+ 5 <0<2+ 2
i.e., 8 > 1/2 and Theorem 3.2 is not true for § < 1/2. Therefore, the interpo-
lation processes { L, (w, F)} and {L*(w, F)} are complementary and they can
approximate every function in L3°. However, in(w) and L (w) use the zeros of
the generalized Jacobi polynomial and their construction (except some special
cases) requires a high computational cost, since until now only few properties
of these polynomials are known. To overcome this problem we propose a third
procedure which uses the zeros of Jacobi polynomials and which replaces L} (w)
(not L, (w)!).

Indeed, following an idea from [3], let v™# be the Jacobi weight and let
{pn(v*?)} be the corresponding sequence of orthonormal polynomials with
positive leading coefficients. Given v € N let 1 < 29 < -+ < x4, be
the zeros of p, 1, (v*#) and let us denote by z. the zero of p, ., (v*?) which is
closest to to, i.e., |[x.—to| = mkin |z —to]. Moreover, let y; < -+ <z < -+ <Yy

1%
be v zeros of p,., (v¥?) of type Tet(i—1). Weset m(x) = [] (z —y;). Finally,
i=1
let L, (v*?, f) be the Lagrange polynomial interpolating f € L2 at the zeros
of pni,(v*P, 2)/7(), ie.,

Ln(’()a’ﬂ,f’ x) = Z p""'”(va’ﬁ"r)f(xk) F(xk)

(x) P (0P, ) (2 — )

TLEB

where B = {y1,...,yu}.
Now, we are able to state the following theorem which is similar to the
previous one.

Theorem 3.3. Let f and u be as in Theorem 3.1 and 1 < p < +o00. Then
there exists a positive constant C # C(n, F) such that

[uLn (@2, Py < Cllufllos (3.16)
if and only if
u o g LotV
——— €[ aqnd ————T € L". (3.17)
[ —tol o u

Moreover, for some positive constant C # C(n, f) we have

[uLn(v™?, f)lloo < Clluf]lc logn (3.18)
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if and only if

7oz+5
S TT9 Ty
RN 2y
+€Lmandw€Llo7’5:é+§ (3.19)
|.7tO|V‘/vaaﬂgp u 2 4
vr=60-1

From (3.19) it follows that § — 1 < v < 6 and therefore, since v > 1, this
implies > 1. Theorem 3.2 can be replaced in numerical applications by the
last theorem (but not by Theorem 3.1). Notice that (3.16) is equivalent to

lulf = L™, Alllp < CEnr(flu, 1< p < +o0,

and (3.18) to
[ulf = Lo, )lllsc < CBa1(f)ulogn.

To simplify the notations we have assumed that f has only one singular point
(i.e., the weight u has only one interior zero). In the case of two or more
points, for instance if u(x) = v (x)|z — to|% |z — 1|, we use the zeros of the
generalized Jacobi polynomials orthogonal with respect to the weight

w(z) = v (@)|x — to] |z — ta|™

and we have to construct a new function F' by modifying the function f around
the singularities tg and ¢;. If we use Jacobi zeros, then we consider the zeros
of Prtuy 11, (v*?) and interpolate f at the zeros of

Pn+vi+us (’Uaﬁv :C)
T (T) Ty (2)

3

where 7, and 7,, are defined as before.

Also, we consider functions f € L{°, where
v(@) = \Jway (@) [r — o], way(x) =2*e™", to >0, n—7>0.

For such functions we are not able to establish the complete results obtained in
the case of bounded intervals. In fact, very little is known about the orthogonal
polynomials with respect to the weights like |z —to|*e~? till now and, moreover,
the behaviour of the weighted L,-norm of the Lagrange polynomials based on
the Laguerre zeros is not much clear.

Here we propose the following procedure.

Let w, be the Laguerre weight, wy(x) = z%¢™%, @ > —1, 2 > 0. Let
{P,(w)} be the corresponding system of orthonormal polynomials with positive
leading coefficients and let 1 < -+ < Zpyp, ¥ > 1, be the zeros of Py, (wy)
where z. := 2,4, is one of the closest zeros to ty. We denote by 11 < --- <
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x, < --- <y, the zeros of Py, (wa) of the kind 2,4 (;_1) and set w(z) = [] (z—
i=1

yi). Moreover, let j := j(n) be such that z; = min{z, > 40(n+v)},0< 60 < 1.

Using the above introduced function 1, we define ¢;(z) := 1 ( ] ) and

Tj41—Tj

fj == (1 —1;)f. Finally, we denote by Ly41(wa, f;) the Lagrange polynomial
interpolating the function f; at the zeros of the polynomial

dn+v)—=x

@) Py (W, ).

Since f; = f in (0,2;) and f; =0 in [z;41,+00), we can write

J
LnJrl(thafjaz) = Z ZZ(SC)f(ZL'k>,

w €8
where B = {y1,...,y,} and

dn+v) —z Pryy(wa, ) m(xy) _
dn+v) —xp m(x) P (o, zr)(x — )

li(x) =

Now, we state the following result.

Theorem 3.4. Let f € L, v(x) = 27|z — to|?e /2, with v > 0 and

n > 1. Then, with M = [% n], 0 < 0 < 1, we have

lolf = Lns1(wa, fj)llleo <C [EM(f)v logn + e_A"HUfHOO]
if and only if

5

<v< 2y
=T=57]

and n—1<v <, (3.20)

Y e}
|

+

where C and A are positive constants independent of n and f.

Notice that Theorem 3.4 still holds true if j = n, but the “truncation”
introduced by Ly, +1(wa, f;) allows us to neglect the computation of O(n) terms
of the sum and it can be useful in the applications. Finally, we note that
an approximation of functions defined on the whole real axis and with some
singular points can be also obtained using a similar argument, but we omit
details.

4. Examples

In this section we consider a few examples in order to illustrate the previous
theoretical results, especially ones given in Theorem 3.3 (for p = 400) and
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Theorem 3.4. All computations were performed in MATHEMATICA 3.0 system,
using the standard machine precision known as double precision (m.p. & 2.22 x
10716).

For the interval [—1, 1] we take the weight u as in Theorem 3.3, i.e., u(x) =
V70 (z) |z —to]?, where vV (x) = (1 —2)7(1 +x)? (Jacobi weight) and v, > 0
6 > 1. The interpolation nodes are zeros of the Jacobi polynomial p,,, (v 2),
excluding v of them which are closest to the singular point x = t3. We also
present the corresponding weighted Lebesgue function,

Ay (u, ) = u(z) Z In() (4.1)

e CON

where the interpolation nodes are denoted as xp (k = 1,...,n) and I, x(z)
are the fundamental Lagrange polynomials. The behaviour of the Lebesgue
function plays an important role in interpolation processes (cf. [4]).

For the interval [0, +00) we take the “space” weight v(z) = x7e~%/2|z—t|",
with v > 0 and > 1. The interpolation nodes are the zeros of the generalized
Laguerre polynomial Py, y, (W, ) (wa(z) = z%e%), excluding v of them, which
are the closest to the singular point x = to, and adding the node 4(n + v).
According to Theorem 3.4, a “truncation” of the Lagrange sum can be used,
taking only j terms, where j := j(n) is determined by z; = min{xz) > 46(n+v)}
and 0 < 0 <1.

1
1
0.5 0.5
-1 -0.5 0.5 1 -1 -0.5 0.5 1
-0.5
-0.5
A~~~ ANANN/

Figure 4.1: Non-weighted (left) and weighted (right) Lagrange polynomial for
f(z) =sgn(z —1/4) and n = 50 nodes

Example 4.1. As a first example we consider the simple function f(z) =
sgn (z—1/4) which has a singularity at the point = ¢, = 1/4. Because of that
a non-weighted Lagrange interpolation is bad. The case of such interpolation
at n = 50 Chebyshev nodes is displayed in Figure 4.1 (left).

Since the function f is regular at £1, according to Theorem 3.3, we put v =
§ = 0. As a weight function (Jacobi weight v*#) we can take the Chebyshev
weight of the first kind,

1
V1i—a2’

w(x) = U_1/2’_1/2($) =
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15
5
10
MWWWWVWVWW °
UL
-1 -0.5 0.5 1 -1 -0.5 0.5 1

Figure 4.2: The weighted Lebesgue function for n = 50 and v = 7 (left) and
v = 8 (right)

% 1077

-1 T T~

-1 -0.5 0 0.5 1 20 40 60 80 100

Figure 4.3: The weighted Lagrange polynomial for n = 10,50, and 100 nodes
(left) and the uniform norm of the weighted error for n < 100 (right)

because a = f = —1/2 satisfy the conditions
a 1 a 5 g 1 8 5
—p <y —4 2 Er-<s<2y4 2, .
2+4_’y_2+4 and 2+4_5_2+4 (4.2)
Then, the interpolation nodes x (k = 1,...,n) will be the zeros of T, (x),

excluding v (f — 1 < v < 6) of them, which are closest to the point to = 1/4.

Taking 6 = 8 we extract v = 7 or v = 8 zeros of Ty, 7(z) or Tp,+s(z), respec-
tively. The weighted Lebesgue functions in these cases are given in Figure 4.2.
We take in our calculation v = 7, because this case gives slightly better results
then the second one. The corresponding weighted Lagrange polynomial in this
case for n = 50 is displayed in Figure 4.1 (right). The cases for n = 10, n = 20,
and n = 100 are shown in Figure 4.3 (left).

The uniform norm of the weighted error, ||u[f — Ly, (v®?, f)]| s, for n < 100
is presented in Figure 4.3 (right) as a linear-log plot.
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Example 4.2. Consider the function f defined by

—T

e
——, forz <0,

faoy={ VITT

log x, for x > 0.
1+

Besides the end-point singularities, a singularity at x = ty = 0 exists with a
jump equal to lim f(xz) — lim f(x) =1 (see Figure 4.4 (left)).
z—0+ r—0—

-12 -1 -0.5 0.5 1

Figure 4.4: The graphics z — f(x) (left) and the weighted Lebesgue function
x +— Ap(u,z) (right) for n = 50 nodes

We put u(z) = (1 — 2)*>2(1 + 2)%?|z|"/? and « = 3/2, B = 7/2, so that
the conditions (4.2) are satisfied. Taking 6 = 7/2, we must extract v = 3
nodes from the set of all zeros of the Jacobi polynomial p,,,, (v*/%7/2 x). The
corresponding weighted Lebesgue function (4.1) for n = 50 is presented in
Figure 4.4 (right).

0.5 1

1078

104

-5
=~ 10

20 40 60 80 100

Figure 4.5: The weighted Lagrange polynomial for n = 100 nodes (left) and
the uniform norm of the weighted error for n < 100 (right)

The uniform norm of the weighted error for n < 100 is displayed in Fig-
ure 4.5 (right). The weighted Lagrange polynomial Ligg(v®/%7/2, f, ) is given
on the left-hand side of the same figure. Notice that for a small n, e.g. n = 10,
this polynomial is a bad approximation to f (see Figure 4.6 (left)). On the
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0.4
Figure 4.6: The weighted Lagrange polynomial = — Lyo(v3/%7/2, f,z) (left)

and the corresponding functions = — u(z)L1o(v*/%7/2, f,z) and = — u(z)f(z)
(right)

other side, we can see that u(x)Lio(v¥/>7/2| f x) is very close to u(z) f(x), i.e.,
llulf = Lio(v3/2772, £)]]loc = 4.5 x 1073,

6 6

4 4

2 2
0.5 1 -1 -0.5

Figure 4.7: The weighted Lagrange polynomial for n = 50 (left) and n = 100
nodes (right)

-1 -0.5 0.5 1

Example 4.3. Let
1 1

lo .
ez —1/2)] P1-a?

fz) =

As we can see

xl—lfﬁlf(z) =+o00 and mg?l/gf(z) = +00.

We take v = § = 3/2 and 6 = 5/2, i.e., u(z) = (1 — 22)3/2|z — 1/2/°/2,
and o = § = 3/2. Notice that v = 2 in this case. The weighted Lagrange
polynomials for n = 50 and n = 100 are displayed in Figure 4.7. Figure 4.8
shows these polynomials and the original function & +— f(z) in the interval
(—1,1) (left) and locally for = € (0.4,0.6) (right).

In Figure 4.9 we present the graphics of & — u(x)Lio(v¥/?3/2 f x) and
x +— u(x)f(x) (left), as well as the corresponding Lebesgue function for n = 50
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o

IS

N

-1 -0.5 0.5 1 0.45 0.5 0.55 0.6

Figure 4.8: The graphics 2 — L, (v*/%3/2 f.2) (n = 50,100) and = +— f(z) in
(=1,1) (left) and (0.4, 0.6) (right)

0.5 1 -1 -0.5 0 0.5 1

Figure 4.9: The graphics of 2 — wu(2)L1o(v3/%3/2, f,2) and = +— u(z) f(x) (left)
and the Lebesgue function z — A, (u,x) for n = 50 nodes (right)

nodes (right). We mention also that the uniform norm of the weighted error
llu[f — L (0325372, £)]||oo is equal to 7.49 x 1073, 6.02 x 10~%, and 7.73 x 106,
for n = 10, 50, and 100, respectively.

Example 4.4. Let f(z) = e ®|sin5(x—1/2)|. This function is continuous
for x € [-1,1], but there are three “critical points” in (—1,1):

1

to = h==—D2 =
0 — b 1 — 27 2_2)

1
2
in which the function f is not differentiable (see Figure 4.10).

A direct application of the Lagrange interpolation with Chebyshev nodes
gives the results in Table 4.1. In the second column of this table we give the
uniform norm of the corresponding errors é,(x) = f(z) — L,(v=1/>71/2 z) for
n = 10(10)100. Numbers in parentheses indicate the decimal exponents.

According to Theorem 3.3 and the corresponding comments regarding this
theorem, we put v =3 =0, 6y = 01 = 03 = 7/2, so that

u(z) = |z — t0|7/2|x — t1|7/2|x — t2|7/2.

This allows to take the Chebyshev nodes (o = 8 = —1/2) as zeros of T),49(x)
and to extract nine points (three of them in the neighborhood of each point #,
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Number of nodes | Standard interpolation | Weighted interpolation
n [[€nloo [[uénlloo l[uenlloo
10 2.60(—1)  8.18(-2) 2.92(-5)
20 2.00(-1)  8.31(-3) 5.51(—6)
30 8.14(-2) 2.16(-3) 6.02(—7)
40 1.47(-1) 5.26(—3) 3.08(=7)
50 9.72(-2) 2.45(-3) 1.07(=7)
60 6.07(—2) 2.54(-3) 3.47(-8)
70 5.96(—2) 1.12(-3) 2.77(-8)
80 4.67(—2) 1.19(—4) 1.50(—8)
90 3.89(—2) 1.70(—4) 9.10(—9)
100 3.94(—2) 5.40(—4) 6.46(—9)

Table 4.1: The uniform norm of the errors in the Lagrange interpolation

k =0,1,2). The weighted Lebesgue function for such distribution of nodes is
displayed in Figure 4.10 (right).

-1 -0.5 0.5 1 -1 -0.5 0.5 1

Figure 4.10: The graphics z — f(z) (left) and the weighted Lebesgue function
x +— Ap(u,z) (right) for n = 60

The uniform norm of the corresponding weighted error
u(@)en () = u(@)[f(x) = La(o™/> 712 2)]

is presented in the last column of Table 4.1. In order to compare the errors
in non-weighted and weighted interpolation, we also introduce an additional
column in this table, with the uniform norm of the previous error of standard
interpolation €, (x) multiplied by u(x). As we can see, the advantage of the
weighted interpolation is evident.

In Figure 4.11 we give the graphics of the Lagrange interpolation polynomial
L, (v=Y2=12 1) for n = 60 and the uniform norm |lue, | for n < 100 (see
also Table 4.1).
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-4
5 10
10°°
10°°
1
1077
1078
-1 -0.5 0.5 1 20 40 60 80 100

Figure 4.11: The Lagrange polynomial 2 — Lgo(v™"/>71/2 z) (left) and the
uniform norm of the weighted error = + u(z)[f(z) — L, (v=/%~1/2 )] (right)
for n <100

Example 4.5. Consider the function f defined on (0, +00) by

em/4

sgn (z — 10).
According to Theorem 3.4 we put v = 3/2 and n = 2, i.e.,
v(z) = 232/ |z — 10)2.

The graphics of z — f(z) and z — v(z) f(x) are displayed in Figure 4.12.

30
20
20
0
10
0 -20
_10 -40
20 -60
0 5 10 15 20 0 10 20 30 40

Figure 4.12: The graphics z — f(x) (left) and z — v(z)f(x) (right)

For the parameters o and v which satisfy inequalities (3.20) we can take
a = 5/2 and v = 1. In this way, the weight w, becomes the generalized
Laguerre weight

ws/o(x) = 2*%e 0<z< +o0.

In Figure 4.14 we present the graphic of the Lagrange polynomial Ly, 11 (w52, )
multiplied by the “space” weight v(x) for n = 10, as well as the graphic of the
corresponding weighted error.



G. Mastroianni and G.V. Milovanovié 19

3000
2000
1000
10
3000
8 4
4
6
= 2000
4 -
[} Vi
2
4 1000
-2 1
~ |
-4 ~ 25 30 35 40
10
3000
8
6
2000
4 -7
|
2 1
, 1000
8 ! 12 14
-2
I
-4 ~ 25 30 35 40
10
3000
8
6
2000
4 P
|
2 I
1000
-2 |
[
-4 = 25 30 35 40

Figure 4.13: The graphics x + L, 1(ws/2, ) (solid line) and x — f(z) (broken
line) on [6,15] (left) and [20,40] (right) for n = 50, n = 100, n = 200, and
n = 300
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Especially, it is interesting to consider the behaviour of the Lagrange poly-
nomial Ly 11(ws/2, ) in a neighborhood of the singular point x = 10. Fig-
ure 4.13 shows the graphics of the Lagrange polynomial z + L, y1(ws/2,)
and the function z — f(z) for = € [6,15], when n = 50,100,200, and 300.
The behaviour of the interpolation polynomial in the interval [20,40] is also
presented.

10 20 30 40
-20

i\AA/\ /\
) \/\/ \

-80

Figure 4.14: The function x — v(x) Ly 1(ws/2, ) (left) and the weighted error
x = v(x)[f(x) = Lny1(ws)2, x]) (right) for n = 10

The graphics of the weighted Lebesgue function z +— A,,41(x) in this case
for n = 10 and n = 50 are displayed in Figure 4.15.

With a “truncation” of the Lagrange polynomial, i.e., taking only j terms,
determined by z; = min{z; > 460(n + v)} and 0 < 6 < 1, the computations
can be significantly reduced. The corresponding weighted Lebesgue function is
denoted by Aflll( ). The cases for n = 50 with dropped nodes when 6 = 1/2
and 0 = 1/4 are presented in Figure 4.16.

3.

g = o N g w o
w

20 40 60 80 100 50 100 150 200 250

Figure 4.15: The weighted Lebesgue function 2 — A, y1(x) for n = 10 (left)
and n = 50 (right)

As we can see, the corresponding weighted Lebesgue constants,

®) _ (6)
AnJrl - Og?gi(oo |An+1(z)|7

for n = 50 are almost the same when § = 1, § = 1/2, and § = 1/4. In

)
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other words, such a “truncation” in the weighted Lagrange polynomial does not
change its numerical characteristics, but significantly reduced the computation.

5

4

50 100 150 200 250 50 100 150 200 250

Figure 4.16: The weighted Lebesgue function z — Afﬁl(m) for n = 50 with
dropped nodes: § = 1/2 (left) and 0 = 1/4 (right)

5. Proofs of the Statements
At first, we need to prove a preliminary lemma. Let
—l=xg<r1<22< - <ZTp <Tppy1 =1

with xp = cosf and n (0x—1 — ;) ~ 1. Here and in the sequel, if A,B > 0
are quantities depending on some parameters, we write A ~ B, if and only if
there exist two positive constants M; and Ms, independent of the parameters

A and B, such that
A\ E
M, < (—) < Mos.
B

Set
ol Gt R

I, = ,
(=) o (aa) (o — to] ¥ )P o — an]

k=1,k#d
where x4 = mkin |xp — x|, Az, = xpy1 — Tk, pyv,p € R

In a similar way, let y1, ..., y, be the zeros of the n-th Laguerre polynomial
P (Weq) orthogonal on (0, +00) with respect to the weight we (z) = z%e~*. Set

IS PR il (i kR VAV M
' =T hrd Yk (Ito — yil + 1/v/n)" [z —yxl’

where yq = mkin | — yi|, Ayp—1 = yx — yx—1 and o, 7 € R.
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Lemma 5.1. Let a € RT be a fired number. We have

sup Tp(x) ~logn (5.1)
o] <1—a/n?

if and only if 0 < u, v, p < 1. Moreover,

sup  Ap(z) ~logn (5.2)

a/n<z<dn

if and only if 0 < o, 7 < 1.

Proof. Let us prove (5.1). Since, for xj, # x4, we have

Tn(z)= > + >,

<0 x>0

where in the first sum 1 — x5 ~ 1 and in the second one 1 4+ x; ~ 1. Then, it
will be sufficient to estimate separately

I — i <1+z)y<|xto|+n_1>p Axy,
" T 14 xg |z —to| +n7 ) |x — @

o _ i (1—x)”(|x—t0|+n_1)p Axy,
" k=1,k#d 1= ok —tol + 1) o — a|

and

Let us consider I',. Let § > 0 be such that A = (to — 9,0 +9d) C (—1,1).
Then, I, = szeA +ka¢A’ Tk 7 xq. In the first sum 1+, ~ 1, and in the
second one |z — tg| +n~t ~ 1. Since a similar decomposition holds also for
I it is sufficient to estimate separately the next three sums

i 1—z\" Az
11—z ) |v—=k|

k=1,k#d
i ( |z — to| +n~1 )p Az,
k=1,k#d |2k —to| +n7t ) o — ]’
zn: ( 1+=x )M Axy,
b td 1+ z |z — x|

since u, v, p > 0. But, all these sums are equivalent to logn, when 0 < p, v, p <
1 (see [10]).
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Moreover, if v > 1 we have

sup Dp(z) > T, (to/2)

2| <1—-%
mY (tg/2) (to/2 +n1)"

>y )

= v (k) (Jto — zk +n71)" [to/2 — k|
z1 <z <0

S oY (t0/2) (t0/2+n_1)p Z Axy,
1L P

2 2 e15me<0 (1 +$k)

>

1/2
C/ dt
T (1 +t)l/

~ 027N S Jogn,
and for v < 0,

sup Tn(z) > Ty (z1)

a_
|z|<1—-5%

> (17561)# (1+SC1)V (|t07x1|+n71)p

A:L'k

23

DY ;
0<z<to/2 (1 - xk)u (1 + xk)y (|t0 - xk| + nil)p |$1 - $k|
v A:Ck
~ (tz) Y —
0<zk<to/2 (1 + )
to/2 gt
~ (1+x7)"
(1+a1) /0 (1+1t)

~ n"% >logn.

One can proceed in a similar way if 4 <0 or pu > 1.

Now, if p > 1, it is sufficient to evaluate T';, at to/2 in order to get

Al‘k
Ln(to/2) > C > —
to—0<zp<to+d (|t0 - :L'k| + n )

to
Y R T
to—s [(to — 1) + 1]

Finally, if p < 0 one has

A:Ck
Ty (to—n"Y)>n" ~ P
nlomn)zn L Tesaltey "
to+0/2<wp<to+d
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and the proof of (5.1) is complete.
We omit the proof of (5.2) because it is similar to the previous one (see [5,
Lemma 4.1]). O

Proof of Theorem 3.1. Setting

C C C C
A= < L+ 0—>U<t0+—,1—2>,
n n n
for any fixed C > 0, by Remez inequality we can write

luLu(w, F)lly < CluLn(w, F) oy, 1<p < +oo.

Putting g(z) = sgn (En(UJ, F, 5’3))|U($)Zn(w, F,z)[P~! and

xr—t

= H(pn(w)ug,t) — pn(w, t)H(ug,1),
where H denotes the Hilbert transform extended to A, we get

n

Ly (w, F)IY, 4y = Z n (1) r(zn)

:1pn w, xk Un (Sck)

where u,(z) = v7°(z) (|z — to| + n71).
Now, for k # ¢ (|t — 2| = mkm [to — z|) we conclude that

For x = ¢ we have
F(xe)un () = qs(we)u

ds (‘Tc—l) Un (-TC) + Up (-Tc) /IC qg(t)dt.

Now, tp () < Uy (Te—1) < cu(z.—1) and
s (Te—1) un (wc)| < CHUFH[chl,zc],oo

Moreover, for 0 < 8 < 1 we get

C/M . p dt
< qs(t)| [to — t
w ) ldOl =i

wn (o) [ ()it

c—

. c i 0 fert _dt

> ng H qs| 0 — | H[zc71,zc+1] - |t0 _ t|0
C /

~ no lto — | ||[$c—111c+1]

< Cllur,
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by using Markov inequality in [z.—1, Tet1]-
Then, for any k =1,...,n
[un (x1) F (z)] < [JuF].
Furthermore (see [11])

1

m Wn (Tx) (Try1 — Ti)

where w, (z) = v* (|z —to| + n~1)". By using Marcinkiewicz inequality and
Remez inequality, we get for p € [1, +00)

lukatow F) [, < clur)] | Y220y a

where the integral exists by virtue of (3.5).
Furthermore, recalling the definition of r(¢), it holds

“_ ro)ldt < A“_()“) \H (pu(w)gu, t)| dt

/ Vo) [pn (w, )| | H (gu, t)|dt =: I + I>.
A u(t)

Taking into account that |p,(w,t)| < ¢/\/wp(t) for t € A, and the equality

/ng:f/ng for f € (LlogtL) and g€ L™,
A A

5 (05

12g/Aﬁm(gu,mdtg/Ag(t)u(t)‘ﬂ <%,t>‘dt,

where G; =sgn H(...) and Go = sgn H(...).
If 1 < p < 400 we use [11, Lemma] and the estimate

we have

I+ I < C | Ln(w, fulls™.

For p = 1, we have |g(t)| <1 and

IS/ (G, t)dt + /
' A AW A

dr | dt.
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Since

ey - VTP

T u()
is a generalized Jacobi weight, the internal integral is dominated by a constant
time the product of the factors of U having negative exponents. Then I; < C
since

/AH(G,t)dt <V2 (/A HQ(G,t)dt) v < 2.

For I, we use a similar argument. Thus (3.5) implies (3.4).

Let us prove that (3.4) implies (3.5). Now, from (3.4) it follows easily from
[9, Theorem 2.2] that

u
VP

We have to prove that (3.4) implies that \/wg € L' ie. that o, ,7,6,0,n
satisfy (3.10). This can be done following [11, p. 688].

For § and 7, let us consider a function f with | f(x)| < 1 such that f(41) = 0,
fxg) =0 for ap <tog—6 and ap > to+ 9, and f (zx) = sgn (p, (w,zy)) if
Tk € (to —0,tg + (S) C (—1, 1). Then

€ LP, 1<p< +oo.

Low. o) = polw.z) 3 .

and

2lpa(w, du(@)] Y :

to—6<x<to+0 |p;’1 (’LU, 'rk)| Unp, (;L'k)

we (xr)
~ o) Y LI,
to—d<z<to+s k
_ —0
~ pa(w (@) S0 (e —tol + )" Ay,

to—0<zy<to+0

to+6 n/2—0
~ Ipn(w, @)u(z)| / (It = to] + )" at.
to—90

Ju(@)La(w, f,2)|

Y

Then
to+96 _1\n/2—0
sup [|pn (w)ul, (It —to| +n~ )" "at < C.
n to—0
But,
u
ol ~ | =

p
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To prove the second part of Theorem 3.1 it is sufficient to show that

n

Iy, = maxu(z) | <Clogn

€A u
* k=1,kd

if and only if (3.11) holds. But, with wy,(z) = v*#(z) (jz — to| + nil)n and
zeA

~ k()]
I(z) = |pa(w,2)u(z)l
p k:lz,k:q&d Uy (T)

we deduce

I'(x) ~ C |pn(w, z)/we(x)| logn
if and only if (3.11) are satisfied. Then the second part of Theorem 3.1 follows
by recalling that H P (W) \/Wn @ H ~1. 0

Proof of Corollary 3.1. Firstly, we prove inequality (3.8). We have
[ulf = La(w, )]l < l[ulf = Fllp + [u[F = L (w, F)][lp.
By the definition of F, it follows
Julf = Fllly <€ it Nulf = @l g s012)
Moreover, for all polynomials P € P,,_1, using Theorem 3.1 we get

[ulF = La(w, F)lll, < [u(F = P)llp + [luln(w, F = P)|l,

IN

Cllu(F = P)lloc < Cllu(F = flloc + [[u(f = P)lloo

IN

c%ganwf—%mm+wa—me-

Therefore, assuming that P € P,_; minimizes the last expression, we arrive
at the estimate

[ulf = Lo(w, F)]llp < ClEn—1(fuco + nf [u(f = gs)lloo;
qs € Ps

ie., (3.8).
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The proof of (3.9) is similar and therefore Corollary 3.1 is proved. O
Proof of Theorem 3.3. Let d = max (tg — y1,yr — to) and set

A:(—1+%,t0—2d)u(t0+2d,1—%),
n n

where a > 0 is fixed. Since the measure of [ty — 2d, to + 2d] is of order n=!, we

use the Remez inequality to obtain
[uLn (@2, P)lp < ClluLn(@™, Loy, 1< p < oo,
Moreover, for x € A, i.e., [to — x| > 2d and £ < C|z — |, it results

—t
|$ 0|<|

|$—t0|
2 2

x—y;| <C
and

m(x) ~ |z —t]”, =z € A.
Then, letting ¢, (z) = Pni, (v¥?, 2)/7(z),

g(x) = sgn L (0™, f,2)|u(z) Ln (v™7, f, )P~

and

r(t) = /A Mu(m)g(m)dm € Pn_i,

r—t

we can write

(0L, )] <A><cz )

EN QB
Recalling the relation

1

- - O~ o, _
P e VP =),

we get

AV ZL'
[uLn (07, F)lp < Clluflloo Z ) r(zx)| Az, 1 <p < +oo.

|91/

zkgs

Now, if we repeat step by step the proof of Theorem 3.1 and recalling that

T €A,

C
lgn(2)] <
|z — o/ v* P ()

the equivalence between (3.16) and (3.17) follows easily.
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Finally, we consider the case p = +00. Let

l*( ) P’ﬂJrV(va’ﬁaz) 7T(SCk)

T) = .
: m(x) Py, me) (e — k)
Then, denoting by x4 one of the closest zeros to x, we have

N
) w(zq) L

3

N TR GO ]

u(k) |z —tol” VI ET 01 (zy)

which implies

I Py (07,
OO PN 1 O U1, W0 Lt Y
e u(xy) |z — to]¥|x — 7|0—YvoT ()

— e — 71777077 (k)| — i
v 8B
where 1 3 1
@
k#d e =0—=——.
#d, o=v-5- 0 T 5 71
Moreover,
|u(z) Pty (028, )| a1 B 1
|z — to|V|:Enf T0=vuoT(z) [ETTIH (2) Py, (07, )|
and

max |v%+i’g+%(x)Pn+y(va’ﬁ,:c)| ~ 1.
T€EA

Then, using Lemma 5.1, we have

a - |l ()]
sup  [|uLn(v®?, f)]so ~ max u(z)——= ~logn,
Juf e =1 o ; u(zk)

z €8
if and only if (3.19) holds. O
Proof of Theorem 3.4. We first prove that

s oL )l ~ logn (5.3)
v j =1

holds if and only if

| e
IN
=2
IN

and n—1<v<n.

|
(Y e}
NSy
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To this end we set d := max (tg — y1,¥y, — to) and
C
A== tg—2d) U(to+2d,4n).
n

Since the distance between the zeros in a neighborhood of ¢y is of order
1/4/n (see [5]), we can use a Remez-type inequality [7] to obtain

[0Lnt1(Wa, £5)lloo ~ [[0Lnt1(wa, £5)l| Loe ()

and
|m(x)] ~ | —to]”, =z € A.

Moreover (cf. [5]), by easy computations we get

v(x) o(za) ~1
and, for j > k # d,
o@D | o @ P (. )| Vel — )
()

—v _a_ 1
(:I:—t(J)n ($)7 271 Agy
K — to Tk |z — x|

max |/ We (2) Poty (W, )| vV x(dn — x)| ~ 1,

z€A

Since

we conclude that

sup HLn-‘rl(waaf)UHOO ~ sup HLn—i-l(wa,fj)'UHL“(A)
If5vlleo=1 [If5vlloo=1
j
l*
~  max ’U(ZL')| k(x)|
zed v(xg)
zy, &8
J z—t |7 [z TmE-d Axy,
T e <_> |
— |wp —to Tk |x — x|

v 8B

By Lemma 5.1, the last sum is equivalent to logn if and only if

5
<~< +Z and n—1<v<n.

(] e

| R
A~ =

+

Now, we have

[0[f = Lnga(wa, f)llleo < l0lf = fillloo + Ivlf5 = Ln(wa, f5)]lloo-
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Letting
0

M:[H—H

(n+v)| ~n,
we have (see [6])

[lf = fillloe < C(Bar(f)o+e 4" loflloc) -

Moreover, since for all polynomials P € Py, P = P; 4+ ¢, P, and
fj _Ln(waafj) = fj - P - Ln(woufj - Pj) +Ln(waawjp)

(fi =)+ (f = P) = Lu(wa, (f = P)j) + Ln(wa,; P),

we have

[0[f; = Ln(wa, fi)lllo < [lo(f = P)lloc + [[0(f = fi)lloo

+  [[vLn(wa, (f = P)j)llec + [vLn(wa, 15 P)]loo-

Taking the infimum over P € P, and using (5.3), we see that the first
three terms are dominated by

C(Enm(f)ologn+e "|of]l) -

Now, it remains to estimate the last term.
Thus,

|v(x)Ln(wav"/}jPaz>| = Z’U(:C)

k> j

N

>~ ||'UP||[49n,4n] Z ’U((E)

k>3
z B

Using Lemma 5.1 and recalling the conditions on «, 3,7, d, v, and 7, we see
that the last sum is of order logn. Finally, using an inequality proved in [7],
we obtain

[0P[fa0n,00) < Ce™ " [UP]loo < Ce™ ™[0 f]|oc,

since P is the polynomial of best approximation of f € L.
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